Effect of Freeze-Thaw Cycles on Soil Detachment Capacities of Three Loamy Soils on the Loess Plateau of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Determination of Soil Properties
2.3. Design of Freeze-Thaw and Scour Simulation Experiments
2.4. Data Analyses
3. Results
3.1. The Effects of Freeze-Thaw Cycles on Soil Properties
3.2. Freeze-Thaw Cycles Impacts on Soil Detachment Capacity
3.3. Relationship between Soil Detachment Capacity and Soil Properties
4. Discussion
4.1. Effect of Freeze-Thaw on Soil Properties
4.2. Effect Mechanism of Freeze-Thaw on Soil Detachment Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luca, M. Govern our soils. Nature 2015, 528, 32–33. [Google Scholar]
- Mohammed, S.; Al-Ebraheem, A.; Holb, I.J.; Alsafadi, K.; Dikkeh, M.; Pham, Q.B.; Linh, N.T.T.; Szabo, S. Soil management effects on soil water erosion and runoff in central Syria—A comparative evaluation of general linear model and random forest regression. Water 2020, 12, 25–29. [Google Scholar] [CrossRef]
- Nearing, M.A.; Bradford, J.M.; Parker, S.C. Soil Detachment by shallow flow at low slopes. Soil Sci. Soc. Am. J. 1991, 55, 351–357. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, B.Y.; Liu, G.B.; Nearing, M.A. Detachment of undisturbed soil by shallow flow. Soil Sci. Soc. Am. J. 2003, 67, 713–719. [Google Scholar] [CrossRef]
- Chang, E.; Li, P.; Li, Z.; Su, Y.; Zhang, Y.; Zhang, J.; Liu, Z.; Li, Z. The impact of vegetation successional status on slope runoff erosion in the Loess Plateau of China. Water 2019, 11, 2614. [Google Scholar] [CrossRef] [Green Version]
- Knapen, A.; Poesen, J.; Govers, G.; Nachtergaele, J. Resistance of soils to concentrated flow erosion: A review. Earth-Sci. Rev. 2007, 80, 75–109. [Google Scholar] [CrossRef]
- Wang, D.D.; Wang, Z.L.; Shen, N.; Chen, H. Modeling soil detachment capacity by rill flow using hydraulic parameters. J. Hydrol. 2016, 535, 473–479. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, G.B.; Tang, K.M.; Zhang, X.C. Flow Detachment of Soils under Different Land Uses in the Loess Plateau of China. Trans. ASABE 2008, 51, 883–890. [Google Scholar]
- Zhang, G.H.; Ding, W.F.; Pu, J.; Li, J.M.; Qian, F.; Sun, B.Y. Effects of moss-dominated biocrusts on soil detachment by overland flow in the Three Gorges Reservoir Area of China. J. Mt. Sci. 2020, 17, 2418–2431. [Google Scholar] [CrossRef]
- Yi, W.; Cao, L.X.; Fan, J.B.; Lu, H.; Liang, Y. Modelling Soil Detachment of Different Management Practices in the Red Soil Region of China. Land Degrad. Dev. 2017, 28, 1496–1505. [Google Scholar]
- Wang, B.; Zhang, G.H.; Shi, Y.Y.; Zhang, X.C.; Ren, Z.P.; Zhu, L.J. Effect of natural restoration time of abandoned farmland on soil detachment by overland flow in the Loess Plateau of China. Earth Surf. Process. Landf. 2013, 38, 1725–1734. [Google Scholar] [CrossRef]
- Chen, Z.X.; Guo, M.M.; Wang, W.L. Variations in Soil Erosion Resistance of Gully Head along a 25-Year Revegetation Age on the Loess Plateau. Water 2020, 12, 3301. [Google Scholar] [CrossRef]
- Nciizah, A.D.; Wakindiki, I.I.C. Physical indicators of soil erosion, aggregate stability and erodibility. Arch. Agron. Soil Sci. 2015, 61, 827–842. [Google Scholar] [CrossRef]
- Chow, T.L.; Rees, H.W.; Monteith, J. Seasonal distribution of runoff and soil loss under four tillage treatments in the upper St. John River valley New Brunswick, Canada. Can. J. Soil Sci. 2000, 80, 649–660. [Google Scholar] [CrossRef] [Green Version]
- Kok, H.; Mccool, D.K. Quantifying freeze/thaw-induced variability of soil strength. T ASAE 1990, 33, 501–506. [Google Scholar] [CrossRef]
- Bajracharya, R.M.; Lal, R.; Hall, G.F. Temporal variation in properties of an uncropped, ploughed Miamian soil in relation to seasonal erodibility. Hydrol. Process. 1998, 12, 1021–1030. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Q.K.; Ma, H. Spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River during the period 2002–2011 based on the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) data. J. Arid Land 2017, 9, 850–864. [Google Scholar] [CrossRef] [Green Version]
- Teng, H.F.; Liang, Z.Z.; Chen, S.C.; Liu, Y.; Rossel, R.A.; Chappell, A.; Yu, W.; Shi, Z. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci. Total Environ. 2018, 635, 673–686. [Google Scholar] [CrossRef]
- Fan, H.M.; Cai, Q.G. Review of research progress in freeze-thaw erosion. Sci. Soil Water Conserv. 2003, 1, 50–55. [Google Scholar]
- Chen, J.; Zheng, X.; Zang, H.; Ping, L.; Ming, S. Numerical Simulation of Moisture and Heat Coupled Migration in Seasonal Freeze-thaw Soil Media. J. Pure Appl. Microbiol. 2013, 7, 151–156. [Google Scholar]
- Gatto, L.W. Soil freeze–thaw-induced changes to a simulated rill: Potential impacts on soil erosion. Geomorphology 2000, 32, 147–160. [Google Scholar] [CrossRef]
- Ferrick, M.G.; Gatto, L.W. Quantifying the effect of a freeze-thaw cycle on soil erosion: Laboratory experiments. Earth Surf. Process. Landf. 2005, 30, 1305–1326. [Google Scholar] [CrossRef]
- Barnes, N.; Luffman, I.; Nandi, A. Gully Erosion and Freeze-Thaw Processes in Clay-Rich Soils, Northeast Tennessee, USA. Georesj 2016, 9, 67–76. [Google Scholar] [CrossRef]
- Fu, Q.; Hou, R.J.; Li, T.X. Soil Moisture-heat transfer and its action mechanism of freezing and thawing soil. Trans. Chin. Soc. Agric. Mach. 2016, 47, 99–110. [Google Scholar]
- Sun, B.Y.; Li, Z.B.; Xiao, J.B.; Zhang, L.T.; Ma, B.; Li, J.M.; Cheng, D.B. Research progress of the effect of freeze-thaw on soil physical and chemical properties and wind and water erosion. Chin. J. Appl. Ecol. 2019, 30, 337–347. [Google Scholar]
- Barthes, B.; Roose, E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion, validation at several levels. Catena 2002, 47, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Kværno, S.H.; Oygarden, L. The influence of freeze–thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena 2006, 67, 175–182. [Google Scholar] [CrossRef]
- Oztas, T.; Fayetorbay, F. Effect of freezing and thawing processes on soil aggregate stability. Catena 2003, 52, 1–8. [Google Scholar] [CrossRef]
- Li, G.Y.; Fan, H.M. Effect of Freeze-Thaw on Water Stability of Aggregates in a Black Soil of Northeast China. Pedosphere 2014, 24, 285–290. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Raeisi, M.B.; Hazbavi, Z. Influence of freeze-only and freezing-thawing cycles on splash erosion. Int. Soil Water Conserv. Res. 2018, 6, 275–279. [Google Scholar] [CrossRef]
- Wang, T.; Li, P.; Liu, Y.; Li, Z.B. Experimental investigation of freeze-thaw meltwater compound erosion and runoff energy consumption on loessal slopes. Catena 2020, 185, 104310. [Google Scholar] [CrossRef]
- Koiter, A.J.; Owens, P.N.; Petticrew, E.L. The role of soil surface properties on the particle size and carbon selectivity of interrill erosion in agricultural landscapes. Catena 2017, 153, 194–206. [Google Scholar] [CrossRef]
- Wang, L.; Shi, Z.H. Size Selectivity of eroded sediment associated with soil texture on steep slopes. Soil Sci. Soc. Am. J. 2015, 79, 917. [Google Scholar] [CrossRef]
- Dagesse, D.F. Freezing-induced bulk soil volume changes. Can. J. Soil Sci. 2010, 90, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Jie, Z.; Tang., Y. Experimental inference on dual-porosity aggravation of soft clay after freeze-thaw by fractal and probability analysis. Cold Reg. Sci. Technol. 2018, 153, 181–196. [Google Scholar]
- Sahin, U.; Angin, I.; Kiziloglu, F.M. Effect of freezing and thawing processes on some physical properties of saline–sodic soils mixed with sewage sludge or fly ash. Soil Tillage Res. 2008, 99, 254–260. [Google Scholar]
- Starkloff, T.; Larsbo, M.; Stolte, J. Quantifying the impact of a succession of freezing-thawing cycles on the pore network of a silty clay loam and a loamy sand topsoil using X-ray tomography. Catena 2017, 156, 365–374. [Google Scholar] [CrossRef]
- Lehrsch, G.A. Freeze-Thaw Cycles Increase Near-Surface Aggregate Stability. Soil Sci. 1998, 163, 63–70. [Google Scholar]
- Wang, D.Y.; Ma, W.; Niu, Y.H. Effects of cyclic freezing and thawing on mechanical properties of Qinghai–Tibet clay. Cold Reg. Sci. Technol. 2007, 48, 34–43. [Google Scholar] [CrossRef]
- Edwards, L.M. The effect of alternate freezing and thawing on aggregate stability and aggregate size distribution of some Prince Edward Island soils. Eur. J. Soil Sci. 2010, 42, 193–204. [Google Scholar] [CrossRef]
- Song, Y.; Yu, X.F.; Zhou, Y.C. Progress of freeze-thaw effects on carbon, nitrogen and phosphorus cycling in soils. Soils Crop. 2016, 5, 78–90. [Google Scholar]
- Mohanty, S.K.; Saiers, J.E.; Ryan, J.N. Colloid-facilitated mobilization of metals by freeze-thaw cycles. Environ. Sci. Technol. 2014, 48, 977–984. [Google Scholar] [PubMed]
- Ni, W.K.; Shi, H.Q. Influence of freezing-thawing cycles on micro-structure and shear strength of loess. J. Glaciol. Geocryol. 2014, 36, 922–927. [Google Scholar]
- Zhang, W.B.; Ma, J.Z.; Tang, L. Experimental study on shear strength characteristics of sulfate saline soil in Ningxia region under long-term freeze-thaw cycles. Cold Reg. Sci. Technol. 2019, 160, 48–57. [Google Scholar]
- Nguyen, T.H.; Cui, Y.J.; Valery, F. Effect of freeze-thaw cycles on mechanical strength of lime-treated fine-grained soils. Transp. Geotech. 2019, 21, 100281. [Google Scholar]
- Dong, X.H.; Zhang, A.J.; Lian, J.B.; Guo, M.X. Study of shear strength deterioration of loess under repeated freezing-thawing cycles. J. Glaciol. Geocryol. 2010, 32, 767–772. [Google Scholar]
- Liu, J.; Chang, D.; Yu, Q. Influence of freeze-thaw cycles on mechanical properties of a silty sand. Eng. Geol. 2016, 210, 23–32. [Google Scholar] [CrossRef]
- Schjonning, P.; Lamande, M.; Keller, T. Subsoil shear strength–Measurements and prediction models based on readily available soil properties. Soil Tillage Res. 2020, 200, 104638. [Google Scholar] [CrossRef]
- Li, M.Y.; Xiao, H.; Huan, H.; Shao, Y.; Xia, Z. Modelling soil detachment by overland flow for the soil in the Tibet Plateau of China. Sci. Rep. 2019, 9, 8063–8073. [Google Scholar] [CrossRef] [Green Version]
- Formanek, G.E.; Mccool, D.K.; Papendick, R.I. Freeze-thaw and consolidation effects on strength of a wet silt loam. Trans. ASAE-Am. Soc. Agric. Eng. 1984, 27, 1749–1752. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.H.; Luan, L.L.; Liu, F.L. Temporal variation in soil resistance to flowing water erosion for soil incorporated with plant litters in the Loess Plateau of China. Catena 2016, 145, 239–245. [Google Scholar] [CrossRef]
- Boswell, E.P.; Balster, N.J.; Bajcz, A.W.; Thompson, A.M. Soil aggregation returns to a set point despite seasonal response to snow manipulation. Geoderma 2020, 357, 113954. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Lehrsch, G.A.; McCool, D.K. Freezing and thawing. In Processes Encyclopedia of Soils in the Environment; Elsevier Inc.: Amsterdam, The Netherlands, 2005; pp. 104–110. [Google Scholar]
Soil Samples | Geographic Coordinates | Soil Texture % | |||
---|---|---|---|---|---|
Clay (<0.002) | Silt (0.002–0.05) | Sand (>0.05) | |||
Aeolian sandy soil | 110°31′17″ E | 39°58′12″ N | 11.14 | 14.84 | 74.02 |
Loessal soil | 109°15′46″ E | 36°46′28″ N | 20.17 | 61.04 | 18.79 |
Anthropogenic-alluvial soil | 107°40′47″ E | 40°54′21″ N | 32.18 | 23.68 | 44.14 |
Soil Properties | Sandy Loam | Silt Loam | Clay Loam | |||
---|---|---|---|---|---|---|
Regression Equation | R2 | Regression Equation | R2 | Regression Equation | R2 | |
Soil organic matter | - | - | y = 20.19e0.69x | 0.74 * | y = 3617.3e−0.27x | 0.63 ** |
Bulk density | - | - | y = −2165.1x + 3238.5 | 0.54 * | y = 915.48x − 877.94 | 0.49 * |
Water stable aggregates | - | - | y = 3255.1e−0.09x | 0.85 ** | - | - |
Shear strength | y = −38.88x + 634.25 | 0.49 * | y = −44.28x + 762.83 | 0.80 ** | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Sun, B.; Ren, F.; Li, H.; Jiao, X. Effect of Freeze-Thaw Cycles on Soil Detachment Capacities of Three Loamy Soils on the Loess Plateau of China. Water 2021, 13, 342. https://doi.org/10.3390/w13030342
Lu J, Sun B, Ren F, Li H, Jiao X. Effect of Freeze-Thaw Cycles on Soil Detachment Capacities of Three Loamy Soils on the Loess Plateau of China. Water. 2021; 13(3):342. https://doi.org/10.3390/w13030342
Chicago/Turabian StyleLu, Jian, Baoyang Sun, Feipeng Ren, Hao Li, and Xiyun Jiao. 2021. "Effect of Freeze-Thaw Cycles on Soil Detachment Capacities of Three Loamy Soils on the Loess Plateau of China" Water 13, no. 3: 342. https://doi.org/10.3390/w13030342
APA StyleLu, J., Sun, B., Ren, F., Li, H., & Jiao, X. (2021). Effect of Freeze-Thaw Cycles on Soil Detachment Capacities of Three Loamy Soils on the Loess Plateau of China. Water, 13(3), 342. https://doi.org/10.3390/w13030342