Effect of Freeze-Thaw Cycles on Soil Detachment Capacities of Three Loamy Soils on the Loess Plateau of China
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Determination of Soil Properties
2.3. Design of Freeze-Thaw and Scour Simulation Experiments
2.4. Data Analyses
3. Results
3.1. The Effects of Freeze-Thaw Cycles on Soil Properties
3.2. Freeze-Thaw Cycles Impacts on Soil Detachment Capacity
3.3. Relationship between Soil Detachment Capacity and Soil Properties
4. Discussion
4.1. Effect of Freeze-Thaw on Soil Properties
4.2. Effect Mechanism of Freeze-Thaw on Soil Detachment Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luca, M. Govern our soils. Nature 2015, 528, 32–33. [Google Scholar]
- Mohammed, S.; Al-Ebraheem, A.; Holb, I.J.; Alsafadi, K.; Dikkeh, M.; Pham, Q.B.; Linh, N.T.T.; Szabo, S. Soil management effects on soil water erosion and runoff in central Syria—A comparative evaluation of general linear model and random forest regression. Water 2020, 12, 25–29. [Google Scholar] [CrossRef]
- Nearing, M.A.; Bradford, J.M.; Parker, S.C. Soil Detachment by shallow flow at low slopes. Soil Sci. Soc. Am. J. 1991, 55, 351–357. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, B.Y.; Liu, G.B.; Nearing, M.A. Detachment of undisturbed soil by shallow flow. Soil Sci. Soc. Am. J. 2003, 67, 713–719. [Google Scholar] [CrossRef]
- Chang, E.; Li, P.; Li, Z.; Su, Y.; Zhang, Y.; Zhang, J.; Liu, Z.; Li, Z. The impact of vegetation successional status on slope runoff erosion in the Loess Plateau of China. Water 2019, 11, 2614. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J.; Govers, G.; Nachtergaele, J. Resistance of soils to concentrated flow erosion: A review. Earth-Sci. Rev. 2007, 80, 75–109. [Google Scholar] [CrossRef]
- Wang, D.D.; Wang, Z.L.; Shen, N.; Chen, H. Modeling soil detachment capacity by rill flow using hydraulic parameters. J. Hydrol. 2016, 535, 473–479. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, G.B.; Tang, K.M.; Zhang, X.C. Flow Detachment of Soils under Different Land Uses in the Loess Plateau of China. Trans. ASABE 2008, 51, 883–890. [Google Scholar]
- Zhang, G.H.; Ding, W.F.; Pu, J.; Li, J.M.; Qian, F.; Sun, B.Y. Effects of moss-dominated biocrusts on soil detachment by overland flow in the Three Gorges Reservoir Area of China. J. Mt. Sci. 2020, 17, 2418–2431. [Google Scholar] [CrossRef]
- Yi, W.; Cao, L.X.; Fan, J.B.; Lu, H.; Liang, Y. Modelling Soil Detachment of Different Management Practices in the Red Soil Region of China. Land Degrad. Dev. 2017, 28, 1496–1505. [Google Scholar]
- Wang, B.; Zhang, G.H.; Shi, Y.Y.; Zhang, X.C.; Ren, Z.P.; Zhu, L.J. Effect of natural restoration time of abandoned farmland on soil detachment by overland flow in the Loess Plateau of China. Earth Surf. Process. Landf. 2013, 38, 1725–1734. [Google Scholar] [CrossRef]
- Chen, Z.X.; Guo, M.M.; Wang, W.L. Variations in Soil Erosion Resistance of Gully Head along a 25-Year Revegetation Age on the Loess Plateau. Water 2020, 12, 3301. [Google Scholar] [CrossRef]
- Nciizah, A.D.; Wakindiki, I.I.C. Physical indicators of soil erosion, aggregate stability and erodibility. Arch. Agron. Soil Sci. 2015, 61, 827–842. [Google Scholar] [CrossRef]
- Chow, T.L.; Rees, H.W.; Monteith, J. Seasonal distribution of runoff and soil loss under four tillage treatments in the upper St. John River valley New Brunswick, Canada. Can. J. Soil Sci. 2000, 80, 649–660. [Google Scholar] [CrossRef]
- Kok, H.; Mccool, D.K. Quantifying freeze/thaw-induced variability of soil strength. T ASAE 1990, 33, 501–506. [Google Scholar] [CrossRef]
- Bajracharya, R.M.; Lal, R.; Hall, G.F. Temporal variation in properties of an uncropped, ploughed Miamian soil in relation to seasonal erodibility. Hydrol. Process. 1998, 12, 1021–1030. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Q.K.; Ma, H. Spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River during the period 2002–2011 based on the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) data. J. Arid Land 2017, 9, 850–864. [Google Scholar] [CrossRef]
- Teng, H.F.; Liang, Z.Z.; Chen, S.C.; Liu, Y.; Rossel, R.A.; Chappell, A.; Yu, W.; Shi, Z. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci. Total Environ. 2018, 635, 673–686. [Google Scholar] [CrossRef]
- Fan, H.M.; Cai, Q.G. Review of research progress in freeze-thaw erosion. Sci. Soil Water Conserv. 2003, 1, 50–55. [Google Scholar]
- Chen, J.; Zheng, X.; Zang, H.; Ping, L.; Ming, S. Numerical Simulation of Moisture and Heat Coupled Migration in Seasonal Freeze-thaw Soil Media. J. Pure Appl. Microbiol. 2013, 7, 151–156. [Google Scholar]
- Gatto, L.W. Soil freeze–thaw-induced changes to a simulated rill: Potential impacts on soil erosion. Geomorphology 2000, 32, 147–160. [Google Scholar] [CrossRef]
- Ferrick, M.G.; Gatto, L.W. Quantifying the effect of a freeze-thaw cycle on soil erosion: Laboratory experiments. Earth Surf. Process. Landf. 2005, 30, 1305–1326. [Google Scholar] [CrossRef]
- Barnes, N.; Luffman, I.; Nandi, A. Gully Erosion and Freeze-Thaw Processes in Clay-Rich Soils, Northeast Tennessee, USA. Georesj 2016, 9, 67–76. [Google Scholar] [CrossRef]
- Fu, Q.; Hou, R.J.; Li, T.X. Soil Moisture-heat transfer and its action mechanism of freezing and thawing soil. Trans. Chin. Soc. Agric. Mach. 2016, 47, 99–110. [Google Scholar]
- Sun, B.Y.; Li, Z.B.; Xiao, J.B.; Zhang, L.T.; Ma, B.; Li, J.M.; Cheng, D.B. Research progress of the effect of freeze-thaw on soil physical and chemical properties and wind and water erosion. Chin. J. Appl. Ecol. 2019, 30, 337–347. [Google Scholar]
- Barthes, B.; Roose, E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion, validation at several levels. Catena 2002, 47, 133–149. [Google Scholar] [CrossRef]
- Kværno, S.H.; Oygarden, L. The influence of freeze–thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena 2006, 67, 175–182. [Google Scholar] [CrossRef]
- Oztas, T.; Fayetorbay, F. Effect of freezing and thawing processes on soil aggregate stability. Catena 2003, 52, 1–8. [Google Scholar] [CrossRef]
- Li, G.Y.; Fan, H.M. Effect of Freeze-Thaw on Water Stability of Aggregates in a Black Soil of Northeast China. Pedosphere 2014, 24, 285–290. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Raeisi, M.B.; Hazbavi, Z. Influence of freeze-only and freezing-thawing cycles on splash erosion. Int. Soil Water Conserv. Res. 2018, 6, 275–279. [Google Scholar] [CrossRef]
- Wang, T.; Li, P.; Liu, Y.; Li, Z.B. Experimental investigation of freeze-thaw meltwater compound erosion and runoff energy consumption on loessal slopes. Catena 2020, 185, 104310. [Google Scholar] [CrossRef]
- Koiter, A.J.; Owens, P.N.; Petticrew, E.L. The role of soil surface properties on the particle size and carbon selectivity of interrill erosion in agricultural landscapes. Catena 2017, 153, 194–206. [Google Scholar] [CrossRef]
- Wang, L.; Shi, Z.H. Size Selectivity of eroded sediment associated with soil texture on steep slopes. Soil Sci. Soc. Am. J. 2015, 79, 917. [Google Scholar] [CrossRef]
- Dagesse, D.F. Freezing-induced bulk soil volume changes. Can. J. Soil Sci. 2010, 90, 389–401. [Google Scholar] [CrossRef]
- Jie, Z.; Tang., Y. Experimental inference on dual-porosity aggravation of soft clay after freeze-thaw by fractal and probability analysis. Cold Reg. Sci. Technol. 2018, 153, 181–196. [Google Scholar]
- Sahin, U.; Angin, I.; Kiziloglu, F.M. Effect of freezing and thawing processes on some physical properties of saline–sodic soils mixed with sewage sludge or fly ash. Soil Tillage Res. 2008, 99, 254–260. [Google Scholar]
- Starkloff, T.; Larsbo, M.; Stolte, J. Quantifying the impact of a succession of freezing-thawing cycles on the pore network of a silty clay loam and a loamy sand topsoil using X-ray tomography. Catena 2017, 156, 365–374. [Google Scholar] [CrossRef]
- Lehrsch, G.A. Freeze-Thaw Cycles Increase Near-Surface Aggregate Stability. Soil Sci. 1998, 163, 63–70. [Google Scholar]
- Wang, D.Y.; Ma, W.; Niu, Y.H. Effects of cyclic freezing and thawing on mechanical properties of Qinghai–Tibet clay. Cold Reg. Sci. Technol. 2007, 48, 34–43. [Google Scholar] [CrossRef]
- Edwards, L.M. The effect of alternate freezing and thawing on aggregate stability and aggregate size distribution of some Prince Edward Island soils. Eur. J. Soil Sci. 2010, 42, 193–204. [Google Scholar] [CrossRef]
- Song, Y.; Yu, X.F.; Zhou, Y.C. Progress of freeze-thaw effects on carbon, nitrogen and phosphorus cycling in soils. Soils Crop. 2016, 5, 78–90. [Google Scholar]
- Mohanty, S.K.; Saiers, J.E.; Ryan, J.N. Colloid-facilitated mobilization of metals by freeze-thaw cycles. Environ. Sci. Technol. 2014, 48, 977–984. [Google Scholar] [PubMed]
- Ni, W.K.; Shi, H.Q. Influence of freezing-thawing cycles on micro-structure and shear strength of loess. J. Glaciol. Geocryol. 2014, 36, 922–927. [Google Scholar]
- Zhang, W.B.; Ma, J.Z.; Tang, L. Experimental study on shear strength characteristics of sulfate saline soil in Ningxia region under long-term freeze-thaw cycles. Cold Reg. Sci. Technol. 2019, 160, 48–57. [Google Scholar]
- Nguyen, T.H.; Cui, Y.J.; Valery, F. Effect of freeze-thaw cycles on mechanical strength of lime-treated fine-grained soils. Transp. Geotech. 2019, 21, 100281. [Google Scholar]
- Dong, X.H.; Zhang, A.J.; Lian, J.B.; Guo, M.X. Study of shear strength deterioration of loess under repeated freezing-thawing cycles. J. Glaciol. Geocryol. 2010, 32, 767–772. [Google Scholar]
- Liu, J.; Chang, D.; Yu, Q. Influence of freeze-thaw cycles on mechanical properties of a silty sand. Eng. Geol. 2016, 210, 23–32. [Google Scholar] [CrossRef]
- Schjonning, P.; Lamande, M.; Keller, T. Subsoil shear strength–Measurements and prediction models based on readily available soil properties. Soil Tillage Res. 2020, 200, 104638. [Google Scholar] [CrossRef]
- Li, M.Y.; Xiao, H.; Huan, H.; Shao, Y.; Xia, Z. Modelling soil detachment by overland flow for the soil in the Tibet Plateau of China. Sci. Rep. 2019, 9, 8063–8073. [Google Scholar] [CrossRef]
- Formanek, G.E.; Mccool, D.K.; Papendick, R.I. Freeze-thaw and consolidation effects on strength of a wet silt loam. Trans. ASAE-Am. Soc. Agric. Eng. 1984, 27, 1749–1752. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.H.; Luan, L.L.; Liu, F.L. Temporal variation in soil resistance to flowing water erosion for soil incorporated with plant litters in the Loess Plateau of China. Catena 2016, 145, 239–245. [Google Scholar] [CrossRef]
- Boswell, E.P.; Balster, N.J.; Bajcz, A.W.; Thompson, A.M. Soil aggregation returns to a set point despite seasonal response to snow manipulation. Geoderma 2020, 357, 113954. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Lehrsch, G.A.; McCool, D.K. Freezing and thawing. In Processes Encyclopedia of Soils in the Environment; Elsevier Inc.: Amsterdam, The Netherlands, 2005; pp. 104–110. [Google Scholar]
Soil Samples | Geographic Coordinates | Soil Texture % | |||
---|---|---|---|---|---|
Clay (<0.002) | Silt (0.002–0.05) | Sand (>0.05) | |||
Aeolian sandy soil | 110°31′17″ E | 39°58′12″ N | 11.14 | 14.84 | 74.02 |
Loessal soil | 109°15′46″ E | 36°46′28″ N | 20.17 | 61.04 | 18.79 |
Anthropogenic-alluvial soil | 107°40′47″ E | 40°54′21″ N | 32.18 | 23.68 | 44.14 |
Soil Properties | Sandy Loam | Silt Loam | Clay Loam | |||
---|---|---|---|---|---|---|
Regression Equation | R2 | Regression Equation | R2 | Regression Equation | R2 | |
Soil organic matter | - | - | y = 20.19e0.69x | 0.74 * | y = 3617.3e−0.27x | 0.63 ** |
Bulk density | - | - | y = −2165.1x + 3238.5 | 0.54 * | y = 915.48x − 877.94 | 0.49 * |
Water stable aggregates | - | - | y = 3255.1e−0.09x | 0.85 ** | - | - |
Shear strength | y = −38.88x + 634.25 | 0.49 * | y = −44.28x + 762.83 | 0.80 ** | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Sun, B.; Ren, F.; Li, H.; Jiao, X. Effect of Freeze-Thaw Cycles on Soil Detachment Capacities of Three Loamy Soils on the Loess Plateau of China. Water 2021, 13, 342. https://doi.org/10.3390/w13030342
Lu J, Sun B, Ren F, Li H, Jiao X. Effect of Freeze-Thaw Cycles on Soil Detachment Capacities of Three Loamy Soils on the Loess Plateau of China. Water. 2021; 13(3):342. https://doi.org/10.3390/w13030342
Chicago/Turabian StyleLu, Jian, Baoyang Sun, Feipeng Ren, Hao Li, and Xiyun Jiao. 2021. "Effect of Freeze-Thaw Cycles on Soil Detachment Capacities of Three Loamy Soils on the Loess Plateau of China" Water 13, no. 3: 342. https://doi.org/10.3390/w13030342
APA StyleLu, J., Sun, B., Ren, F., Li, H., & Jiao, X. (2021). Effect of Freeze-Thaw Cycles on Soil Detachment Capacities of Three Loamy Soils on the Loess Plateau of China. Water, 13(3), 342. https://doi.org/10.3390/w13030342