The Development of a Framework for the Integrated Assessment of SDG Trade-Offs in the Sundarban Biosphere Reserve
Abstract
:1. Introduction
2. Study Area: The Sundarban Biosphere Reserve
3. Participatory Integrated Assessment Approach
4. Developing an Integrated Assessment Tool for the SBR
4.1. Selection of SDGs to Analyze and Conceptualization of the System (Step 1)
4.2. Model and Data Review (Step 2a)
4.3. Policy Analysis (Step 2b)
4.4. Stakeholder Engagement
4.5. Defining Key Questions of Interest (Step 3a)
4.6. Future Scenario Narratives (Step 3b)
4.7. Developing an Integrated Model Framework (Step 4)
IAM Framework Sector | Sub Component | Purpose | Model/Data Description | Data source/Reference |
---|---|---|---|---|
Biophysical Processes | Climate | Simulation of historic and future climate variability and change within the SBR | HadRM3P-Regional downscaled 25 km climate data for Representative Concentration Pathway (RCP) 8.5 between 1971–2099. | [96] |
Historical and future climate projections up to the year 2100 obtained for RCP 4.5 and RCP 8.5 from the Coordinated Regional Climate Downscaling Experiment (CORDEX), checked against observations and bias corrected. | [97] | |||
Biophysical Processes | Extreme events | Identification of vulnerability to extreme events and natural hazards (cyclones and erosion) | Inundation layer based on Landsat-TM data (26 May 2009) after the severe cyclone Aila. | [36] |
Cyclonic wind hazard modelled using the Tropical cyclone risk model (TCRM). | ||||
Erosion layers based on time series analysis of Landsat data. | ||||
Biophysical Processes | Major Rivers | Examine variability and changes in flow rates of the Hugli river | Integrated Catchement Model (INCA)-Simulations of river flow and water quality to 2050s and 2090s forced by downscaled HadRM3P climate data. | [98] |
Biophysical Processes | Bay of Bengal | Examine rate of sea level rise in the Bay of Bengal | Global Coastal-Ocean Modelling System (GCOMS) 0.1 degree resolution projections of Sea Level Rise from 1970–2098. | [75] |
Create relative sea-level scenarios consistent wit Intergovernmental Panel on Climate Change (IPCC) reports, including using Brown and Nicholls (2015) for subsidence | [99] | |||
Biophysical Processes | Land Use/Land Cover | Explore current and future patterns in land use and land cover (LULC). | Landsat 30 m resolution satellite imagery 2001, 2011 and 2019 | Project analysis |
A hybrid CA-Markov model to project LULC data till 2030 and 2050 based on classified LULC map of earlier time periods viz. 2001, 2011 and 2019. Similar to DasGupt [65] | Project analysis | |||
Biophysical Processes | Freshwater resources | Examine variations and change in local river and estuarine salinity within the SBR and allow exploration of increased freshwater supply | MIKE 11 and MIKE 21 hydraulic model – One and two dimensional modelling of river salinity, water surface elevation, current speed, current direction, U and V velocity, etc. | Project analysis, primary data + unpublished data. |
Biophysical Processes | Soil salinity | Determine the concentration and spatial variation of soil salinity. | Compilation of historic soil salinity measures combined with new in situ data. | [100,101,102]+ Primary Data |
Natural Resources for livelihoods and food security | Fisheries | Understand the nature and dependency on small scale fisheries within the SBR. | Telephone surveys to gather information fishing systems, catch and issues facing small scale fishers in the SBR. | [103,104] + Primary data |
Determine future changes in fisheries within the Bay of Bengal | The Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) and the European Regional Seas Ecosystem Model (ERSEM) combined with a Dynamic Bioclimate Envelope Model to simulate the distribution pattern and abundance of six selected marine fish species for three distinct fishing scenarios within the Bay of Bengal. | [63] | ||
Natural Resources for livelihoods and food security | Agriculture | To estimate potential crop yield and area production at the block level under varying climatic and environmental conditions and policy choices. | Extended-CROPWAT - an extended version of the Food and Agriculture Organisation of the United Nations’ (FAO) CROPWAT 4.3 model which has been adapted to include the effects of water and salinity stress, atmospheric fertilisation by carbon dioxide and temperature stress upon crops. Block wise calculations of crop yield and production. Similar to [105,106]. | Project analysis |
Natural Resources for livelihoods and food security | Aquaculture | Determine the drivers of aquaculture expansion and identify land likely to be converted to aquaculture by 2030 | Interviews with large- and small-scale aquaculture farmers to collect data on drivers accelerating the growth of aquaculture, land-use transformation, farming practices, employment generation and profitability. | Primary data |
Natural Resources for livelihoods and food security | Mangrove | Determine spatial patterns of mangrove loss and gain (potential recolonisation) under relative sea-level rise and maintenance or removal of embankment scenarios | Sea Level Affecting Marshes Model (SLAMM) v6.7-Simulations based on the latest Digital Elevation Model (DEM) data; a collation of SRTM, Terra-SAR–X and Coastal DEMs, validated and rectified with ground truth data is used to explore inundation and empirical analysis is used to analyse erosion. This will be utilized to explore the possible change in mangrove area within and outside the existing forest area. Similar to [107] | Project analysis |
Explore the effects of climate and anthropogenic stress upon mangrove health | Analysis of trends in historic multispectral and MODIS satellite data in combination with future projections of temperature and rainfall similar to [108]. | Project analysis | ||
Poverty and food security outcomes | Economy | Determine current prices of agricultural and fisheries commodities | District statistical handbooks | [109] |
Examine future changes in economic value of goods | Shared Socioeconomic Pathways (version 2.0) | [110] | ||
Poverty and food security outcomes | Multi-dimensional Poverty | Explore spatial and temporal variations in community multi-dimensional poverty. | A statistical model will be used to derive associations between a downscaled multidimensional poverty index and variables related to LULC change, agricultural yield, natural hazard risk, access to urban areas and population density gained from satellite and socio-economic data. Similar to [13,111] | Project analysis |
Poverty and food security outcomes | Household survey | Increase understanding of the current socio-economic state of the delta including pattern of livelihood activities and impact of current government policies. | Survey of 1900 households across 19 blocks, stratified to capture diversity according to social vulnerability and proximity to the coast and tidal creeks. | Project analysis |
Poverty and food security outcomes | Food Production and Profitability | Examine the magnitude and profitability of food production. | Combined analysis of potential regional food production and market value. | Project analysis |
5. Discussion/Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN General Assembly. Seventieth Session Agenda Items 15 and 116 UN General Assembly; UN General Assembly: NewYork, NY, USA, 2015. [Google Scholar]
- Nilsson, M. Important Interactions among the Sustainable Development Goals under Review at the High-Level Political Forum 2017. Available online: https://www.sei-international.org/mediamanager/documents/Publications/SEI-WP-2017-06-Nilsson-SDG-interact-HLPF2017.pdf (accessed on 20 November 2019).
- Le Blanc, D. Towards Integration at Last? The Sustainable Development Goals as a Network of Targets. Sustain. Dev. 2015, 23, 176–187. [Google Scholar] [CrossRef]
- Donoghue, D.; Khan, A. Achieving the SDGs and ‘leaving no one behind’ Overseas. Dev. Inst. Work. Pap. 2019, 560, 29–31. [Google Scholar]
- Keitsch, M. Structuring Ethical Interpretations of the Sustainable Development Goals—Concepts, Implications and Progress. Sustainability 2018, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.V. Back to the Future: The Potential of Intergenerational Justice for the Achievement of the Sustainable Development Goals. Sustainability 2018, 10, 427. [Google Scholar] [CrossRef] [Green Version]
- Hutton, C.W.; Nicholls, R.J.; Lázár, A.N.; Chapman, A.; Schaafsma, M.; Salehin, M. Potential trade-offs between the sustainable development goals in coastal Bangladesh. Sustainability 2018, 10, 1108. [Google Scholar] [CrossRef] [Green Version]
- Edmonds, D.A.; Caldwell, R.L.; Brondizio, E.S.; Siani, S.M.O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 2020, 11, 4741. [Google Scholar] [CrossRef] [PubMed]
- Broadus, J. Rising sea level and damming of rivers: Possible effects in Egypt and Bangladesh. Sea Lev. Rise 1986, 4, 165–189. [Google Scholar]
- Milliman, J.D. Environmental and economic implications of rising sea level and subsiding deltas: The Nile and Bengal examples. Ambio 1989, 18, 340–345. [Google Scholar]
- Ericson, J.P.; Vörösmarty, C.J.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Chang. 2006, 50, 63–82. [Google Scholar] [CrossRef]
- Szabo, S.; Hossain, M.S.; Adger, W.N.; Matthews, Z.; Ahmed, S.; Lázár, A.N.; Ahmad, S. Soil salinity, household wealth and food insecurity in tropical deltas: Evidence from south-west coast of Bangladesh. Sustain. Sci. 2016, 11, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Hutton, C.W.; Lázár, A.N.; Allan, A.; Adger, W.N.; Adams, H.; Wolf, J.; Rahman, M.; Salehin, M. Integrated assessment of social and environmental sustainability dynamics in the Ganges-Brahmaputra-Meghna delta, Bangladesh. Estuar. Coast. Shelf Sci. 2016, 183, 370–381. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Tessler, Z.D.; Vörösmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J.P.M.; Foufoula-Georgiou, E. Profiling risk and sustainability in coastal deltas of the world. Science (80) 2015, 349, 638–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, F.E.; Darby, S.E.; Nicholls, R.J.; Cohen, S.; Zarfl, C.; Fekete, B.M. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 2019, 14, 84034. [Google Scholar] [CrossRef]
- de Campos, R.S.; Codjoe, S.N.A.; Adger, W.N.; Mortreux, C.; Hazra, S.; Siddiqui, T.; Das, S.; Atiglo, D.Y.; Bhuiyan, M.R.A.; Rocky, M.H.; et al. Where People Live and Move in Deltas BT-Deltas in the Anthropocene; Nicholls, R.J., Adger, W.N., Hutton, C.W., Hanson, S.E., Eds.; Springer International Publishing: Cham, Germany, 2020; pp. 153–177. ISBN 978-3-030-23517-8. [Google Scholar]
- Arto, I.; Cazcarro, I.; Markandya, A.; Hazra, S.; Bhattacharya, R.N.; Adjei, P.O.-W. Delta Economics and Sustainability BT-Deltas in the Anthropocene; Nicholls, R.J., Adger, W.N., Hutton, C.W., Hanson, S.E., Eds.; Springer International Publishing: Cham, Germany, 2020; pp. 179–200. ISBN 978-3-030-23517-8. [Google Scholar]
- Nicholls, R.J.; Hutton, C.W.; Lázár, A.N.; Adger, W.N.; Allan, A.; Whitehead, P.G.; Wolf, J.; Rahman, M.M.; Salehin, M.; Hanson, S.E.; et al. An Integrated Approach Providing Scientific and Policy-Relevant Insights for South-West Bangladesh. In Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis; Nicholls, R.J., Hutton, C.W., Adger, W.N., Hanson, S.E., Rahman, M.M., Salehin, M., Eds.; Springer International Publishing: Cham, Germany, 2018; pp. 49–69. ISBN 978-3-319-71093-8. [Google Scholar]
- Suckall, N.; Tompkins, E.L.; Nicholls, R.J.; Kebede, A.S.; Lázár, A.N.; Hutton, C.; Vincent, K.; Allan, A.; Chapman, A.; Rahman, R.; et al. A framework for identifying and selecting long term adaptation policy directions for deltas. Sci. Total Environ. 2018, 633, 946–957. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Ghosh, T.; Salehin, M.; Ghosh, A.; Haque, A.; Hossain, M.A.; Das, S.; Hazra, S.; Islam, N.; Sarker, M.H.; et al. Ganges-Brahmaputra-Meghna Delta, Bangladesh and India: A Transnational Mega-Delta BT-Deltas in the Anthropocene; Nicholls, R.J., Adger, W.N., Hutton, C.W., Hanson, S.E., Eds.; Springer International Publishing: Cham, Germany, 2020; pp. 23–51. ISBN 978-3-030-23517-8. [Google Scholar]
- Chatterjee, M.; Shankar, D.; Sen, G.K.; Sanyal, P.; Sundar, D.; Michael, G.S.; Chatterjee, A.; Amol, P.; Mukherjee, D.; Suprit, K.; et al. Tidal variations in the Sundarbans Estuarine System, India. J. Earth Syst. Sci. 2013, 122, 899–933. [Google Scholar] [CrossRef] [Green Version]
- Samanta, B. Population Growth in Sundarbans Region–A Spatio-Temporal Analysis Sch. J. Arts Humanit. Soc. Sci. 2018, 6, 877–883. [Google Scholar] [CrossRef]
- District Human Development Report 2014; Development and Planning Department, Government of India: Kolkata, India, 2014.
- Banerjee, A. Environment, Population, and Human Settlements of Sundarban Delta; Concept Pub. Co.: New Delhi, India, 1998; ISBN1 8170227399. ISBN2 9788170227397. [Google Scholar]
- Sánchez-Triana, E.; Paul, T.; Leonard, O. Building Resilience for Sustainable Development of the Sundarbans; The International Bank for Reconstruction and Development, The World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Mozumder, M.M.H.; Shamsuzzaman, M.M.; Rashed-Un-Nabi, M.; Karim, E. Social-ecological dynamics of the small scale fisheries in Sundarban Mangrove Forest, Bangladesh. Aquac. Fish. 2018, 3, 38–49. [Google Scholar] [CrossRef]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef] [Green Version]
- Das, C.S.; Mandal, R.N. Coastal people and mangroves ecosystem resources vis-à-vis management strategies in Indian Sundarban. Ocean Coast. Manag. 2016, 134, 1–10. [Google Scholar] [CrossRef]
- Ghosh, A.; Schmidt, S.; Fickert, T.; Nüsser, M. The Indian Sundarban Mangrove Forests: History, Utilization, Conservation Strategies and Local Perception. Diversity 2015, 7, 149–169. [Google Scholar] [CrossRef]
- Singh, A.; Bhattacharya, P.; Vyas, P.; Roy, S. Contribution of NTFPs in the Livelihood of Mangrove Forest Dwellers of Sundarban. J. Hum. Ecol. 2010, 29, 191–200. [Google Scholar] [CrossRef]
- Das, P.; Das, A.; Roy, S. Shrimp Fry (meen) Farmers of Sundarban Mangrove Forest (India): A Tale of Ecological Damage and Economic Hardship. Int. J. Agric. Food Res. 2016, 5, 2. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Adger, W.N.; Hutton, C.W.; Hanson, S.E. Delta Challenges and Trade-Offs from the Holocene to the Anthropocene BT-Deltas in the Anthropocene; Nicholls, R.J., Adger, W.N., Hutton, C.W., Hanson, S.E., Eds.; Springer International Publishing: Cham, Germany, 2020; pp. 1–22. ISBN 978-3-030-23517-8. [Google Scholar]
- UNESCO Report. Available online: https://whc.unesco.org/en/news/399 (accessed on 3 November 2020).
- Chakraborty, S. Investigating the Impact of Severe Cyclone Aila and the Role of Disaster Management Department-A Study of Kultali Block of Sundarban. Am. J. Theor. Appl. Bus. 2015, 1, 6–13. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, A.; Hazra, S.; Ghosh, T.; de Campos, R.S.; Samanta, S. Linking IPCC AR4 & AR5 frameworks for assessing vulnerability and risk to climate change in the Indian Bengal Delta. Prog. Disaster Sci. 2020, 7, 100110. [Google Scholar] [CrossRef]
- Singh, O.P. Long-term trends in the frequency of severe cyclones of Bay of Bengal: Observations and simulations. Mausam 2007, 58, 59–66. [Google Scholar]
- Pethick, J.; Orford, J.D. Rapid rise in effective sea-level in southwest Bangladesh: Its causes and contemporary rates. Glob. Planet. Chang. 2013, 111, 237–245. [Google Scholar] [CrossRef]
- Brown, S.; Nicholls, R.J. Subsidence and human influences in mega deltas: The case of the Ganges-Brahmaputra-Meghna. Sci. Total Environ. 2015, 527–528, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, T.; Bhandari, G.; Hazra, S. Application of a ‘bio-engineering’ technique to protect Ghoramara island (Bay of Bengal) from severe erosion. J. Coast. Conserv. 2003, 9, 171–178. [Google Scholar] [CrossRef]
- Samanta, K.; Hazra, S. Mangrove Forest Cover Changes in Indian Sundarban (1986–2012) Using Remote Sensing and GIS BT-Environment and Earth Observation: Case Studies in India; Hazra, S., Mukhopadhyay, A., Ghosh, A.R., Mitra, D., Dadhwal, V.K., Eds.; Springer International Publishing: Cham, Germany, 2017; pp. 97–108. ISBN 978-3-319-46010-9. [Google Scholar]
- Ghosh, T.; Hajra, R.; Mukhopadhyay, A. Island Erosion and Afflicted Population: Crisis and Policies to Handle Climate Change BT-International Perspectives on Climate Change: Latin America and Beyond; Filho, W.L., Alves, F., Caeiro, S., Azeiteiro, U.M., Eds.; Springer International Publishing: Cham, Germany, 2014; pp. 217–225. ISBN 978-3-319-04489-7. [Google Scholar]
- Bhadra, T.; Mukhopadhyay, A.; Hazra, S. Identification of River Discontinuity Using Geo-Informatics to Improve Freshwater Flow and Ecosystem Services in Indian Sundarban Delta BT-Environment and Earth Observation: Case Studies in India; Hazra, S., Mukhopadhyay, A., Ghosh, A.R., Mitra, D., Dadhwal, V.K., Eds.; Springer International Publishing: Cham, Germany, 2017; pp. 137–152. ISBN 978-3-319-46010-9. [Google Scholar]
- Gole, C.V.; Vaidyaraman, P.P. Salinity distribution and effect of fresh water flows in the hooghly river. Coast. Eng. Proc. 1966, 1, 78. [Google Scholar] [CrossRef] [Green Version]
- Gopal, B.; Chauhan, M. Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquat. Sci. 2006, 68, 338–354. [Google Scholar] [CrossRef]
- Hati, P.J.; Samanta, S.; Chaube, N.R.; Misra, A.; Giri, S.; Pramanick, N.; Gupta, K.; Datta Majumdar, S.; Chanda, A.; Mukhopadhyay, A.; et al. Mangrove classification using airborne hyperspectral AVIRIS-NG and comparing with other spaceborne hyperspectral and multispectral data. Egypt. J. Remote Sens. Space Sci. 2020. [Google Scholar] [CrossRef]
- Chowdhury, R.; Sutradhar, T.; Begam, M.M.; Mukherjee, C.; Chatterjee, K.; Basak, S.K.; Ray, K. Effects of nutrient limitation, salinity increase, and associated stressors on mangrove forest cover, structure, and zonation across Indian Sundarbans. Hydrobiologia 2019, 842, 191–217. [Google Scholar] [CrossRef]
- Islam, S.N. Sundarbans a Dynamic Ecosystem: An Overview of Opportunities, Threats and Tasks. In The Sundarbans: A Disaster-Prone Eco-Region: Increasing Livelihood Security; Sen, H.S., Ed.; Springer International Publishing: Cham, Germany, 2019; pp. 29–58. ISBN 978-3-030-00680. [Google Scholar]
- Rahman, M.M.; Penny, G.; Mondal, M.S.; Zaman, M.H.; Kryston, A.; Salehin, M.; Nahar, Q.; Islam, M.S.; Bolster, D.; Tank, J.L.; et al. Salinization in large river deltas: Drivers, impacts and socio-hydrological feedbacks. Water Secur. 2019, 6, 100024. [Google Scholar] [CrossRef]
- Bhadra, T.; Hazra, S.; Kolay, P.; Roy, S.P.S. Workshop proceedings on “Sustainable Development and Management of Ground Water in West Bengal vis-a-vis Arsenic Contamination in Ground Water”. In Ground Water-River Water Interaction in Deltaic West Bengal with Special Reference to Sundarbans; Ministry of Water Resource, Govt. of India: Kolkata, India, 2013. [Google Scholar]
- Sen, H.S.; Ghorai, D. The Sundarbans: A Flight into the Wilderness BT-The Sundarbans: A Disaster-Prone Eco-Region: Increasing Livelihood Security; Sen, H.S., Ed.; Springer International Publishing: Cham, Germany, 2019; pp. 3–28. ISBN 978-3-030-00680-8. [Google Scholar]
- Hazra, S.; Bhadra, T.; Ray, S.P.S. Sustainable Water Resource Management in the Sundarban Biosphere Reserve, India. Gr. Water Dev. Issues Sustain. Solut. 2018, 147–157. [Google Scholar] [CrossRef]
- Mandal, S.; Choudhury, B.; Mondal, M.; Bej, S. Trend analysis of weather variables in Sagar Island, West Bengal, India: A long-term perspective (1982–2010). Curr. Sci. 2013, 105, 947–953. [Google Scholar]
- Srivastava, A.K.; Singh, G.P.; Singh, O.P.; Choudhary, U.K. Recent variability and trends in temperatures over India. Vayumandal 2015, 40, 161–181. [Google Scholar]
- Woo, S.; Singh, G.P.; Oh, J.; Lee, K.-M. 2018 Projection of seasonal summer precipitation over Indian sub continent with a high resolution AGCM based on the RCPscenarios. Meteorol. Atmos. Phys. 2019, 131, 897–916. [Google Scholar] [CrossRef] [Green Version]
- Suman, M.; Maity, R. Southward shift of precipitation extremes over south Asia: Evidences from CORDEX data. Sci. Rep. 2020, 10, 6452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhadra, T.; Das, S.; Hazra, S.; Barman, B.C. Assessing the demand, availability and accessibility of potable water in Indian Sundarban Biosphere Reserve area. Int. J. Recent Sci. Res. 2018, 9, 25437–25443. [Google Scholar]
- Sarangi, S.K.; Islam, M.R. Advances in Agronomic and Related Management Options for Sundarbans BT-The Sundarbans: A Disaster-Prone Eco-Region: Increasing Livelihood Security; Sen, H.S., Ed.; Springer International Publishing: Cham, Germany, 2019; pp. 225–260. ISBN 978-3-030-00680-8. [Google Scholar]
- Primary Census Abstract. Census of India. Census of West Bengal. Census of Odisha. New Delhi: Directorate of Census Operations, Government of India. Available online: http://censusindia.gov.in/pca/ (accessed on 31 January 2019).
- Cazcarro, I.; Arto, I.; Hazra, S.; Bhattacharya, R.; Adjei, P.; Patrick, O.-D.; Asenso, J.; Amponsah, S.; Khondker, B.; Raihan, S.; et al. Biophysical and Socioeconomic State and Links of Deltaic Areas Vulnerable to Climate Change: Volta (Ghana), Mahanadi (India) and Ganges-Brahmaputra-Meghna (India and Bangladesh). Sustainability 2018, 10, 893. [Google Scholar] [CrossRef] [Green Version]
- Department of Fisheries. Handbook of Fisheries Statistics 2017–2018; Directorate of Fisheries, Government of West Bengal: Kolkata, India, 2019.
- Das, I.; Hazra, S.; Das, S.; Giri, S.; Maity, S.; Ghosh, S. Present Status of the Sustainable Fishing Limits for Hilsa Shad in the northern Bay of Bengal, India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2019, 89, 525–532. [Google Scholar] [CrossRef]
- Das, I.; Lauria, V.; Kay, S.; Cazcarro, I.; Arto, I.; Fernandes, J.A.; Hazra, S. Effects of climate change and management policies on marine fisheries productivity in the north-east coast of India. Sci. Total Environ. 2020, 724, 138082. [Google Scholar] [CrossRef]
- Thilsted, S.H.; Thorne-Lyman, A.; Webb, P.; Bogard, J.R.; Subasinghe, R.; Phillips, M.J.; Allison, E.H. Sustaining healthy diets: The role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 2016, 61, 126–131. [Google Scholar] [CrossRef] [Green Version]
- DasGupta, R.; Hashimoto, S.; Okuro, T.; Basu, M. Scenario-based land change modelling in the Indian Sundarban delta: An exploratory analysis of plausible alternative regional futures. Sustain. Sci. 2019, 14, 221–240. [Google Scholar] [CrossRef]
- Thakur, S.; Maity, D.; Mondal, I.; Basumatary, G.; Ghosh, P.B.; Das, P.; De, T.K. Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India. Environ. Dev. Sustain. 2020. [Google Scholar] [CrossRef]
- Chopra, K.; Kapuria, P.; Kumar, P. Biodiversity Land Use Change and Human Well Being: A Study of Aquaculture in the Indian Sundarbans; Oxford University Press: Oxford, UK, 2009; ISBN 9780198060215. [Google Scholar]
- Philcox, N.; Knowler, D.; Haider, W. Eliciting stakeholder preferences: An application of qualitative and quantitative methods to shrimp aquaculture in the Indian Sundarbans. Ocean Coast. Manag. 2010, 53, 123–134. [Google Scholar] [CrossRef]
- DECCMA. Climate Change, Migration and Adaptation in Deltas. Key Findings from the DECCMA Project. DECCMA. 2018. Available online: https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/57543/IDL-57543.pdf?sequence=2isAllowed=y (accessed on 14 November 2019).
- GoI. Coastal Regulation Zone Notification Ministry of Environment and Forests. Regulations under the Environment (Protection) Act. 1986. Available online: https://www.iczmpwb.org/main/pdf/czm_laws/CRZ%20Notification%202011.pdf (accessed on 14 November 2019).
- NITI Aayog. Sustainable Development Goals (SDGs)–Draft Mapping (August, 2017), Development Monitoring and Evaluation Office; NITI Aayog: New Delhi, India, 2017. [Google Scholar]
- Allan, A.; Lim, M.; Barbour, E.J. Incorporating stakeholder perspectives in scenario development. In Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis; Palgrave Macmillan: Cham, Germany, 2018; pp. 179–205. [Google Scholar]
- Lempert, R.J.; Popper, S.W.; Bankes, S.C. Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis; RAND Corporation PP-Santa Monica: Santa Monica, CA, USA, 2003; ISBN 0-8330-3275-5. [Google Scholar]
- Jones, R.; Patwardhan, A.; Cohen, S.; Dessai, S.; Lammel, A.; Lempert, R.; Mirza, M.M.Q.; von Storch, H. Foundations for Decision Making 2014. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: New York, NY, USA, 2014; pp. 195–228. [Google Scholar]
- Kebede, A.S.; Nicholls, R.J.; Allan, A.; Arto, I.; Cazcarro, I.; Fernandes, J.A.; Hill, C.T.; Hutton, C.W.; Kay, S.; Lázár, A.N.; et al. Applying the global RCP–SSP–SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach. Sci. Total Environ. 2018, 635, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Hutton, C.W.; Darby, S.; Berchoux, T. Developing Normative Scenarios of Food Systems in the Mekong Delta. GCRF Strategic Development Fund Report; University of Southampton: Southampton, UK, 2019. [Google Scholar]
- Peter, C.; Swilling, M. Linking Complexity and Sustainability Theories: Implications for Modeling Sustainability Transitions. Sustainability 2014, 6, 1594–1622. [Google Scholar] [CrossRef] [Green Version]
- Rotmans, J.; Kemp, R.; van Asselt, M. More evolution than revolution: Transition management in public policy. Foresight 2001, 3, 15–31. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Letcher, R.A. Integrated assessment and modelling: Features, principles and examples for catchment management. Environ. Model. Softw. 2003, 18, 491–501. [Google Scholar] [CrossRef]
- Kelly, R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.J.; Kuikka, S.; Maier, H.R.; Rizzoli, A.E.; et al. Selecting among five common modelling approaches for integrated environmental assessment and management. Environ. Model. Softw. 2013, 47, 159–181. [Google Scholar] [CrossRef]
- Hordijk, L. Use of the RAINS model in acid rain negotiations in Europe. Environ. Sci. Technol. 1991, 25, 596–603. [Google Scholar] [CrossRef]
- Hordijk, L.; Kroeze, C. Integrated assessment models for acid rain. Eur. J. Oper. Res. 1997, 102, 405–417. [Google Scholar] [CrossRef]
- Schöpp, W.; Amann, M.; Cofala, J.; Heyes, C.; Klimont, Z. Integrated assessment of European air pollution emission control strategies. Environ. Model. Softw. 1998, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Holman, I.P.; Rounsevell, M.D.A.; Cojacaru, G.; Shackley, S.; McLachlan, C.; Audsley, E.; Berry, P.M.; Fontaine, C.; Harrison, P.A.; Henriques, C.; et al. The concepts and development of a participatory regional integrated assessment tool. Clim. Chang. 2008, 90, 5–30. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.A.; Dunford, R.W.; Holman, I.P.; Rounsevell, M.D.A. Climate change impact modelling needs to include cross-sectoral interactions. Nat. Clim. Chang. 2016, 6, 885–890. [Google Scholar] [CrossRef] [Green Version]
- Veerkamp, C.J.; Dunford, R.W.; Harrison, P.A.; Mandryk, M.; Priess, J.A.; Schipper, A.M.; Stehfest, E.; Alkemade, R. Future projections of biodiversity and ecosystem services in Europe with two integrated assessment models. Reg. Environ. Chang. 2020, 20, 103. [Google Scholar] [CrossRef]
- Hall, J.W.; Tran, M.; Hickford, A.J.; Nicholls, R.J. (Eds.) The Future of National Infrastructure: A System-of-Systems Approach; Cambridge University Press: Cambridge, UK, 2016; ISBN 9781107066021. [Google Scholar]
- Lázár, A.N.; Nicholls, R.J.; Hall, J.W.; Barbour, E.J.; Haque, A. Contrasting development trajectories for coastal Bangladesh to the end of century. Reg. Environ. Chang. 2020, 20, 93. [Google Scholar] [CrossRef]
- van Soest, H.L.; van Vuuren, D.P.; Hilaire, J.; Minx, J.C.; Harmsen, M.J.H.M.; Krey, V.; Popp, A.; Riahi, K.; Luderer, G. Analysing interactions among Sustainable Development Goals with Integrated Assessment Models. Glob. Transit. 2019, 1, 210–225. [Google Scholar] [CrossRef]
- Collste, D.; Pedercini, M.; Cornell, S.E. Policy coherence to achieve the SDGs: Using integrated simulation models to assess effective policies. Sustain. Sci. 2017, 12, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Pedercini, M.; Arquitt, S.; Collste, D.; Herren, H. Harvesting synergy from sustainable development goal interactions. Proc. Natl. Acad. Sci. USA 2019, 116, 23021–23028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lázár, A.N.; Payo, A.; Adams, H.; Ahmed, A.; Allan, A.; Akanda, A.R.; Johnson, F.A.; Barbour, E.J.; Biswas, S.K.; Caesar, J.; et al. Integrative Analysis Applying the Delta Dynamic Integrated Emulator Model in South-West Coastal Bangladesh BT-Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis; Nicholls, R.J., Hutton, C.W., Adger, W.N., Hanson, S.E., Rahman, M.M., Salehin, M., Eds.; Springer International Publishing: Cham, Germany, 2018; pp. 525–574. ISBN 978-3-319-71093-8. [Google Scholar]
- Turner, G.M.; Baynes, T. Soft-coupling of national biophysical and economic models for improved understanding of feedbacks. Environ. Policy Gov. 2010, 20, 270–282. [Google Scholar] [CrossRef]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; Van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Batlle Bayer, L.; Chuwah, C.; Ganzeveld, L.; Hazeleger, W.; van den Hurk, B.; van Noije, T.; O’Neill, B.; Strengers, B.J. A comprehensive view on climate change: Coupling of earth system and integrated assessment models. Environ. Res. Lett. 2012, 7, 24012. [Google Scholar] [CrossRef]
- Janes, T.; McGrath, F.; Macadam, I.; Jones, R. High-resolution climate projections for South Asia to inform climate impacts and adaptation studies in the Ganges-Brahmaputra-Meghna and Mahanadi deltas. Sci. Total Environ. 2019, 650, 1499–1520. [Google Scholar] [CrossRef]
- Available online: https://cordex.org/ (accessed on 31 August 2020).
- Whitehead, P.G.; Jin, L.; Macadam, I.; Janes, T.; Sarkar, S.; Rodda, H.J.E.; Sinha, R.; Nicholls, R.J. Modelling impacts of climate change and socio-economic change on the Ganga, Brahmaputra, Meghna, Hooghly and Mahanadi river systems in India and Bangladesh. Sci. Total Environ. 2018, 636, 1362–1372. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Hanson, S.E.; Lowe, J.A.; Slangen, A.B.A.; Wahl, T.; Hinkel, J.; Long, A.J. Integrating new sea-level scenarios into coastal risk and adaptation assessments: An on-going process. WIREs Clim. Chang. 2020. [Google Scholar] [CrossRef]
- Das, S.; Choudhury, M.R.; Das, S.; Nagarajan, M. Earth observation and geospatial techniques for soil salinity and land capability assessment over sundarban bay of Bengal Coast, India. Geod. Cartogr. 2016, 65, 163–192. [Google Scholar] [CrossRef]
- Banerjee, K.; Chowdhury, M.R.; Sengupta, K.; Sett, S.; Mitra, A. Influence of anthropogenic and natural factors on the mangrove soil of Indian Sundarbans wetland. Arch Env. Sci. 2012, 6, 80–91. [Google Scholar]
- Bandyopadhyay, B.K.; Maji, B.; Sen, H.; Tyagi, N.K. Coastal Soils of West Bengal. 2003. Available online: https://www.semanticscholar.org/paper/Coastal-Soils-Of-West-Bengal-Their-Nature%2C-And-Bandyopadhyay-Maji/e87a08868687056f2c419856e9545f65f48d6c6c (accessed on 17 February 2018).
- Chacraverti, S. The Sundarbans Fishers Coping in an Overly Stressed Mangrove Estuary; International Collective in Support of Fishworkers (ICSF): San Francisco, CA, USA, 2014; ISBN 978-93-80802-34-3. [Google Scholar]
- Chatterjee, P.; Bhuinya, N.; Mondal, S. Traditional Fishers in the Sundarban TigerReserve: A Study on Livelihood Practice under Protected Area; DISHA: Kolkata, India, 2009. [Google Scholar]
- Clarke, D.; Smith, M.; El-Askari, K. New software for crop water requirements and irrigation scheduling. Irrig. Drain. 1998, 47, 45–58. [Google Scholar]
- Lázár, A.N.; Clarke, D.; Adams, H.; Akanda, A.R.; Szabo, S.; Nicholls, R.J.; Matthews, Z.; Begum, D.; Saleh, A.F.M.; Abedin, M.A.; et al. Agricultural livelihoods in coastal Bangladesh under climate and environmental change-A model framework. Environ. Sci. Process. Impacts 2015, 17, 1018–1031. [Google Scholar] [CrossRef] [Green Version]
- Payo, A.; Mukhopadhyay, A.; Hazra, S.; Ghosh, T.; Ghosh, S.; Brown, S.; Nicholls, R.J.; Bricheno, L.; Wolf, J.; Kay, S.; et al. Projected changes in area of the Sundarban mangrove forest in Bangladesh due to SLR by 2100. Clim. Chang. 2016, 139, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, A.; Mondal, P.; Barik, J.; Chowdhury, S.M.; Ghosh, T.; Hazra, S. Changes in mangrove species assemblages and future prediction of the Bangladesh Sundarbans using Markov chain model and cellular automata. Environ. Sci. Process. Impacts 2015, 17, 1111–1117. [Google Scholar] [CrossRef]
- Bureau of Applied Economics and Statistics, Department of Planning and Statistics, Governement of West Bengal: Kolkata, India.
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Johnson, F.A.; Hutton, C.W.; Hornby, D.; Lázár, A.N.; Mukhopadhyay, A. Is shrimp farming a successful adaptation to salinity intrusion? A geospatial associative analysis of poverty in the populous Ganges–Brahmaputra–Meghna Delta of Bangladesh. Sustain. Sci. 2016, 11, 423–439. [Google Scholar] [CrossRef] [Green Version]
- Pedercini, M.; Zuellich, G.; Dianati, K.; Arquitt, S. Toward achieving Sustainable Development Goals in Ivory Coast: Simulating pathways to sustainable development. Sustain. Dev. 2018, 26, 588–595. [Google Scholar] [CrossRef]
- Lázár, A.N.; Adams, H.; Adger, W.N.; Nicholls, R.J. Modelling household well-being and poverty trajectories: An application to coastal Bangladesh. PLoS ONE 2020, 15, e0238621. [Google Scholar] [CrossRef]
- Roadmap for Localizing the SDGs: Implementation and Monitoring at Subnational Level, Global Taskforce of Local and Regional Governments; Global Taskforce: 2016; p. 6. Available online: https://sustainabledevelopment.un.org/content/documents/commitments/818_11195_commitment_ROADMAP%20LOCALIZING%20SDGS.pdf (accessed on 2 December 2020).
SBR Policy Trade-Offs | SDG Trade-Offs | SBR Policy Synergies | SDG Synergies |
---|---|---|---|
Economic development (coastal economic zones within SBR and urbanization) | SDG1, SDG11 Rural poverty alleviation, land reforms to support small scale ownership vs. intensification and urbanization | Encouraging small and marginal farmers including Scheduled Castes and Scheduled Tribes & women. | SDG1, SDG2 and SDG10 Actions for support to agriculture and poverty targeted at most marginalized |
Social protection measures addressing poverty and economic development | SDG1, SDG11, SDG8 Rural poverty alleviation through social protection vs. economic development | Promoting the concept of zero tillage/minimum tillage in vulnerable areas, and sustainable water withdrawals | SDG2, SDG15, SDG 13, SDG6 Climate smart agriculture promotion and water management |
Impacts of rural agricultural Intensification and mechanization of agriculture, water requirements and environmental flows | SDG2, SDG6, SDG14 Agricultural intensification through irrigations vs. environmental flows and groundwater availability | Regulation of fisheries catch and sustainable aquaculture and food and nutritional security | SDG 14, SDG2 Sustainability fisheries and food and nutritional security |
Irrigation policies for agricultural intensification vs. drip irrigation for climate resilience | SDG2, SDG13 Agricultural intensification for export vs. drip and rainwater harvesting for climate action | Social protection measures and mangrove conservation and rehabilitation, shoreline protection | SDG1, SDG15 Support to waged employment funding activities to support mangrove regeneration |
Conversion of agricultural land to aquaculture (consequent change in labor equality and livelihood impacts) | SDG1, SDG2, SDG10, SDG14 Poverty alleviation vs. change to employment and migration in aquaculture | Sustainable tourism and infrastructure developments | SDG1, SDG2, SDG6, SDG8 Infrastructure development that supports both tourism and connectivity (markets/water, sanitation) |
Sustainable tourism growth and biological conservation | SDG1, SDG15, SDG13, SDG14 Growth in tourism facilities vs. conservation of coastal zone and mangroves | Embanking and coastal defense and land-use change | SDG1, SDG15 Embanking supports land-use alternatives, and land consolidation |
Embanking protection and subsidence/flood levels | SDG1 SDG15 Poverty alleviation vs. and natural resource management | Community resilience and Climate change actions | SDG1, SDG13 Support for poverty alleviation and climate change actions |
Areas for Exploration | SDGs Considered | Links to Policy Initiatives | Overview of Methods and Data Available |
---|---|---|---|
Increased provision of freshwater | | Soils health 1,2, increase efficiency of irrigation 3, encourage diversification of high value crops 4, doubling farmers incomes 2,5, rainwater harvesting 2,6 | Agricultural modeling, mangrove health indicators, Statistical poverty modelling, socio-economic data, livelihood information. |
Aquaculture expansion | | Control of land-use change 7, support for sustainable agriculture 8,9, regulate growth of inland aquaculture, diversification of species in freshwater aquaculture 10, triple export from fisheries and aquaculture sector 11,12, double income of fishers and fish-farmers 7 | Land-use/land-cover modelling, agricultural modelling, aquaculture sector knowledge and trends, statistical poverty modelling, livelihood information. |
Mangrove trends, including realignment/retreat | | Rehabilitation and regeneration of mangroves 13, riverbank afforestation 14, sustainable management, ecotourism 15, coastal resilience 2 | Mangrove extent modelling, mangrove health indicators, land-use/land-cover modelling, fisheries sector knowledge and modelling. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcinko, C.L.J.; Nicholls, R.J.; Daw, T.M.; Hazra, S.; Hutton, C.W.; Hill, C.T.; Clarke, D.; Harfoot, A.; Basu, O.; Das, I.; et al. The Development of a Framework for the Integrated Assessment of SDG Trade-Offs in the Sundarban Biosphere Reserve. Water 2021, 13, 528. https://doi.org/10.3390/w13040528
Marcinko CLJ, Nicholls RJ, Daw TM, Hazra S, Hutton CW, Hill CT, Clarke D, Harfoot A, Basu O, Das I, et al. The Development of a Framework for the Integrated Assessment of SDG Trade-Offs in the Sundarban Biosphere Reserve. Water. 2021; 13(4):528. https://doi.org/10.3390/w13040528
Chicago/Turabian StyleMarcinko, Charlotte L. J., Robert J. Nicholls, Tim M. Daw, Sugata Hazra, Craig W. Hutton, Chris T. Hill, Derek Clarke, Andy Harfoot, Oindrila Basu, Isha Das, and et al. 2021. "The Development of a Framework for the Integrated Assessment of SDG Trade-Offs in the Sundarban Biosphere Reserve" Water 13, no. 4: 528. https://doi.org/10.3390/w13040528
APA StyleMarcinko, C. L. J., Nicholls, R. J., Daw, T. M., Hazra, S., Hutton, C. W., Hill, C. T., Clarke, D., Harfoot, A., Basu, O., Das, I., Giri, S., Pal, S., & Mondal, P. P. (2021). The Development of a Framework for the Integrated Assessment of SDG Trade-Offs in the Sundarban Biosphere Reserve. Water, 13(4), 528. https://doi.org/10.3390/w13040528