Influences of Dimethyl Phthalate on Bacterial Community and Enzyme Activity in Vertical Flow Constructed Wetland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of VFCW
2.2. Inflow Water Quality
2.3. Operation and Management of VFCW
2.4. Sample Collection and Analysis
2.4.1. Substrate Collection and Analysis
2.4.2. Methods for the Determination of Substrate Enzyme Activity
2.4.3. Water Sample Collection and Analysis
2.5. Extraction and Detection of DNA from Soil Samples
2.6. Microbial Diversity and Richness Index
2.7. Statistical Analysis
3. Results
3.1. DMP Removal in VFCW
3.2. Dominant Microorganisms Based on DMP Contamination
3.3. Microbial Community Grouping Based on DMP Contamination
3.4. Substrate Enzyme Activity Based on DMP Contamination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, P.; Yu, B.H.; Zhou, Y.C.; Zhang, Y.P.; Li, J. Clogging development and hydraulic performance of the horizontal subsurface flow storm water constructed wetlands: A laboratory study. Environ. Sci. Pollut. Res. 2017, 24, 9210–9219. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, L.; Zhang, H.; Wu, H.M. Determination of the optimal aeration for nitrogen removal in biochar-amended aerated vertical flow constructed wetlands. Bioresour. Technol. 2018, 261, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.L.; Huang, Z.J.; Wang, X.M.; Cui, L.H. Pennisetum sinese Roxb and Pennisetum purpureum Schum. as vertical-flow constructed wetland vegetation for removal of N and P from domestic sewage. Ecol. Eng. 2015, 83, 120–124. [Google Scholar] [CrossRef]
- Cooper, P. The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates. Water Sci. Technol. 2005, 51, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.L.; Cui, L.H. Removal of COD from synthetic wastewater in vertical flow constructed wetland. Water Environ. Res. 2019, 91, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Yi, H.; Chen, S.L.; Zhang, Z.K.; Cui, K.; Bing, Y.X.; Zhuo, Q.F.; Li, B.X.; Xie, S.G.; Guo, Q.W. Influences of plant type on bacterial and archaeal communities in constructed wetland treating polluted river water. Environ. Sci. Pollut. Res. 2016, 23, 19570–19579. [Google Scholar] [CrossRef]
- Wu, Z.B.; Liang, W.; Cheng, S.P.; He, F.; Fu, G.P. Studies on correlation between the enzymatic activities in the rhizosphere and purification of wastewater in the constructed wetland. Acta Sci. Circumst. 2001, 21, 622–624. [Google Scholar]
- Faulwetter, J.L.; Burr, M.D.; Parker, A.E.; Stein, O.R.; Camper, A.K. Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms. Microb. Ecol. 2013, 65, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Bachand, P.A.M.; Horne, A.J. Denitrifcation in constructed free-water surface wetlands: I. Very high nitrate removal rates in a macrocosm study. Ecol. Eng. 2000, 14, 9–15. [Google Scholar] [CrossRef]
- Shackle, V.J.; Freeman, C.; Reynolds, B. Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biol. Biochem. 2000, 32, 1935–1940. [Google Scholar] [CrossRef]
- Stottmeister, U.; Wießner, A.; Kuschk, P.; Kappelmeyer, U.; Kästner, M.; Bederski, O.; Müller, R.A.; Moormann, H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 2003, 22, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.J.; Luo, X.N.; Fu, H.X. Application of PCR—DGGE technique in microbial ecology. J. Biol. 2007, 24, 58–60. [Google Scholar]
- Liu, Z.W.; Zhou, M.X.; Song, J.L.; Guo, Z.W. Analysis of pollutant removal characteristics and microbial community diversity of composite vertical flow constructed wetland. Environ. Eng. 2014, 6, 38–42. [Google Scholar]
- Truu, J.; Nurk, K.; Juhanson, J.; Mander, U. Variation of microbiological parameters within planted soil filter for domestic wastewater treatment. J. Environ. Sci. Health 2005, 40, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Jackson, C.R.; Holland, M.M. The influence of vegetation on microbial enzyme activity and bacterial community structure in freshwater constructed wetland sediments. Wetlands 2013, 33, 365–378. [Google Scholar] [CrossRef]
- Sleytr, K.; Tietz, A.; Langergraber, G.; Haberl, R.; Sessitsch, A. Diversity of abundant bacteria in subsurface vertical flow constructed wetlands. Ecol. Eng. 2009, 35, 1021–1025. [Google Scholar] [CrossRef]
- Hua, G.F.; Cheng, Y.; Kong, J.; Li, M.; Zhao, Z.W. High-throughput sequencing analysis of bacterial community spatiotemporal distribution in response to clogging in vertical flow constructed wetlands. Bioresour. Technol. 2017, 248, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.G.; Hu, Y.L.; Xu, W.H.; Liu, S.; Hu, Y.; Zhang, Y. Impacts of dimethyl phthalate on the bacterial community and functions in black soils. Front. Microbiol. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Liu, C.; Sun, C.Z.; Zhang, G.; Tang, L.; Zou, Y.D.; Xu, Q.Q.; Li, F.M. Pollution characteristics and ecological risk assessment of phthalate esters (PAEs) in surface water of Jiaozhou Bay. Chin. J. Environ. Sci. 2019, 40, 1–18. [Google Scholar] [CrossRef]
- Liao, J.; Deng, C.; Chen, Y.; Zhou, W.Z.; Lin, C.M.; Zhang, H. Pollution Levels, Sources, and Spatial Distribution of Phthalate Esters in Soils of the West Lake Scenic Area. Chin. J. Environ. Sci. 2019, 40, 3378–3387. [Google Scholar]
- Stales, C.A.; Peterson, D.R.; Parkerton, T. The environmental fate of phthalate esters: A literature review. Chemosphere 1997, 35, 667–749. [Google Scholar] [CrossRef]
- Cheung, J.K.H.; Lam, R.K.W.; Shi, M.Y.; Gu, J.D. Environmental fate of endocrine-disrupting dimethyl phthalate esters (DMPE) under sulfate-reducing condition. Sci. Total Environ. 2007, 381, 126–133. [Google Scholar] [CrossRef]
- Liang, H.H.; Wang, Y.J.; Tao, H.; Zhang, X.H. Isolation, identification and degradation characteristics of a three phthalates degrading bacterium. Environ. Chem. 2019, 38, 2808–2818. [Google Scholar]
- Chen, H. Study on the Pollution Level of Typical Phthalates in Environmental Water and Reproductive Toxicity of Combined Exposure in Zebrafish; Jiangsu University: Zhenjiang, China, 2020; pp. 3–4. [Google Scholar]
- Li, Y.R. Removal and Control of Phthalic acid Esters from Domestic Wastewater; Shandong Jianzhu University: Jinan, China, 2016; pp. 4–5. [Google Scholar]
- Wu, Z.B.; Zhao, W.Y.; Cheng, S.P.; Zhou, Q.H.; He, F.; Fu, G.P. Preliminary studies on purification of Di-butyl phthalate (DBP) by integrated vertical constructed wetlands. Environ. Chem. 2002, 21, 495–499. [Google Scholar]
- Liang, W.; Deng, J.Q.; Zhan, F.C.; Wu, Z.B. Effects of constructed wetland system on the removal of dibutyl phthalate (DBP). Microbiol. Res. 2009, 164, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, M.X.; Zheng, L.; Chen, C.; Ding, A.Z. Phthalate acid ester removal efficiency in horizontal subsurface flow constructed wetland. J. Beijing Norm. Univ. Nat. Sci. 2017, 53, 301–307. [Google Scholar]
- Li, T.C.; Fan, Y.C.; Cun, D.S.; Dai, Y.R.; Liang, W. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions. Front. Environ. Sci. Eng. 2020, 14, 139–149. [Google Scholar] [CrossRef]
- Tao, S.M.; Zhu, D.L.; Chen, Y.H.; Wu, H.Q.; Zhou, X.; Xu, C.Z.; Xie, Z.Z.; Tao, L.; Xi, Y. Investigation on Exposure Levels of Phthalates in Human Plasma Collected from the Pearl River Delta. J. Instrum. Anal. 2019, 38, 315–1320. [Google Scholar]
- Chen, N.; Shuai, W.J.; Hao, X.M.; Zhang, H.C.; Zhou, D.M.; Gao, J. Contamination of phthalate esters in vegetable agriculture and human cumulative risk assessment. Pedosphere 2017, 27, 439–451. [Google Scholar] [CrossRef]
- Oliver, R.; May, E.; Williams, J. The occurrence and removal of phthalates in a trickle filter STW. Water Res. 2005, 39, 4436–4444. [Google Scholar] [CrossRef]
- Zhu, X.H.; Liu, H.; Guo, R.X.; Wang, H.X.; Wang, Z.G. Response of microbial community in black soil to remediation of dimethyl phthalate contaminated soil by Paracoccus sp. QD15-1. Environ. Poll. Control 2020, 42, 182–186. [Google Scholar]
- Blagodatskaya, E.; Kuzyakov, Y. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol. Biochem. 2013, 67, 192–211. [Google Scholar] [CrossRef]
- Mahapatra, B.; Adak, T.; Patil, N.K.B.; Pandi, G.P.G.; Gowda, G.B.; Jambhulkar, N.N.; Yadav, K.M.; Panneerselvam, P.; Kumar, U.; Munda, S.; et al. Imidacloprid application changes microbial dynamics and enzymes in rice soil. Ecotox. Environ. Saf. 2017, 44, 123–130. [Google Scholar] [CrossRef]
- Achenbach, L.A.; Michaelidou, U.; Bruce, R.A.; Fryman, J.; Coates, J.D. Dechloromonas agitata gen. Nov., sp. Nov. and Dechlorosoma suillum gen. Nov., sp. Nov., Two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int. J. Syst. Evol. Microbiol. 2001, 51, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.H.; Yokota, A. Pleomorphomonas oryzae gen. Nov., Sp. Nov., A nitrogen-fixing bacterium isolated from paddy soil of Oryza sativa. Int. J. Syst. Evol. Microbiol. 2005, 55, 1233–1237. [Google Scholar] [CrossRef]
- Fahrbach, M.; Kuever, J.; Meinke, R.; Kampfer, P.; Hollender, J. Denitratisoma oestradiolicum gen. Nov., Sp. Nov., A 17beta-oestradiol-degrading, denitrifying betaproteobacterium. Int. J. Syst. Evol. Microbiol. 2006, 56, 1547–1552. [Google Scholar] [CrossRef] [Green Version]
- Jelmer, T.; Kätlin, L.; Yang, J.; Loosdrecht, M.C.M.V.; Robbert, K. Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. J. Biotechnol. 2014, 192, 161–169. [Google Scholar]
- Tiirola, M.A.; Männistö, M.K.; Puhakka, J.A.; Kulomaa, M.S. Isolation and characterization of novosphingobium sp. Strain MT1, a dominant Polychlorophenol-Degrading strain in a groundwater bioremediation system. Appl. Environ. Microbiol. 2002, 68, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntougias, S.; Melidis, P.; Navrozidou, E.; Tzegkas, T. Diversity and efficiency of anthracene-degrading bacteria isolated from a denitrifying activated sludge system treating municipal wastewater. Int. Biodeterior. Biodegrad. 2015, 97, 151–158. [Google Scholar] [CrossRef]
- Danh, H.D. Anaerobic degradation of 2,4-dichlorophenoxyacetic acid by Thauera sp. DKT. Biodegradation 2018, 29, 499–510. [Google Scholar]
- Gao, J.; Chen, B.Q. Effects of PAEs on soil microbial activity and catalase activity. J. Soil Water Conserv. 2008, 22, 166–169. [Google Scholar]
- Guo, Y.; Han, R.; Du, W.T.; Wu, J.W.; Liu, W. Effects of Combined Phthalate Acid Ester Contamination on Soil Micro-Ecology. Res. Environ. Sci. 2010, 23, 1410–1414. [Google Scholar]
- Gianfreda, L.; Rao, M.A.; Piotrowska, A.; Palumbo, G.; Colombo, C. Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution. Sci. Total Environ. 2005, 341, 265–279. [Google Scholar] [CrossRef]
- Wang, X.H.; Yuan, X.; Hou, Z.G.; Miao, J.; Zhu, H.; Song, C.T. Effect of di-(2-ethylhexyl) phthalate (DEHP) on microbial biomass C and enzymatic activities in soil. Eur. J. Soil Biol. 2009, 45, 370–376. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.F.; Dong, S.J.; Wang, L.; Wang, Z.G.; Wang, L.H. Effect of DEHP on soil microbial populations and enzyme activities. J. Northeast Agric. Univ. 2015, 1, 47–54. [Google Scholar]
- Wang, J.; Lv, S.H.; Zhang, M.Y.; Chen, G.C.; Zhu, T.B.; Zhang, S.; Teng, Y.; Christie, P.; Luo, Y.M. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 2016, 151, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Li, T.C.; Wang, F.H.; Dai, Y.R.; Liang, W. Removal efficiency and enzymatic mechanism of dibutyl phthalate (DBP) by constructed wetlands. Environ. Sci. Pollut. Res. 2018, 25, 23009–23017. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.H.; Wu, Z.B.; Fu, G.P.; Cheng, S.P.; He, F. Temporal and spatial characteristics of substrate enzyme activities and bacteria physiological groups in constructed wetland. Chin. J. Envir. Sci. 2005, 26, 108–112. [Google Scholar]
Band Number | Length of Fragment (bp) | Closest Related Strain | Accession Number | Similarity (%) |
---|---|---|---|---|
Band1 (B-1) | 169 | Uncultured bacterium | KF182847 | 100 |
Band2 (C-1) | 193 | uncultured Verrucomicrobiales bacterium | LN625193 | 97 |
Band3 (b-1) | 194 | Dechloromonas agitata | KF800710 | 100 |
Band4 (B-1) | 169 | Uncultured bacterium | AB661277 | 100 |
Band5 (C-1) | 194 | Thauera sp. | AB757831 | 100 |
Band6 (A-1) | 194 | Chlamydiales bacterium | JN606074 | 96 |
Band7 (c-1) | 193 | Labilithrix luteola | NR_126182 | 97 |
Band11 (c-1) | 189 | Prevotellaceae bacterium | AB298732 | 98 |
Band13 (b-1) | 194 | Plasticicumulans lactativorans | NR_118276 | 99 |
Band14 (b-2) | 169 | Pleomorphomonas sp. | KF983816 | 99 |
Band18 (A-1) | 169 | Clostridium beijerinckii | KJ194928 | 100 |
Band23 (c-1) | 169 | Novosphingobium sp. | KP284177 | 99 |
Band24 (C-1) | 189 | Chitinophaga terrae | KP076216 | 98 |
Band28 (C-1) | 169 | Reyranella graminifolii | NR_126180 | 97 |
Band29 (c-2) | 194 | Uncultured bacterium | KJ461512 | 99 |
Band32 (b-1) | 194 | Denitratisoma oestradiolicum | KF810120 | 98 |
Band33 (B-2) | 173 | Uncultured bacterium | GU738861 | 97 |
Band35 (b-1) | 194 | Alicycliphilus denitrificans | KM210246 | 100 |
Band39 (a-2) | 194 | Thauera sp. | AB920830 | 99 |
Band40 (b-2) | 170 | Levilinea saccharolytica | NR_040972 | 99 |
Samples | Shannon-Wiener | Richness |
---|---|---|
A-1 | 3.33 | 29 |
A-2 | 3.22 | 26 |
B-1 | 3.38 | 31 |
B-2 | 3.07 | 23 |
C-1 | 3.08 | 23 |
C-2 | 2.73 | 16 |
a-1 | 3.13 | 24 |
a-2 | 3.00 | 21 |
b-1 | 3.23 | 27 |
b-2 | 3.30 | 28 |
c-1 | 3.30 | 29 |
c-2 | 2.90 | 19 |
Before Adding DMP | After Adding DMP | |||||
---|---|---|---|---|---|---|
Upper Layer | Lower Layer | Upper Layer | Lower Layer | |||
urease activity | [μg/(g·24 h)] | A | 99.8 ± 7.08 b | 10.2 ± 1.34 a | 172.8 ± 4.39 a | 25.8 ± 1.27 b |
B | 124.5 ± 4.27 a | 14.2 ± 6.82 a | 167.7 ± 2.77 a | 30.1 ± 3.03 ab | ||
C | 80.5 ±2.18 c | 8.1 ±1.26 a | 150.8 ± 2.50 b | 32.9 ± 2.18 a | ||
phosphatase activity | [μg/(g·24 h)] | A | 79.8 ± 14.52 a | 0.3 ± 0.16 a | 98.3 ± 0.12 b | 4.8 ± 0.14 b |
B | 82.4 ± 3.78 a | 0.2 ± 0.09 a | 102.4 ± 2.26 a | 6.7 ± 0.41 a | ||
C | 42.2 ± 18.28 b | 0.1 ± 0.03 a | 86.3 ± 2.15 c | 2.8 ± 0.11 c | ||
catalase activity | (nmol/g) | A | 0.0211 ± 0.001 a | 0.009± 0.003 a | 0.0223 ± 0.0012 a | 0.0077 ± 0.0009 a |
B | 0.022 ± 0.003 a | 0.007 ± 0.001 ab | 0.0213 ± 0.000 ab | 0.0071 ± 0.0002 a | ||
C | 0.017 ± 0.003 a | 0.004 ± 0.001 b | 0.0205 ± 0.0002 b | 0.0067 ± 0.0008 a | ||
invertase activity | [mL/(g·24h)] | A | 0.91 ± 0.085 a | 0.01 ± 0.005 b | 1.92 ± 0.05 a | 0.90 ± 0.10 ab |
B | 0.84 ± 0.392 a | 0.2 ± 0.087 a | 1.85 ± 0.03 a | 1.0 ± 0.17 a | ||
C | 0.48 ± 0.087 a | 0.10 ± 0.065 ab | 1.85 ± 0.04 a | 0.73 ± 0.08 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Lu, S.; Yuan, T.; Zhang, F.; Wang, L.; Wang, P.; Wen, X.; Cui, L. Influences of Dimethyl Phthalate on Bacterial Community and Enzyme Activity in Vertical Flow Constructed Wetland. Water 2021, 13, 788. https://doi.org/10.3390/w13060788
Xu Q, Lu S, Yuan T, Zhang F, Wang L, Wang P, Wen X, Cui L. Influences of Dimethyl Phthalate on Bacterial Community and Enzyme Activity in Vertical Flow Constructed Wetland. Water. 2021; 13(6):788. https://doi.org/10.3390/w13060788
Chicago/Turabian StyleXu, QiaoLing, ShaoYong Lu, Tao Yuan, Feng Zhang, Li Wang, Ping Wang, XueYuan Wen, and LiHua Cui. 2021. "Influences of Dimethyl Phthalate on Bacterial Community and Enzyme Activity in Vertical Flow Constructed Wetland" Water 13, no. 6: 788. https://doi.org/10.3390/w13060788
APA StyleXu, Q., Lu, S., Yuan, T., Zhang, F., Wang, L., Wang, P., Wen, X., & Cui, L. (2021). Influences of Dimethyl Phthalate on Bacterial Community and Enzyme Activity in Vertical Flow Constructed Wetland. Water, 13(6), 788. https://doi.org/10.3390/w13060788