Environmental Assessment and Toxic Metal-Contamination Level in Surface Sediment of a Water Reservoir in the Brazilian Cerrado
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sample Preparation and Analysis Methods
2.3. Organic Matter (OM) Content
2.4. Geoaccumulation Index (Igeo)
2.5. Particle Size Analysis
2.6. Linear Regression
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Esteves, F.A. Fundamentos de Limnologia; Interciência: Rio de Janeiro, Brazil, 1998. [Google Scholar]
- CETESB. Relatório de Qualidade de Aguas Interiores no Estado de São Paulo; Governo do estado de São Paulo: São Paulo, Brazil, 2016. Available online: www.cetesb.sp.gov.br (accessed on 21 October 2020).
- Souza-Silva, L.; Ferreira, F.; Fávaro, D. Avaliação da concentração de metais tóxicos em amostras de sedimentos dos reservatórios do complexo Billings (Guarapiranga e Rio Grande). Geochim. Bras. 2017, 31, 37–56. [Google Scholar] [CrossRef]
- Abrid, D.; El Hmaidi, A.; Abdallaoui, A.; Essahlaoui, A.A. Study of Trace Metals in Surface Sediments of the Dam Reservoir Sidi Chahed (Meknes, Morocco). Int. J. Eng. Sci. 2014, 23–32. [Google Scholar]
- Dra, A.; El Gaidoumi, A.; Tanji, K.; Chaouni Benabdallah, A.; Taleb, A.; Kherbeche, A. Characterization and Quantification of Heavy Metals in Oued Sebou Sediments. Sci. World J. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sojka, M.; Jaskula, J.; Siepak, M. Heavy metals in bottom sediments of reservoirs in the lowland area of western Poland: Concentrations, distribution, sources and ecological risk. Water 2018, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Doria, H.B.; Voigt, C.L.; De Campos, S.X.; Randi, M.A.F. Metal pollution assessment in a Brazilian hydroelectric reservoir: Geophagus brasiliensis as a suitable bioindicator organism. Ambiente Água Interdiscip. J. Appl. Sci. 2017, 12, 575. [Google Scholar] [CrossRef]
- Papadopoulou-Vrynioti, K.; Alexakis, D.; Bathrellos, G.D.; Skilodimou, H.D.; Vryniotis, D.; Vassiliades, E.; Gamvroula, D. Distribution of trace elements in stream sediments of Arta plain (western Hellas): The influence of geomorphological parameters. J. Geochem. Explor. 2013, 134, 17–26. [Google Scholar] [CrossRef]
- Alexakis, D.; Gamvroula, D.; Theofili, E. Environmental availability of potentially toxic elements in an agricultural Mediterranean site. Environ. Eng. Geosci. 2019, 25, 169–178. [Google Scholar] [CrossRef]
- Cesar, R.; Colonese, J.; Silva, M.; Egler, S.; Bidone, E.; Castilhos, Z.; Polivanov, H. Distribuição de mercúrio, cobre, chumbo, zinco e níquel em sedimentos de corrente da bacia do Rio Piabanha, Estado do Rio de Janeiro. Geochim. Bras. 2011, 25, 35–45. [Google Scholar]
- Paulino, A.T.; Tessari, J.A.; Nogami, E.M.; Lenzi, E.; Nozaki, J. Lipid increase induced by lead accumulation in tilapia Oreochromis niloticus. Bull. Environ. Contam. Toxicol. 2005, 75, 42–49. [Google Scholar] [CrossRef]
- Wolf, M.; Paulino, A.T. Phytotoxicity Increase Induced by Zinc Accumulation in Cichorium intybus. Bull. Environ. Contam. Toxicol. 2020, 105, 405–410. [Google Scholar] [CrossRef]
- Gamvroula, D.; Alexakis, D.; Stamatis, G. Diagnosis of groundwater quality and assessment of contamination sources in the Megara basin (Attica, Greece). Arab. J. Geosci. 2013, 6, 2367–2381. [Google Scholar] [CrossRef]
- Franz, C.; Makeschin, F.; Weiß, H.; Lorz, C. Geochemical signature and properties of sediment sources and alluvial sediments within the Lago Paranoá catchment, Brasilia DF: A study on anthropogenic introduced chemical elements in an urban river basin. Sci. Total Environ. 2013, 452–453, 411–420. [Google Scholar] [CrossRef]
- Barbosa da Silva Costa, J.M.; De Lima Silva, V.; Samico, I.C.; Cesse, E.Â.P. Desempenho de intervenções de saúde em países da América Latina: Uma revisão sistemática. Saúde em Debate 2015, 39, 307–319. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho Braga, C.; Cabral, J.B.P.; Lopes, S.M.F.; Oliveira, S.F.; Rocha, I.R. Da Qualidade dos sedimentos em relação à presença de metais pesados no reservatório da usina hidrelétrica de Caçu–GO. Rev. Bras. Geogr. Física 2018. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; AL-Mamun, M.H.; Islam, S.M.A. Sources and Ecological Risks of Heavy Metals in Soils Under Different Land Uses in Bangladesh. Pedosphere 2019. [Google Scholar] [CrossRef]
- Filgueiras, R.A.; Silva, A.X.; Ribeiro, F.C.A.; Lauria, D.C.; Viglio, E.P. Baseline, mapping and dose estimation of natural radioactivity in soils of the Brazilian state of Alagoas. Radiat. Phys. Chem. 2020, 167, 108332. [Google Scholar] [CrossRef]
- Pompêo, M.; Padial, P.R.; Mariani, C.F.; Cardoso-Silva, S.; Moschini-Carlos, V.; Da Silva, D.C.V.R.; de Paiva, T.C.B.; Brandimarte, A.L. Ecological risk index for aquatic pollution control: A case study of coastal water bodies from the Rio de Janeiro State, southeastern Brazi. Geochim. Bras. 2013, 27, 104–119. [Google Scholar] [CrossRef]
- Frascareli, D.; Cardoso-Silva, S.; De Oliveira Soares-Silva Mizael, J.; Rosa, A.H.; Pompêo, M.L.M.; López-Doval, J.C.; Moschini-Carlos, V. Spatial distribution, bioavailability, and toxicity of metals in surface sediments of tropical reservoirs, Brazil. Environ. Monit. Assess. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, J.; Saleem, M.; Shah, M.H. Spatial distribution, environmental assessment and source identification of metals content in surface sediments of freshwater reservoir, Pakistan. Chemie Erde 2016, 76, 171–177. [Google Scholar] [CrossRef]
- Belo, A.; Quináia, S.P.; Pletsch, A.L. Avaliação da contaminação de metais em sedimentos superficiais das praias do lago de Itaipu. Quim. Nova 2010, 33, 613–617. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, F.Y.; Pereira, M.V.M.; Lottermann, E.; Santos, G.S.; Stremel, T.R.O.; Doria, H.B.; Gusso-Choueri, P.; Campos, S.X.; Ortolani-Machado, C.F.; Cestari, M.M.; et al. Bioavailability of pollutants sets risk of exposure to biota and human population in reservoirs from Iguaçu River (Southern Brazil). Environ. Sci. Pollut. Res. 2016, 23, 18111–18128. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Du, J.; Bi, Q. Natural radioactivity assessment of surface sediments in the Yangtze Estuary. Mar. Pollut. Bull. 2017, 114, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, M.F.; Naspolini, B.F.; Volchan Jr, I. A evolução do processo de avaliação e gerenciamento de material relacionado às atividades de dragagem no Brasil: Uma análise comparativa entre as Resoluções CONAMA n° 344/04 e n° 454/12. Eng. Sanit. Ambient. 2015, 20, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geol. J. 1969, 2, 108–118. [Google Scholar]
- Franklin, R.L.; Fávaro, D.I.T.; Damatto, S.R. Trace metal and rare earth elements in a sediment profile from the Rio Grande Reservoir, São Paulo, Brazil: Determination of anthropogenic contamination, dating, and sedimentation rates. J. Radioanal. Nucl. Chem. 2016, 307, 99–110. [Google Scholar] [CrossRef]
- Kaewtubtim, P.; Meeinkuirt, W.; Seepom, S.; Pichtel, J. Occurrence of heavy metals and radionuclides in sediments and seawater in mangrove ecosystems in Pattani Bay, Thailand. Environ. Sci. Pollut. Res. Int. 2017, 24, 7630–7639. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef]
- Shui, L.; Pan, X.; Chen, X.; Chang, F.; Wan, D.; Liu, D.; Hu, M.; Li, S.; Wang, Y. Pollution Characteristics and Ecological Risk Assessment of Heavy Metals in Sediments of the Three Gorges Reservoir. Water 2020, 12, 1798. [Google Scholar] [CrossRef]
- Alexakis, D. Diagnosis of stream sediment quality and assessment of toxic element contamination sources in East Attica, Greece. Environ. Earth Sci. 2011, 63, 1369–1383. [Google Scholar] [CrossRef]
- SIEG Sistema Estadual de Estatísticas Informações Geografias de Goiás. Available online: www2.sieg.go.gov.br (accessed on 1 October 2020).
- Junior, V.S.Q.; Cabral, J.B.P.; Da Rocha, I.R.; De Barcelos, A.A. Uso de geotecnologias na caracterização da fragilidade ambiental da Bacia da UHE Foz do Rio Claro (GO). GeoFocus. Rev. Int. Cienc. Tecnol. Inf. Geográfica 2015, 193–212. [Google Scholar]
- Filizola, H.F.; Gomes, M.A.F.; Souza, M.D. Manual de Procedimentos de Coleta de Amostras em Áreas Agricolas para Análise da Qualidade Ambiental: Solo, Água e Sedimentos; Embrapa: Brasilia, Brazil, 2006; ISBN 8585771437. [Google Scholar]
- USEPA SW-846 Method 3051A–Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils 2007, 30. Available online: www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf. (accessed on 21 November 2020.).
- Do Nascimento, L.P.; Reis, D.A.; Roeser, H.M.P.; Da Santiago, A.F. Avaliação geoquímica de metais em sistemas fluviais afetados por atividades antrópicas no Quadrilátero Ferrífero. Eng. Sanitária Ambient. 2018, 23, 767–778. [Google Scholar] [CrossRef] [Green Version]
- Santos, C. Estatística Descritiva: Manual de Auto-Aprendizagem, 3rd ed.; Edições Sílabo: Lisbon, Portugal, 2018; ISBN 9789726189688. [Google Scholar]
- EMBRAPA. Sistema Brasileiro de Classificação de Solos, 5th ed.; EMBRAPA: Brasília, Brazil, 2018. [Google Scholar]
- Mohamad, S.; Rodrigues, A.; Martins, A.; Braz, D.S.; José, A.; Pedroso, S. Chemie der Erde Available contents of potentially toxic elements in soils from the Eastern Amazon. Chem. Erde Geochem. 2015, 75, 143–151. [Google Scholar] [CrossRef]
- Manejo, U.S.O.E.; Aurélio, M.; Carneiro, C.; De Souza, E.D.; Fialho, E.; Pereira, H.S. Solo De Cerrado Sob Diferentes Sistemas De. Rev. Bras. Cienc. Solo 2009, 33, 147–157. [Google Scholar]
- Bakatula, E.N.; Richard, D.; Neculita, C.M.; Zagury, G.J. Determination of point of zero charge of natural organic materials. Environ. Sci. Pollut. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Fang, H.; Ni, K.; Yang, W.; Zhao, W.; He, G.; Han, Y.; Li, X. Distribution and Potential Risk of Heavy Metals in Sediments of the Three Gorges Reservoir: The Relationship to Environmental Variables. Water 2018, 10, 1840. [Google Scholar] [CrossRef] [Green Version]
- CONAMA. Resolução No 454 de 01 de Novembro de 2012; Ministério do Meio Ambiente: Brasília, Brazil, 2012.
- Gomes, M.V.T.; Costa, A.S.; Garcia, C.A.B.; Passos, E.A.; do Patrocínio Hora Alves, J. Concentrações e associações geoquímicas de Pb e Zn em sedimentos do rio São Francisco impactados por rejeitos da produção industrial de zinco. Quim. Nova 2010, 33, 2088–2092. [Google Scholar] [CrossRef] [Green Version]
- De Lara, S.S.; Leopoldina, M.; Correa, M.; Barbosa, J.R.; Henrique, L. Spatial distribution of pesticide use in Brazil: A strategy for Health Surveillance. Cienc. Saude Coletiva 2017, 3281–3294. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Da Silva, F.L.; Moitas, M.L.; Bianchini, I.; Cunha-Santino, M.B. Qualidade dos sedimentos do rio Monjolinho: Índice de geoacumulação. Rev. Ciência Tecnol. Ambient 2016, 4, 79–87. [Google Scholar] [CrossRef]
- Dąbrowska, L. Chemical Forms of Heavy Metals in Bottom Sediments of the Mitręga Reservoir. Civ. Environ. Eng. Rep. 2016, 21, 15–26. [Google Scholar] [CrossRef] [Green Version]
- An, Y.-J.; Kampbell, D.H. Total, dissolved, and bioavailable metals at Lake Texoma marinas. Environ. Pollut. 2003, 122, 253–259. [Google Scholar] [CrossRef]
- De Oliveira, G.M.T.S.; De Oliveira, E.S.; de Souza Santos, M.L.; de Melo, N.F.A.C.; Krag, M.N. Concentrações de metais pesados nos sedimentos do lago Água Preta (Pará, Brasil). Eng. Sanitária Ambient. 2018, 23, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Françozo, M.O.; Oliveira, T.M.N.; Ressel, K. Análise Da Presença De Metais Pesados E Sua Toxicidade Nos Sedimentos Do Rio Cachoeira–Joinville/SC Analysis of the Presence of Heavy Metals and Their Toxicity in Cachoeira River ’ S–Joinville/Sc. In Proceedings of the IX Simpósio Internacional de Qualidade Ambiental, Energia e Ambiente, Joinville, Brazil, 19–21 May 2014; pp. 1–15. [Google Scholar]
- CETESB. Relatório de Qualidade de Aguas Interiores no Estado de São Paulo; Governo do Estado de Sao Paulo: Sao Paulo, Brazil, 2005. Available online: www.cetesb.sp.gov.br (accessed on 21 October 2020).
- Campbell, P.G.C.; Lewis, A.G.; Chapman, P.M.; Crowder, A.A.; Fletcher, W.K.; Imber, B.; Luoma, S.N.; Stokes, P.M.; Winfrey, M. Biologically Available Metals in Sediments; Publications NRCC/CNRC: Ottawa, Canada, 1988. [Google Scholar]
- Nogueira, P.F.; Pereira Cabral, J.B.; Oliveira, S.F.; Rocha, I.R. Da Eutrofização no reservatório da UHE foz do rio claro (GO). Geogr. Dep. Univ. Sao Paulo 2015. [Google Scholar] [CrossRef] [Green Version]
- Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Murtaza, N.G.; Dumat, C.; Shahid, M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 2020, 259, 127436. [Google Scholar] [CrossRef]
- Kettanah, Y.A. Copper mineralization and alterations in Gercus Basalt within the Gercus. Ore Geol. Rev. 2019, 111, 102974. [Google Scholar] [CrossRef]
- Winter, M. Web-Elements. Available online: www.webelements.com. (accessed on 20 December 2020).
- Pavelhao, T.R. Valores Orientadores De Qualidade Para Metais Pesados Em Solos Cultivados No Município De Bandeirantes–PR; Maringá State University: Maringa, Brazil, 2015. [Google Scholar]
- CPRM Geologia e Saúde. Available online: www.cprm.gov.br. (accessed on 5 January 2021).
- Trindade, W.M.; Horn, A.H.; Ribeiro, E.V. Concentrações de metais pesados em sedimentos do rio são francisco entre três marias e Pirapora-MG: Geoquímica e classificação de risco ambiental. Geonomos 2012. [Google Scholar] [CrossRef] [Green Version]
- Martins, R.O.; Hoff Brait, C.H.; Santos, F.F. Dos Avaliação do teor de metais pesados e de parâmetros físico-químicos da água e sedimento do lago bonsucesso, Jataí–GO. Geoambiente On-Line 2018. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Liu, J.; Xu, S.; Xie, Z. Deposition behavior, risk assessment and source identification of heavy metals in reservoir sediments of Northeast China. Ecotoxicol. Environ. Saf. 2017, 142, 454–463. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Y.; Zheng, L.; Liu, B.; Liu, J.; Wang, X. Assessment of Heavy Metal Pollution in the Sediment of the Main Tributaries of Dongting Lake, China. Water 2018, 10, 1060. [Google Scholar] [CrossRef] [Green Version]
- Stradioto, M.R.; Caetano-chang, M.R. Geociências Caracterização petrográfica e aspectos diagenéticos dos arenitos do Grupo Bauru na região sudoeste do Estado de São Paulo. Rem. Rev. Esc. Minas 2008, 61, 433–441. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Y.; Teng, H.; Yang, H.; Liu, A.; Li, M.; Niu, X. Historical Evolution of Sources and Pollution Levels of Heavy Metals in the Sediment of the Shuanglong Reservoir, China. Water 2020, 12, 1855. [Google Scholar] [CrossRef]
- Alleoni, L.R.F.; Borba, R.P.; De Camargo, O.A. Heavy metals: From cosmogony to Brazilian soils. In Tópicos em Ciência do Solo; Torrado-Vidal, P., Alleoni, L.R.F., Cooper, M., Silva, A.P., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2005; pp. 1–42. [Google Scholar]
- De Sa Paye, H.; Vargas de Mello, J.W.; Bezzera de Melo, S. Métodos de análise multivariada no estabelecimento de valores de referência de qualidade para elementos-traço em solos. Rev. Bras. Ciência Solo 2012, 36, 1031–1042. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.Z.; Li, Q.Z.; Zhang, X.; Li, G.X. Mobility and ecological risk assessment of heavy metals in surface sediments of Xiamen Bay and its adjacent areas, China. Environ. Earth Sci. 2010, 60, 1469–1479. [Google Scholar] [CrossRef]
- Marques, J.J.; Schulze, D.G.; Curi, N.; Mertzman, S.A. Trace element geochemistry in Brazilian Cerrado soils. Geoderma 2004, 121, 31–43. [Google Scholar] [CrossRef]
- Dirbaba, N.; Yan, X.; Wu, H.; Colebrooke, L.; Wang, J. Occurrences and Ecotoxicological Risk Assessment of Heavy Metals in Surface Sediments from Awash River Basin, Ethiopia. Water 2018, 10, 535. [Google Scholar] [CrossRef] [Green Version]
- Alexakis, D.; Gotsis, D.; Giakoumakis, S. Evaluation of Soil Salinization in a Mediterranean Site Agoulinitsa District–West Greece; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1373–1383. [Google Scholar] [CrossRef]
Classification Level | Ni | Cd | Pb | Cu | Zn |
---|---|---|---|---|---|
Level I (mg kg−1) | 18.0 | 0.6 | 35.0 | 35.7 | 123.0 |
Level II (mg kg−1) | 35.9 | 3.5 | 91.3 | 197.0 | 315.0 |
Description of the Sediment Quality | Classification Igeo | Igeo Value |
---|---|---|
Extremely polluted | 6 | Igeo > 5 |
Strongly to extremely polluted | 5 | 4 < Igeo < 5 |
Strongly polluted | 4 | 3 < Igeo < 4 |
Moderately to strongly polluted | 3 | 2 < Igeo < 3 |
Moderately polluted | 2 | 1 < Igeo < 2 |
Not polluted to moderately polluted | 1 | 0 < Igeo < 1 |
Practically not polluted | 0 | Igeo ≤ 0 |
Background Values | Ni | Cd | Pb | Cu | Zn |
---|---|---|---|---|---|
5.41 | 1.74 | 3.08 | 18.15 | 26.38 |
Correlation Coefficient | Correlation |
---|---|
r = 1 | Perfect positive |
0.7 ≤ r < 0.9 | Strong positive |
0.4 ≤ r < 0.7 | Moderate positive |
0.1 ≤ r < 0.4 | Weak positive |
0 | Null |
−0.4 < r ≤ −0.1 | Weak negative |
−0.7 < r ≤ −0.4 | Moderate negative |
−1 < r ≤ −0.7 | Strong negative |
r = −1 | Perfect negative |
Points | Pb | Zn | Ni | Cu | Cd | pH | CEC | OM | Clay | Silt | Sand |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3.080 | 26.38 | 5.410 | 18.15 | 1.741 | 5.50 | 2.400 | 2.28 | 0.79 | 2.20 | 97.0 |
2 | 16.86 | 71.67 | 18.41 | 57.24 | 5.470 | 4.60 | 17.40 | 6.85 | 45.0 | 44.2 | 10.8 |
3 | 18.49 | 59.52 | 18.39 | 80.39 | 5.762 | 4.50 | 13.30 | 7.03 | 15.0 | 75.3 | 9.70 |
4 | 25.57 | 59.49 | 25.37 | 80.32 | 7.621 | 4.50 | 21.40 | 4.55 | 36.0 | 39.3 | 24.7 |
5 | 24.58 | 56.43 | 24.04 | 76.88 | 7.720 | 4.50 | 24.00 | 4.90 | 13.0 | 80.0 | 7.00 |
6 | 32.60 | 122.0 | 37.18 | 160.5 | 9.630 | 4.80 | 20.20 | 3.25 | 24.0 | 65.6 | 10.4 |
7 | 32.86 | 159.6 | 35.23 | 201.9 | 15.53 | 4.60 | 21.30 | 6.89 | 38.0 | 54.3 | 7.70 |
8 | 22.13 | 48.96 | 23.05 | 52.67 | 4.490 | 4.50 | 15.90 | 8.02 | 13.0 | 58.6 | 28.4 |
9 | 35.02 | 137.8 | 40.30 | 150.3 | 14.04 | 4.70 | 22.80 | 2.70 | 38.0 | 30.1 | 31.9 |
10 | 32.27 | 132.3 | 34.86 | 152.7 | 13.18 | 4.70 | 19.40 | 2.31 | 14.0 | 61.9 | 24.1 |
11 | 31.79 | 119.3 | 31.49 | 133.6 | 13.49 | 4.60 | 19.90 | 10.5 | 33.0 | 44.2 | 22.8 |
12 | 31.42 | 63.33 | 31.82 | 75.54 | 6.801 | 4.60 | 16.30 | 1.55 | 7.00 | 42.4 | 50.6 |
Pb | Zn | Ni | Cu | Cd | pH | CEC | OM | Clay | Silt | Sand | |
---|---|---|---|---|---|---|---|---|---|---|---|
Pb | 1000 | ||||||||||
Zn | 0.785 * | 1000 | |||||||||
Ni | 0.982 * | 0.839 * | 1000 | ||||||||
Cu | 0.820 * | 0.971 * | 0.858 * | 1000 | |||||||
Cd | 0.841 * | 0.951 * | 0.853 * | 0.938 * | 1000 | ||||||
pH | −0.566 | −0.202 | −0.451 | −0.260 | −0.320 | 1000 | |||||
CEC | 0.825 * | 0.590 | 0.779 * | 0.629 | 0.696 * | −0.748 * | 1000 | ||||
OM | −0.013 | 0.058 | −0.103 | 0.040 | 0.109 | −0.449 | 0.155 | 1000 | |||
Clay | 0.388 | 0.544 | 0.402 | 0.468 | 0.527 | −0.403 | 0.583 | 0.398 | 1000 | ||
Silt | 0.387 | 0.171 | 0.309 | 0.296 | 0.197 | -0.711* | 0.542 | 0.288 | −0.016 | 1000 | |
Sand | −0.542 | −0.452 | −0.486 | −0.512 | −0.464 | 0.821 * | −0.782 * | −0.466 | −0.554 | −0.823 * | 1000 |
Correlation | Perfect | Strong | Moderate | Weak | Null | ||||||
=1 | 0.7≤ r <0.9 | 0.4≤ r <0.7 | 0.1≤ r <0.4 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabral, J.B.P.; Nogueira, P.F.; Becegato, V.A.; Becegato, V.R.; Paulino, A.T. Environmental Assessment and Toxic Metal-Contamination Level in Surface Sediment of a Water Reservoir in the Brazilian Cerrado. Water 2021, 13, 1044. https://doi.org/10.3390/w13081044
Cabral JBP, Nogueira PF, Becegato VA, Becegato VR, Paulino AT. Environmental Assessment and Toxic Metal-Contamination Level in Surface Sediment of a Water Reservoir in the Brazilian Cerrado. Water. 2021; 13(8):1044. https://doi.org/10.3390/w13081044
Chicago/Turabian StyleCabral, João Batista Pereira, Pollyanna Faria Nogueira, Valter Antonio Becegato, Vitor Rodolfo Becegato, and Alexandre Tadeu Paulino. 2021. "Environmental Assessment and Toxic Metal-Contamination Level in Surface Sediment of a Water Reservoir in the Brazilian Cerrado" Water 13, no. 8: 1044. https://doi.org/10.3390/w13081044
APA StyleCabral, J. B. P., Nogueira, P. F., Becegato, V. A., Becegato, V. R., & Paulino, A. T. (2021). Environmental Assessment and Toxic Metal-Contamination Level in Surface Sediment of a Water Reservoir in the Brazilian Cerrado. Water, 13(8), 1044. https://doi.org/10.3390/w13081044