An Assessment of Groundwater Recharge at a Regional Scale for Sustainable Resource Management: Province of Alicante (SE Spain)
Abstract
:1. Introduction
- Monitoring: innovative measuring of piezometric levels, drainage flows, and extractions, which should be done with regard to stakeholders in order to achieve their acceptability [30].
- Local management of basins: reinforcing multi-institutional and multistakeholder coordination [31].
- Water politics: in wide areas where resources are shared between regions under different administrations, especially when there are different countries involved, conflict may arise [34,35]. Common management criteria, agreed in treaties, with government agencies partnering with stakeholders, would prevent “hydroschizophrenia” as described by Llamas [36,37].
2. Description of the Studied Area
2.1. Geographical Setting
2.2. Climatic Setting
2.3. Hydrogeology Setting
3. Data and Methods
3.1. Data
- (a)
- Piezometric network: 345 points, measuring 159 aquifers; 190 points are manual measured, and 155 points have continuous monitoring.
- (b)
- Spring flow gauging stations: 65 points, of which 30 are automated with continuous level probes or flowmeters that allow the evaluation of drainage of about 30 aquifers.
- (d)
- Exploitation network: 711 pumping wells in 111 aquifers, 48 with remote flowmeters.
- (e)
- Meteorologic network: data of the National Meteorologic Agency (AEMET), completed with 20 automated data points from DPA.
3.2. Methods
- -
- The soil is able to store only a certain volume of water called field capacity (CC), which depends mainly on rock type and soil depth.
- -
- Subject to the availability of rainfall and soil water, the first priority is to meet the needs of ETRi, up to its limit (ETPi), and then increase soil water storage up to its maximum (CC).
- -
- The excess water, after ETPi and CC demands are met, integrates LLUi.
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wada, Y.; Beek, L.; Bierkens, M.F. Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Wada, Y.; Wisser, D.; Bierkens, M.F. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dynam. 2014, 5, 15–40. [Google Scholar] [CrossRef][Green Version]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef][Green Version]
- Ibañez, J.; Valderrama, J.M.; Puigdefábregas, J. Assessing overexploitation in Mediterranean aquifers using system stability condition analysis. Ecol. Model. 2008, 218, 260–266. [Google Scholar] [CrossRef][Green Version]
- Werner, A.D.; Zhang, Q.; Xue, L.; Smerdon, B.D.; Li, X.; Zhu, X.; Yu, L.; Li, L. An initial inventory and indexation of groundwater mega-depletion cases. Water Resour. Manag. 2013, 27, 507–533. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Llamas, M.R.; Custodio, E.; de la Hera, A.; Fornés, J.M. Groundwater in Spain: Increasing role, evolution, present and future. Environ. Earth Sci. 2015, 73, 2567–2578. [Google Scholar] [CrossRef]
- Rupérez-Moreno, C.; Senent-Aparicio, J.; Martínez-Vicente, D.; García-Aróstegui, J.L.; Calvo-Rubio, F.C.; Pérez-Sánchez, J. Sustainability of irrigated agriculture with overexploited aquifers: The case of Segura basin (SE, Spain). Agric. Water Manag. 2017, 182, 67–76. [Google Scholar] [CrossRef]
- Sahuquillo, A. La explotación intensa de los acuíferos en la cuenca baja del Segura y en la cuenca del Vinalopó. Ing. Agua 2016, 20, 13–27. [Google Scholar] [CrossRef][Green Version]
- Rodríguez-Estrella, T. The problems of overexploitation of aquifers in semi-arid areas: Characteristics and proposals for mitigation. Bol. Geol. Min. 2014, 125, 91–109. [Google Scholar]
- Custodio, E.; Andreu-Rodes, J.M.; Aragón, R.; Estrela, T.; Ferrer, J.; García-Aróstegui, J.L.; Manzano, M.; Rodríguez-Hernández, L.; Sahuquillo, A.; del Villar, A. Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. Sci. Total Environ. 2016, 559, 302–316. [Google Scholar] [CrossRef] [PubMed][Green Version]
- DPA-IGME (Ed.) Atlas Hidrogeológico de la Provincia de Alicante; Diputación Provincial de Alicante: Alicante, Spain, 2015; p. 282. ISBN 978-84-7840-959-4. [Google Scholar]
- Zarzo, D.; Prats, D. Desalination and energy consumption. What can we expect in the near future? Desalination 2018, 427, 1–9. [Google Scholar] [CrossRef]
- Jódar-Abellan, A.; López-Ortiz, M.I.; Melgarejo-Moreno, J. Tratamiento de aguas residuales y reutilización de aguas en España. Situación actual y perspectivas. Water 2019, 11, 1551. [Google Scholar] [CrossRef][Green Version]
- Prats-Rico, D.; Jódar-Abellán, A. No convencionales: Análisis de la reutilización de aguas residuales el agua en la provincia de Alicante. In El Agua en la Provincia de Alicante; Melgarejo-Moreno, J., Fernández Mejuto, M., Eds.; Diputacion Provincial de Alicante—University of Alicante: Alicante, Spain, 2020; pp. 105–129. ISBN 978-84-15327-92-9. [Google Scholar]
- Melgarejo, J. Provincia de Alicante y déficit Hídrico. In El Agua en la Provincia de Alicante; Melgarejo-Moreno, J., Fernández Mejuto, M., Eds.; Diputacion Provincial de Alicante—University of Alicante: Alicante, Spain, 2020; pp. 9–13. ISBN 978-84-15327-92-9. [Google Scholar]
- Milly, P.C.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, P.; Mitchell, J.E. (Eds.) ENSEMBLES. In Climate Change and its Impacts: Summary of Research and Results from the ENSEMBLES Project; European Environmental Agency: Exeter, UK, 2009; p. 160. [Google Scholar]
- Ferrer, J.; Pérez-Martín, M.A.; Jiménez, S.; Estrela, T.; Andreu, J. GIS-based models for water quantity and quality assessment in the Júcar River Basin, Spain, including climate change effects. Sci. Total Environ. 2012, 440, 42–59. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Jyrkama, M.I.; Sykes, J.F. The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). J. Hydrol. 2007, 338, 237–250. [Google Scholar] [CrossRef]
- Moutahir, H.; Bellot, P.; Monjo, R.; Bellot, J.; Garcia, M.; Touhami, I. Likely effects of climate change on groundwater availability in a Mediterranean region of Southeastern Spain. Hydrol. Process. 2017, 31, 161–176. [Google Scholar] [CrossRef][Green Version]
- Pulido-Velázquez, D.; García-Aróstegui, J.L.; Molina, J.L.; Pulido-Velázquez, M. Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate? Hydrol. Process. 2015, 29, 828–844. [Google Scholar] [CrossRef]
- Giordano, M.; Villholth, K. (Eds.) The Agricultural Groundwater Revolution: Opportunities and Threats to Development; CABI Publishing: Wallingford, UK, 2007; Volume 3, p. 419. ISBN 978-1-84593-172-8. [Google Scholar]
- Al-Senafy, M.; Abraham, J. Vulnerability of groundwater resources from agricultural activities in southern Kuwait. Water Manag. 2004, 64, 1–15. [Google Scholar] [CrossRef]
- Gleeson, T.; Vander Steen, J.; Sophocleous, M.A.; Taniguchi, M.; Alley, W.M.; Allen, D.M.; Zhou, Y. Groundwater sustainability strategies. Nat. Geosci. 2010, 3, 378–379. [Google Scholar] [CrossRef]
- Van Camp, M.; Radfar, M.; Walraevens, K. Assessment of groundwater storage depletion by overexploitation using simple indicators in an irrigated closed aquifer basin in Iran. Water Manag. 2010, 97, 1876–1886. [Google Scholar] [CrossRef]
- United Nations. 17 Sustainable Development Goals (SDG). Goal 6: Ensure Availability and Sustainable Management of Water and Sanitation for All. United Nations Website. Available online: https://sdgs.un.org/#goal_section (accessed on 10 February 2021).
- Holtz, G.; Pahl-Wostl, C. An agent-based model of groundwater over-exploitation in the Upper Guadiana, Spain. Reg. Environ. Chang. 2011, 12, 95–121. [Google Scholar] [CrossRef]
- Giordano, R.; Milella, P.; Portoghese, I.; Vurro, M.; Apollonio, C.; D’Agostino, D.; Lamaddalena, N.; Scardigno, A.; Piccinni, A.F. An Innovative Monitoring System for Sustainable Management of Groundwater Resources: Objectives, Stakeholder Acceptability and Implementation Strategy. In Proceedings of the EESMS 2010 Workshop on Environmental Energy, and Structural Monitoring Systems, Taranto, Italy, 9 September 2010; ISBN 978-142446275-9. [Google Scholar]
- Iglesias, A.; Garrote, L.; Flores, F.; Moneo, M. Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour. Manag. 2007, 21, 775–788. [Google Scholar] [CrossRef]
- Voudouris, K.; Polemio, M.; Kazakis, N.; Sifaleras, A. An agricultural decision support system for optimal land use regarding groundwater vulnerability. J. Inf. Syst. Soc. Chang. 2010, 1, 66–79. [Google Scholar] [CrossRef][Green Version]
- Portoghese, I.; D’Agostino, D.; Giordano, R.; Scardigno, A.; Apollonio, C.; Vurro, M. An integrated modelling tool to evaluate the acceptability of irrigation constraint measures for groundwater protection. Environ. Modell. Softw. 2013, 46, 90–103. [Google Scholar] [CrossRef]
- Hussein, H.; Menga, F.; Greco, F. Monitoring transboundary water cooperation in SDG 6.5. 2: How a critical hydropolitics approach can spot inequitable outcomes. Sustainability 2018, 10, 3640. [Google Scholar] [CrossRef][Green Version]
- Hussein, H. Yarmouk, Jordan, and Disi basins: Examining the impact of the discourse of water scarcity in Jordan on transboundary water governance. Mediterr. Politics 2019, 24, 269–289. [Google Scholar] [CrossRef][Green Version]
- Llamas, M.R.; Martínez-Santos, P. Intensive groundwater use: Silent revolution and potential source of social conflicts. J. Water Resour. Plann. Manag. 2005, 131, 337–341. [Google Scholar] [CrossRef]
- Jarvis, T.; Giordano, M.; Puri, S.; Matsumoto, K.; Wolf, A. International borders, ground water flow, and hydroschizophrenia. Groundwater 2005, 43, 764–770. [Google Scholar] [CrossRef] [PubMed]
- MMA. Libro Blanco del Agua; Dirección General de Obras Hidráulicas y Calidad del Agua, Ministerio del Medio Ambiente: Madrid, Spain, 2000; p. 637. ISBN 84-8320-128-3.
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 2002, 1, 18–39. [Google Scholar] [CrossRef]
- Custodio, E. Recarga de los acuíferos: Aspectos generales sobre el proceso, la evaluación y la incertidumbre (Aquifer recharge: General issues on the process, assessment and uncertainity). Bol. Geol. Min. 1998, 109, 13–29. [Google Scholar]
- ARGOS. Portal de Información ARGOS. Generalitat Valenciana. 2018. Available online: http://argos.gva.es/va (accessed on 20 December 2020).
- Azañón, J.M.; Galindo Zaldívar, J.; García Dueñas, V.; Jabaloy, A. Alpine Tectonics II: Betic Cordillera and Balearic Islands. In Geology of Spain; Gibbons, W., Moreno, T., Eds.; The Geological Society of London: London, UK, 2002; pp. 401–416. ISBN 1-86239-110-6. [Google Scholar]
- Vera, J.A. (Ed.) Geología de España; SGE-IGME: Madrid, Spain, 2004; p. 890. [Google Scholar]
- Estévez, A.; Vera, J.A.; Alfaro, P.; Andreu, J.M.; Tent-Manclús, J.E.; Yébenes, A. Alicante en la Cordillera Bética. In Geología de Alicante; University of Alicante: Alicante, Spain, 2004; pp. 39–50. [Google Scholar]
- Sanz de Galdeano, C.; González-Castillo, L.; Galindo-Zaldívar, J.; Alfaro, P. La Cordillera Bética: Un orógeno activo. Ensen. Cienc. Tierra 2019, 27, 314–322. [Google Scholar]
- DPA (Ed.) Mapa del Agua de la Provincia de Alicante; Diputación Provincial de Alicante: Alicante, Spain, 2007. [Google Scholar]
- Fernández-Mejuto, M.; Andreu, J.M.; García-Sánchez, E.; Palencia, R. Balance de recursos hídricos superficiales y subterráneos en la provincia de Alicante. Canelobre: Revista Instituto Alicantino Cultura Juan Gil-Albert 2019, 70, 70–83. [Google Scholar]
- Font Tullot, I. (Ed.) Climatología de España y Portugal; University of Salamanca: Salamanca, Spain, 2000; p. 422. [Google Scholar]
- Martín Vide, J.; Olcina, J. Climas y Tiempos de España; Alianza Editorial: Madrid, Spain, 2001; p. 208. [Google Scholar]
- Olcina, J.; Moltó, E. Climas y Tiempos del País Valenciano; University of Alicante: Alicante, Spain, 2019; p. 180. ISBN 978-84-9717-659-0. [Google Scholar]
- Pérez-Cueva, A. Precipitaciones extraordinarias en la España Peninsular. Agric. Soc. 1983, 28, 189–203. [Google Scholar]
- Armengot-Serrano, R. Las precipitaciones extraordinarias. In Atlas Climàtic de la Comunitat Valenciana; Pérez Cueva, A., Ed.; Conselleria d’Obres Públiques, Urbanisme i Transports. Generalitat Valenciana: Valencia, Spain, 1994; Collecció Territori 4; pp. 98–99. [Google Scholar]
- Martin-Vide, J. Spatial distribution of a daily precipitation concentration index in peninsular Spain. Int. J. Clim. 2004, 24, 959–971. [Google Scholar] [CrossRef]
- Valdés-Abellan, J.; Pardo, M.A.; Tenza-Abril, A.J. Observed precipitation trend changes in the western Mediterranean region. Int. J. Clim. 2017, 37, 1285–1296. [Google Scholar] [CrossRef]
- AEMET Climatic Atlas Viewer of Spain. Available online: http://agroclimap.aemet.es (accessed on 15 October 2020).
- Millán, M.M.; Estrela, M.J.; Miró, J. Rainfall Components: Variability and Spatial Distribution in a Mediterranean Area (Valencia Region). J. Clim. 2005, 18, 2682–2705. [Google Scholar] [CrossRef]
- Tamayo-Carmona, J.; Núñez-Mora, J.A. Precipitaciones intensas en la comunidad valenciana. Análisis, sistemas de predicción y perspectivas ante el cambio climático. In Riesgo de Inundación en España: Análisis y Soluciones para la Generación de Territorios Resilientes; López-Ortiz, I., Melgarejo-Moreno, J., Eds.; University d’Alacant: Alicante, Spain, 2020; pp. 49–62. ISBN 978-84-1302-091-4. [Google Scholar]
- Boluda, N.; Andreu, J.M.; Hernández-González, A.; Fernández, J.; Ruiz, F.; Saquete, M.D.; García, E.; Hernández-Bravo, J.A.; Rodríguez, L. La calidad de las aguas subterráneas en la provincia de Alicante: Revisión en la última década. Geotemas 2000, 1, 31–36. [Google Scholar]
- Andreu, J.M.; Pulido-Bosch, A.; Llamas, M.R.; Bru, C.; Martínez-Santos, P.; García-Sánchez, E.; Villacampa, L. Overexploitation and water quality in the Crevillente aquifer (Alicante, SE Spain). WIT Trans. Ecol. Environ. 2008, 111, 75–84. [Google Scholar] [CrossRef][Green Version]
- Rodríguez, L.; Fernández-Mejuto, M.; Hernández Gómez, J.M.; Padilla, A. Modelos Numéricos para la Simulación de la Garantía de Suministro ante la Sequía en Acuíferos de la Marina Alta. Acuíferos de Solana de la Llosa, Orba y Maigmó; Diputación Provincial de Alicante: Alicante, Spain, 2015; p. 300. [Google Scholar]
- Vela Mayorga, A. (Ed.) Desarrollo de un Modelo de Balance de Agua en los Suelos de Castilla-La Mancha Sobre un Sistema de Información Geográfica: Condiciones de Aplicación y Limitaciones; University of Castilla-La Mancha: Cuenca, Spain, 2001; p. 300. [Google Scholar]
- Westenbroek, S.M.; Kelson, V.A.; Dripps, W.R.; Hunt, R.J.; Bradbury, K.R. SWM—A Modified Thornthwaite-Mather Soil-Water-Balance Code for Estimating Groundwater Recharge; US Department of the Interior, US Geological Survey, Ground Resources Program: Reston, VA, USA, 2010; p. 60.
- Melo, D.C.D.; Wendland, E.; Guanabara, R.C. Estimate of Groundwater Recharge Based on Water Balance in The Unsaturated Soil Zone. Rev. Brasil. Ciência Solo 2015, 39, 1336–1343. [Google Scholar] [CrossRef][Green Version]
- Solís García-Barbón, L.; Rodríguez Hernández, L.; Fernández Mejuto, M. Actualización de Balances Hídricos en los Acuíferos de la Provincia de Alicante; Diputación de Alicante: Alicante, Spain, 2010; p. 75. [Google Scholar]
- Ramos González, G.; Hornero Díaz, J.E.; Gumiel Gutiérrez, J.C.; Rodríguez Hernández, L. Implantación de Modelos de Simulación de Intrusión Marina en la Gestión de Acuíferos Costeros. Control de Evolución Temporal de Parámetros Hidrogeológicos y Balances Hídricos como Datos de Entrada al Modelo de Gestión de Acuíferos de Torrevieja y Cabo Roig; Instituto Geológico y Minero de España y Diputación de Alicante: Alicante, Spain, 2003; p. 73. [Google Scholar]
- Padilla Benítez, A.; Gómez Fontalva, J.; Marín Carrillo, I.; Rodríguez Hernández, L.; Fernández Mejuto, M.; Hernández Bravo, J.A. Adaptación del Modelo Numérico de Simulación del Flujo en los Embalses Subterráneos de Jumilla-Villena y Vega Baja al Sistema Información Hidrogeológica Diputación de Alicante; Determinación de Reservas Útiles Dinámicas y de Suministro; Jumilla-Villena. Diputación de Alicante: Alicante, Spain, 2011; p. 136. [Google Scholar]
- Padilla Benítez, A.; Gómez Fontalva, J.; Marín Carrillo, I.; Rodríguez Hernández, L.; Fernández Mejuto, M.; Hernández Bravo, J.A. Adaptación del Modelo Numérico de Simulación del Flujo en los Embalses Subterráneos de Quibas y Beniardà-Polop al Sistema de Información Hidrogeológica de la Diputación de Alicante; Determinación de las Reservas Útiles Dinámicas y Garantías de Suministro; Diputación de Alicante: Alicante, Spain, 2011; p. 200. [Google Scholar]
- Marín Carrillo, I.; Padilla Benítez, A.; Rodríguez Hernández, L.; Fernández Mejuto, M.; Hernández Bravo, J.A. Adaptación del Modelo Numérico de Simulación del Flujo en el Embalse Subterráneo Solana al Sistema de Información Hidrológica de la Diputación de Alicante; Determinación de las Reservas Útiles Dinámicas y Garantías de Suministro; Diputación de Alicante: Alicante, Spain, 2010; p. 96. [Google Scholar]
- Rodríguez Hernández, L.; Murillo Díaz, J.M. Modelo Matemático de Flujo del Acuífero de Jijona. Simulación de Alternativas de Recarga Artificial; Diputación de Alicante: Alicante, Spain, 1995; p. 99. [Google Scholar]
- Ballesteros Navarro, B.; Rodríguez Hernández, L. Modelo de Densidad Variable en Régimen Transitorio del Acuífero Pego-Oliva; Diputación de Alicante: Alicante, Spain, 2013; p. 198. [Google Scholar]
- Padilla Benítez, A.; Rodríguez Hernández, L.; Fernández Mejuto, M. Migración Modelos de Simulación Numérica en Acuíferos Pinar de Camús, Cabranta, Barrancones y Crevillente a Aplicación MOFA. Implantación en SIH; Determinación Reservas útiles Dinámicas y Garantías de Suministro de Captaciones; Diputación de Alicante: Alicante, Spain, 2010; p. 186. [Google Scholar]
- Padilla Benítez, A.; Rodríguez Hernández, L.; Fernández Mejuto, M. Servicio para Adaptación Modelos Numéricos de Simulación en Embalses Subterráneos Serral-Salinas, Mediodía y Muro de Alcoy al Sist. Inf. Hidrológica de DPA; Diputación de Alicante: Alicante, Spain, 2008; p. 154. [Google Scholar]
- Marín Carrillo, I.; Padilla Benítez, A.; Rodríguez Hernández, L.; Fernández Mejuto, M.; Hernández Bravo, J.A. Modelo Numérico de Simulación del Flujo en el Embalse Subterráneo Almudaina-Alfaro-Segaria; Diputación de Alicante: Alicante, Spain, 2007; p. 78. [Google Scholar]
- DPA-IGME (Ed.) RENATA: Natural Recharge to Aquifers; Diputación Provincial de Alicante: Alicante, Spain, 2012; p. 83. [Google Scholar]
- Fernández-Mejuto, M.; Andreu, J.M.; Pla, C.; Valdés, J. Assessing groundwater recharge in two sites with different climates in the Alicante region of South-East Spain. WIT Trans. Ecol. Environ. 2019, 229, 117–127. [Google Scholar] [CrossRef][Green Version]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Témez, J.R. Cálculo Hidrometeorológico de Caudales Máximos en Pequeñas Cuencas Naturales; Centro de Estudios Hidrográficos (CEDEX): Madrid, Spain, 1978. [Google Scholar]
- McDonald, M.G.; Harbaugh, A.W. A modular three-dimensional finite-difference ground-water flow model. In Open-File Report 83-875; US Geological Survey: Sandwich, MA, USA, 1984. [Google Scholar]
- Langevin, C.D.; Shoemaker, W.B.; Guo, W. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model—Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT). In Open-File Report 03-426; US Geological Survey: Sandwich, MA, USA, 2003; p. 43. [Google Scholar]
- Dripp, W.R.; Hunt, R.J.; Anderson, M.P. Estimating recharge rates with analytic element models and parameter estimation. Groundwater 2006, 44, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.W.; Chung, I.M.; Won, Y.S.; Arnold, J.G. Development and application of the integrated SWAT–MODFLOW model. J. Hydrol. 2008, 356, 1–16. [Google Scholar] [CrossRef]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Beegum, S.; Šimůnek, J.; Szymkiewicz, A.; Sudheer, K.P.; Nambi, I.M. Updating the Coupling Algorithm between HYDRUS and MODFLOW in the HYDRUS Package for MODFLOW. Vadose Zone J. 2018, 17, 1–8. [Google Scholar] [CrossRef][Green Version]
- Hall, D.W.; Risser, D.W. Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster county Pennsylvania. J. Am. Water Resour. Assoc. 1993, 29, 55–76. [Google Scholar] [CrossRef]
- Park, E.; Parker, J.C. A simple model for water table fluctuations in response to precipitation. J. Hydrol. 2008, 356, 344–349. [Google Scholar] [CrossRef]
- Subramanian, T.S.; Abraham, M. Assessment of natural groundwater recharge: A case study of North Chennai Aquifer. Environ. Geosci. 2019, 26, 41–50. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979; p. 604. [Google Scholar]
- Lerner, D.N.; Issar, A.S.; Simmers, I. Groundwater Recharge: A Guide to Understanding and Estimating Natural Recharge; International Contribution to Hydrogeology, 8; Verlag Heinz Heise: Hannover, Germany, 1990; p. 345. [Google Scholar] [CrossRef]
- Wriedt, G.; Bouraoui, F. Towards a General Water Balance. Assessment of Europe; European Commission, Joint Research Centre, Institute for Environment and Sustainability: Ispra, Italy, 2009; p. 62. [Google Scholar] [CrossRef]
- Healy, R.W. Estimating Groundwater Recharge; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Touhami, I.; Andreu, J.M.; Chirino, E.; Sánchez, J.R.; Pulido-Bosch, A.; Martínez-Santos, P.; Moutahir, H.; Bellot, J. Comparative performance of soil water balance models in computing semi-arid aquifer recharge. Hydrol. Sci. J. 2014, 59, 193–203. [Google Scholar] [CrossRef][Green Version]
- European Commission. 32000L0060-EN-EUR-Lex. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32000L0060 (accessed on 4 March 2021).
- Rodríguez, L.; Fernández-Mejuto, M.; Hernández, J.A.; Pérez, F.; Palencia, R.; Fernández-Rodríguez, H. Masas de agua subterránea: Acuíferos. In El Agua en la Provincia de Alicante; Melgarejo-Moreno, J., Fernández-Mejuto, M., Eds.; Diputacion Provincial de Alicante—University of Alicante: Alicante, Spain, 2020; pp. 77–104. ISBN 978-84-15327-92-9. [Google Scholar]
- Navarro, J.; Meléndez, I.; Jordán, M.M.; Gómez, I. Masas de aguas superficiales: Embalses y lagos. In El Agua en la Provincia de Alicante; Melgarejo-Moreno, J., Fernández-Mejuto, M., Eds.; Diputacion Provincial de Alicante—University of Alicante: Alicante, Spain, 2020; pp. 49–75. ISBN 978-84-15327-92-9. [Google Scholar]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, M.W.; Simmers, I. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Aguilera, H.; Murillo, J.M. The effect of possible climate change on natural groundwater recharge based on a simple model: A study of four karstic aquifers in SE Spain. Environ. Geol. 2009, 57, 963–974. [Google Scholar] [CrossRef]
- Andreu, J.M.; Alcalá, F.J.; Vallejos, A.; Pulido-Bosch, A. Recharge to aquifers in SE Spain: Different approaches and new challenges. J. Arid. Environ. 2011, 75, 1262–1270. [Google Scholar] [CrossRef]
- Martos-Rosillo, S.; González-Ramón, A.; Jiménez-Gavilán, P.; Andreo, B.; Durán, J.J.; Mancera, E. Review on groundwater recharge in carbonate aquifers from SW Mediterranean (Betic Cordillera, S Spain). Environ. Earth Sci. 2015, 74, 7571–7581. [Google Scholar] [CrossRef]
Sector | Mean Recharge (mm) | Recharge Rate (%) | Number or Aquifers |
---|---|---|---|
I Marina Alta | 189 | 24 | 25 |
II Marina Baja | 90 | 14 | 36 |
III L’Alcoià | 62 | 12 | 25 |
IV El Comtat | 56 | 9 | 32 |
V L’Alacantí | 27 | 6 | 25 |
VI Alto Vinalopó | 47 | 10 | 18 |
VII Medio Vinalopó | 30 | 9 | 30 |
VIII Bajo Vinalopó | 22 | 7 | 3 |
IX Vega Baja | 27 | 9 | 6 |
Total | 69 | 12 | 200 |
SECTOR | INFLOWS | OUTFLOWS | |||||||
---|---|---|---|---|---|---|---|---|---|
Recharge | GF 4 | Total | P 5 | NO 6 | Total | Balance | |||
RP 1 | IF 2 | RT 3 | |||||||
I Marina Alta | 170.3 | 10.0 | 18.2 | 24.1 | 222.6 | 56.3 | 166.3 | 222.6 | 0 |
II Marina Baja | 38.5 | 0.4 | 2.4 | 3.8 | 45.0 | 18.6 | 26.5 | 45.0 | 0 |
III L’Alcoià | 27.8 | 0 | 0 | 1.0 | 28.8 | 14.1 | 15.3 | 29.4 | −0.6 |
IV El Comtat | 12.0 | 0.2 | 0 | 3.9 | 16.1 | 7.0 | 10.5 | 17.5 | −1.4 |
V L’Alacantí | 7.6 | 0.2 | 4.7 | 0.3 | 12.8 | 5.7 | 7.0 | 12.8 | 0 |
VI Alto Vinalopó | 30.8 | 4 | 3.9 | 0.6 | 39.2 | 56.1 | 2.0 | 58.1 | −18.9 |
VII Medio Vinalopó | 20.2 | 1.1 | 1.0 | 0.4 | 22.7 | 24.0 | 4.8 | 28.8 | −6.1 |
VIII Bajo Vinalopó | 2.2 | 0 | 0 | 0 | 2.2 | 0.3 | 1.9 | 2.2 | 0 |
IX Vega Baja | 29.3 | 0 | 36.1 | 12.0 | 77.4 | 17.0 | 61.6 | 78.6 | −1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Mejuto, M.; Andreu, J.M.; García-Sánchez, E.; Palencia, R. An Assessment of Groundwater Recharge at a Regional Scale for Sustainable Resource Management: Province of Alicante (SE Spain). Water 2021, 13, 862. https://doi.org/10.3390/w13060862
Fernández-Mejuto M, Andreu JM, García-Sánchez E, Palencia R. An Assessment of Groundwater Recharge at a Regional Scale for Sustainable Resource Management: Province of Alicante (SE Spain). Water. 2021; 13(6):862. https://doi.org/10.3390/w13060862
Chicago/Turabian StyleFernández-Mejuto, Miguel, José Miguel Andreu, Ernesto García-Sánchez, and Rebeca Palencia. 2021. "An Assessment of Groundwater Recharge at a Regional Scale for Sustainable Resource Management: Province of Alicante (SE Spain)" Water 13, no. 6: 862. https://doi.org/10.3390/w13060862