Habitat Shift for Plankton: The Living Side of Benthic-Pelagic Coupling in the Mar Piccolo of Taranto (Southern Italy, Ionian Sea)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Investigation Design
2.3. Sampling Procedures
2.4. Laboratory Procedures and Analyses
3. Results
3.1. Hydrographic Conditions
3.2. Taxonomic Composition of Samples
3.2.1. Active Stages in the Water Column (Niskin Bottle, Plankton Net)
3.2.2. Cyst Fluxes (Sediment Traps)
3.2.3. In Situ Germination (Inverted Traps)
3.2.4. Sediments Cyst Bank (Sediment Cores)
3.2.5. Benthic-Pelagic Coupling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boero, F. Fluctuations and variations in coastal marine environments. Mar. Ecol. 1994, 15, 3–25. [Google Scholar] [CrossRef]
- Giangrande, A.; Geraci, S.; Belmonte, G. Life-cycle and life-history diversity in marine invertebrates and the implications in community dynamics. Oceanogr. Mar. Biol. Annu. Rev. 1994, 32, 305–333. [Google Scholar]
- Boero, F.; Belmonte, G.; Fanelli, G.; Piraino, S.; Rubino, F. The continuity of living matter and the discontinuities of its constituents: Do plankton and benthos really exist? Trends Ecol. Evol. 1996, 11, 177–180. [Google Scholar] [CrossRef]
- Belmonte, G.; Castello, P.; Piccinni, M.R.; Quarta, S.; Rubino, F.; Geraci, S. Resting stages in marine sediments off the Italian coast. In Biology and Ecology of Shallow Coastal Waters; Eleftheriou, A., Hansell, A.D., Smith, C.J., Eds.; Olsen & Olsen: Frederborg, Denmark, 1995; pp. 53–58. [Google Scholar]
- Belmonte, G.; Rubino, F. Resting cysts from coastal marine plankton. Oceanogr. Mar. Biol. Annu. Rev. 2019, 57, 1–88. [Google Scholar]
- Marcus, N.H.; Boero, F. Minireview: The importance of benthic-pelagic coupling and the forgotten role of life cycles in coastal aquatic systems. Limnol. Oceanogr. 1998, 43, 763–768. [Google Scholar] [CrossRef]
- Anderson, D.; Alpermann, T.; Cembella, A.; Collos, Y.; Masseret, E.; Montresor, M. The globally distributed genus Alexandrium: Multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 2012, 14, 10–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerfoot, W.C.; Weider, L.J. Experimental paleoecology (resurrection ecology): Chasing Van Valen’s Red Queen hypothesis. Limnol. Oceanogr. 2004, 49, 1300–1316. [Google Scholar] [CrossRef] [Green Version]
- Moscatello, S.; Rubino, F.; Saracino, O.D.; Fanelli, G.; Belmonte, G.; Boero, F. Plankton biodiversity around the Salento Peninsula (South East Italy): An integrated water-sediment approach. Sci. Mar. 2004, 68 (Suppl. 1), S85–S102. [Google Scholar]
- Rubino, F.; Saracino, O.D.; Moscatello, S.; Belmonte, G. An integrated water/sediment approach to study plankton (a case study in the southern Adriatic Sea). J. Mar. Sys. 2009, 78, 536–546. [Google Scholar] [CrossRef]
- Belmonte, G.; Vaglio, I.; Rubino, F.; Alabiso, G. Zooplankton composition along the confinement gradient of the Taranto Sea System (Ionian Sea, south-eastern Italy). J. Mar. Sys. 2013, 128, 222–238. [Google Scholar] [CrossRef]
- Belmonte, G.; Pati, A.C. Hatching rate and diapause duration in eggs of Paracartia latisetosa (Copepoda: Calanoida). J. Plankton Res. 2007, 29, i39–i47. [Google Scholar] [CrossRef] [Green Version]
- Hairston, N., Jr.; Van Brunt, R.; Kearns, C. Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 1995, 76, 1706–1711. [Google Scholar] [CrossRef]
- Ribeiro, S.; Berge, T.; Lundholm, N.; Ellegaard, M. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat. Commun. 2011, 2, 311–317. [Google Scholar] [CrossRef]
- Bravo, I.; Figueroa, R. Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2014, 2, 11–32. [Google Scholar] [CrossRef] [Green Version]
- Pati, A.C.; Belmonte, G. Disinfection efficacy on cyst viability of Artemia franciscana (Crustacea), Hexarthra fennica (Rotifera) and Fabrea salina (Ciliophora). Mar. Biol. 2003, 142, 895–904. [Google Scholar] [CrossRef]
- Pati, A.C.; Belmonte, G. Effect of aquaculture disinfectants on the germination of a Dinophyta cyst. Thalass. Salentina 2007, 30, 129–142. [Google Scholar]
- Stabili, L.; Miglietta, A.M.; Belmonte, G. Lysozyme-like and trypsin-like activities in the cysts of Artemia franciscana Kellog, 1906: Is there a passive immunity in a resting stage? J. Exper. Mar. Biol. Ecol. 1999, 237, 291–303. [Google Scholar] [CrossRef]
- Marcus, N.H. Recruitment of copepod nauplii into the plankton: Importance of diapause eggs and benthic processes. Mar. Ecol. Progr. Ser. 1984, 15, 47–54. [Google Scholar] [CrossRef]
- Ichimi, K.; Montani, S. Effects of deposit feeder ingestion on the survival and germination of marine flagellate cysts. Fisheries Sci. 2001, 67, 1178–1180. [Google Scholar] [CrossRef]
- Zonneveld, K.A.; Versteegh, G.J.; de Lange, G.J. Preservation of organic-walled dinoflagellate cysts in different oxygen regimes: A 10,000 year natural experiment. Mar. Micropaleontol. 1997, 29, 393–405. [Google Scholar] [CrossRef]
- Persson, A. Possible predation of cysts—A gap in the knowledge of dinoflagellate ecology? J. Plankton Res. 2000, 22, 803–809. [Google Scholar] [CrossRef] [Green Version]
- Rubino, F.; Saracino, O.D.; Fanelli, G.; Belmonte, G.; Boero, F. Plankton dynamics in the Mar Piccolo of Taranto: A pilot plan. Giorn. Bot. Ital. 1996, 130, 1032–1036. [Google Scholar] [CrossRef]
- Pastore, M. Mar Piccolo; Nuova Editrice Apulia: Martina Franca, Italy, 1993; p. 164. [Google Scholar]
- ARPA Puglia. Mar Piccolo of Taranto—Scientific technical report on the interaction between the environmental system and contaminants flow from primary and secondary sources. Tech. Rep. 2014, 4, 175. [Google Scholar]
- Belmonte, G.; Rossi, V. Resurrection and time travelling. Resurrection in crustaceans (and others). Trends Ecol. Evol. 1998, 13, 4–5. [Google Scholar] [CrossRef]
- Zingone, A.; Totti, C.; Sarno, D.; Cabrini, M.; Caroppo, C.; Giacobbe, M.G.; Lugliè, A.; Nuccio, C.; Socal, G. Fitoplancton: Metodiche di analisi quali-quantitativa. In Metodologie di Studio del Plancton Marino, ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale; Socal, G., Buttino, I., Cabrini, M., Mangoni, O., Penna, A., Totti, C., Eds.; Institute for Environmental Protection and Research (ISPRA): Rome, Italy, 2010; pp. 213–237. [Google Scholar]
- Montresor, M.; Bastianini, M.; Cucchiari, E.; Giacobbe, M.; Penna, A.; Rubino, F.; Satta, C.T. Stadi di resistenza del plancton. In Metodologie di Studio del Plancton Marino, ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale; Socal, G., Buttino, I., Cabrini, M., Mangoni, O., Penna, A., Totti, C., Eds.; Institute for Environmental Protection and Research (ISPRA): Rome, Italy, 2010; pp. 271–285. [Google Scholar]
- Belmonte, G.; Moscatello, S.; Rubino, F. Forme di resistenza dello zooplancton. In Metodologie di Studio del Plancton Marino, ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale; Socal, G., Buttino, I., Cabrini, M., Mangoni, O., Penna, A., Totti, C., Eds.; Institute for Environmental Protection and Research (ISPRA): Rome, Italy, 2010; pp. 507–518. [Google Scholar]
- Tang, Y.Z.; Gobler, C.J. Sexual resting cyst production by the dinoflagellate Akashiwo sanguinea: A potential mechanism contributing to the ubiquitous distribution of a harmful alga. J. Phycol. 2015, 51, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Hairston, N.G., Jr.; Fox, J.A. Egg banks. In Plankton of Inland Waters; Likens, G.E., Ed.; Elsevier: San Diego, CA, USA, 2010; pp. 247–254. [Google Scholar]
- Sichlau, M.H.; Hansen, J.L.S.; Andersen, T.J.; Hansen, B.W. Distribution and mortality of diapause eggs from calanoid copepods in relation to sedimentation regimes. Mar. Biol. 2011, 158, 665–676. [Google Scholar] [CrossRef]
- Ianora, A. Copepod life history traits in subtemperate regions. J. Mar. Syst. 1998, 15, 337–349. [Google Scholar] [CrossRef]
- Drillet, G.; Jeppesen, P.M.; Højgaard, J.K.; Jørgensen, N.O.G.; Hansen, B.W. Strain-specific vital rates in four Acartia tonsa cultures II: Life history traits and biochemical contents of eggs and adults. Aquaculture 2008, 279, 47–54. [Google Scholar] [CrossRef]
- Ishikawa, A.; Taniguchi, A. Contribution of benthic cysts to the population dynamics of Scrippsiella spp. (Dinophyceae) in Onagawa Bay, northeast Japan. Mar. Ecol. Prog. Ser. 1996, 140, 169–178. [Google Scholar] [CrossRef]
- Rengefors, K. Seasonal succession of dinoflagellates coupled to the benthic cyst dynamics in Lake Erken. Arch. Hydrobiol. Sp. Iss. Adv. Limnol. 1998, 51, 123–141. [Google Scholar]
- Olli, K.; Anderson, D.M. High encystment success of the dinoflagellate Scrippsiella cf. lachrymosa in culture experiments. J. Phycol. 2002, 38, 145–156. [Google Scholar] [CrossRef]
- Figueroa, R.I.; Bravo, I.; Garcés, E. Effects of nutritional factors and different parental crosses on the encystment and excystment of Alexandrium catenella (Dinophyceae) in culture. Phycologia 2005, 44, 658–670. [Google Scholar] [CrossRef]
- Williams-Howze, J. Dormancy in the free-living copepod orders Cyclopoida, Calanoida, and Harpacticoida. Oceanogr. Mar. Biol. Ann. Rev. 1997, 35, 257–321. [Google Scholar]
- Kremp, A.; Parrow, M.W. Evidence for asexual resting cysts in the life cycle of the marine peridinioid dinoflagellate Scrippsiella hangoei. J. Phycol. 2006, 42, 400–409. [Google Scholar] [CrossRef]
- Meier, K.J.S.; Willems, H. Calcareous dinoflagellate cysts in surface sediments from the Mediterranean Sea: Distribution patterns and influence of main environmental gradients. Mar. Micropaleontol. 2003, 48, 321–354. [Google Scholar] [CrossRef]
- Rubino, F.; Moncheva, S.; Belmonte, M.; Slabakova, N.; Kamburska, L. Resting stages produced by plankton in the Black Sea—Biodiversity and ecological perspective. Rapp. Comm. Int. Mer. Medit. 2010, 39, 399. [Google Scholar]
- Satta, C.T.; Anglés, S.; Garcés, E.; Lugliè, A.; Padedda, B.M.; Sechi, N. Dinoflagellate cysts in recent sediments from two semi-enclosed areas of the Western Mediterranean Sea subject to high human impact. Deep. -Sea Res. Part II 2010, 57, 256–267. [Google Scholar] [CrossRef]
- Rubino, F.; Belmonte, M.; Galil, B.S. Plankton resting stages in recent sediments of Haifa port, Israel (Eastern Mediterranean)—Distribution, viability and potential environmental consequences. Mar. Poll. Bull. 2017, 116, 258–269. [Google Scholar] [CrossRef]
- Alabiso, G.; Cannalire, M.; Ghionda, D.; Milillo, M.; Leone, G.; Caciorna, O. Particulate matter and chemical-physical conditions of an inner sea: The Mar Piccolo in Taranto. A new statistical approach. Mar. Chem. 1997, 58, 373–388. [Google Scholar] [CrossRef]
- Moscatello, S.; Belmonte, G. Egg banks in hypersaline lakes of the South East Europe. Saline Syst. 2009, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D. Optimizing reproduction in a randomly varying environment. J. Theor. Biol. 1966, 12, 119–129. [Google Scholar] [CrossRef]
- Philippi, T.; Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 1989, 4, 41–44. [Google Scholar] [CrossRef]
- Menu, F.; Roebuck, J.P.; Viala, M. Bet-hedging diapause strategy in stochastic environment. Am. Nat. 2000, 155, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Ślusarczyk, M.; Starzyński, J.; Bernatowicz, P. How long to rest in unpredictably changing habitats? PLoS ONE 2017, 12, e0175927-16. [Google Scholar] [CrossRef] [Green Version]
- Viitasalo, S. Effects of bioturbation by three macrozoobenthic species and predation by necto-benthic mysids on cladoceran benthic eggs. Mar. Ecol. Prog. Ser. 2007, 336, 131–140. [Google Scholar] [CrossRef]
- Persson, A.; Rosenberg, R. Impact of grazing and bioturbation of marine benthic deposit feeders on dinoflagellate cysts. Harmful Algae 2003, 2, 43–50. [Google Scholar] [CrossRef]
- Shul, D.H.; Kremp, A.; Mayer, L.M. Bioturbation, germination and deposition of Alexandrium fundyense cysts in the Gulf of Maine. Deep. -Sea Res. Part II 2014, 103, 66–78. [Google Scholar] [CrossRef]
- Dale, B. Dinoflagellate resting cysts: Benthic plankton. In Survival Strategies of the Algae; Frixell, G.A., Ed.; Cambridge University Press: Cambridge, UK, 1983; pp. 69–136. [Google Scholar]
- Taylor, F.J.R. General group characteristics, special features of interest, short history of dinoflagellates study. In The Biology of Dinoflagellates; Taylor, F.J.R., Ed.; Blackwell Science Publications: Boston, MA, USA, 1987; Volume 21, pp. 1–23. [Google Scholar]
- Ferraro, L.; Rubino, F.; Belmonte, M.; Da Prato, S.; Greco, M.; Frontalini, F.A. Multidisciplinary approach to study confined marine basins: The holobenthic and merobenthic assemblages in the Mar Piccolo of Taranto (Ionian Sea, Mediterranean). Mar. Biodivers. 2017, 47, 887–911. [Google Scholar] [CrossRef]
- Rubino, F.; Moscatello, S.; Belmonte, M.; Ingrosso, G.; Belmonte, G. Plankton Resting Stages in the Marine Sediments of the Bay of Vlorë (Albania). Intern. J. Ecol. 2013, 2013, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Rubino., F.; Belmonte, G. A new cyst morphotype from recent sediments of the Mar Piccolo of Taranto (Southern Italy, Ionian Sea). Progr. Aqua Farm. Mar. Biol. 2019, 2, 180015. [Google Scholar]
2010 | 2011 | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sep | Oct | Nov | Dec | May | Jun | Jul | Aug | Sep | |||||||||||||||||||
16 | 21 | 27 | 1 | 14 | 4 | 12 | 17 | 23 | 1 | 7 | 15 | 19 | 25 | 30 | 6 | 21 | 4 | 7 | 13 | 18 | 27 | 10 | 23 | 29 | 2 | 7 | |
multiprobe | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
phytoplankton | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||
zooplankton | X | X | X | X | X | X | X | X | X | ||||||||||||||||||
Sediment cores | X | X | X | X | X | X | X | X | |||||||||||||||||||
Sediment traps | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||
Inverted traps | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||
code | Sep1 | Sep2 | Sep3 | Oct1 | Oct2 | Nov1 | Nov2 | Nov3 | Nov4 | Dec1 | Dec2 | Dec3 | May1 | May2 | May3 | Jun1 | Jun2 | Jul1 | Jul2 | Jul3 | Jul4 | Jul5 | Aug1 | Aug2 | Aug3 | Sep1 | Sep2 |
Temp (°C) | Sal (psu) | O2 (%) | PAR (μmol phot m−2 s−1) | PAR % | Water Transp (m) | Temp Sedim (°C) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
s | b | s | b | s | b | s | b | ||||
T1 | |||||||||||
sep1 | 24.1 | 24.2 | 36.4 | 38.2 | 98.3 | 78.3 | 3014 | 178 | 5.9 | 3.0 | 24.4 |
sep2 | 23.9 | 24.2 | 36.7 | 38.5 | 99.5 | 77.1 | 2770 | 164 | 5.9 | 3.0 | 24.2 |
sep3 | 22.7 | 23.5 | 36.2 | 38.3 | 98.5 | 75.3 | 467 | 22 | 4.7 | 4.0 | 23.3 |
oct1 | 22.6 | 22.9 | 36.3 | 38.4 | 101.0 | 98.9 | 450 | 54 | 12.0 | 4.0 | 22.7 |
oct2 | 21.0 | 21.8 | 36.1 | 37.7 | 100.5 | 91.1 | 1150 | 44 | 3.8 | 7.0 | 21.5 |
nov1 | 18.5 | 18.6 | 35.8 | 38.2 | 100.1 | 98.5 | 522 | 22 | 4.2 | 5.5 | 18.4 |
nov2 | 17.3 | 18.2 | 35.8 | 38.0 | 99.9 | 85.9 | 2170 | 185 | 8.5 | 9.5 | 17.8 |
nov3 | 17.5 | 18.1 | 35.6 | 38.1 | 99.5 | 92.3 | 2280 | 175 | 7.7 | 8.0 | 17.8 |
nov4 | 16.9 | 17.4 | 36.4 | 38.0 | 100.3 | 93.9 | 1560 | 165 | 10.6 | 5.0 | 17.2 |
dec1 | 15.6 | 16.1 | 36.3 | 38.1 | 98.5 | 88.4 | 1590 | 59 | 3.7 | 7.0 | 15.7 |
dec2 | 14.4 | 15.6 | 36.2 | 38.2 | 100.5 | 98.1 | 1620 | 158 | 9.7 | 7.0 | 15.6 |
dec3 | 12.5 | 14.1 | 36.8 | 38.6 | 97.3 | 91.9 | 2120 | 161 | 7.6 | 10.0 | 13.5 |
T2 | |||||||||||
may1 | 18.6 | 17.1 | 36.5 | 38.4 | 100.6 | 100.7 | 3870 | 381 | 9.8 | 6.0 | 18.1 |
may2 | 22.1 | 18.5 | 36.2 | 38.7 | 100.5 | 99.7 | 2930 | 264 | 9.0 | 6.0 | 19.7 |
may3 | 21.8 | 19.3 | 36.4 | 38.5 | 97.7 | 88.9 | 2990 | 240 | 8.0 | 8.0 | 20.0 |
jun1 | 23.0 | 20.3 | 35.6 | 38.3 | 102.8 | 98.8 | 1800 | 204 | 11.3 | 7.0 | 21.1 |
jun2 | 24.7 | 21.7 | 36.2 | 38.2 | 97.4 | 98.7 | 3050 | 261 | 8.6 | 7.0 | 23.9 |
jul1 | 24.9 | 21.8 | 36.4 | 38.4 | 102.1 | 101.0 | 2750 | 189 | 6.9 | 6.0 | 23.0 |
jul2 | 26.2 | 23.1 | 36.4 | 38.1 | 99.9 | 90.3 | 3460 | 226 | 6.5 | 6.0 | 24.1 |
jul3 | 27.9 | 23.8 | 36.3 | 38.2 | 100.0 | 96.1 | 3030 | 222 | 7.3 | 5.5 | 24.6 |
jul4 | 26.7 | 24.5 | 36.2 | 38.3 | 100.4 | 98.9 | 2490 | 185 | 7.4 | 5.5 | 26.0 |
jul5 | 26.1 | 22.7 | 36.8 | 38.7 | 101.4 | 98.9 | 1640 | 162 | 9.8 | 6.0 | 24.1 |
aug1 | 26.8 | 25.4 | 37.3 | 38.4 | 90.8 | 87.3 | 2540 | 222 | 8.7 | 6.0 | 26.0 |
aug2 | 26.5 | 25.7 | 36.4 | 38.7 | 91.5 | 87.4 | 2960 | 196 | 6.6 | 6.0 | 26.1 |
aug3 | 27.1 | 26.0 | 36.9 | 38.6 | 100.5 | 80.81 | 2220 | 163 | 7.3 | 6.0 | 26.5 |
sep1 | 27.5 | 26.8 | 37.1 | 38.5 | 104.8 | 96.2 | 3150 | 166 | 5.3 | 5.0 | 27.1 |
sep2 | 26.9 | 26.9 | 37.2 | 38.7 | 87.3 | 78.4 | 2700 | 160 | 5.9 | 6.0 | 27.0 |
as w | as it | rs st | rs s | ger | ||
---|---|---|---|---|---|---|
Dinophyta | Akashiwo sanguinea (K. Hirasaka) G. Hansen & Ø. Moestrup | X | X | |||
Alexandrium minutum Halim | X | X | X | |||
Alexandrium cf. minutum Halim | X | X | ||||
Alexandrium pseudogonyaulax (Biecheler) Horiguchi ex Kita & Fukuyo | X | |||||
Alexandrium tamarense (Lebour) Balech | X | X | X | |||
Alexandrium sp.1 | X | X | ||||
Alexandrium sp.2 | X | X | ||||
Alexandrium sp.4 | X | X | ||||
Alexandrium sp.7 | X | X | ||||
Alexandrium sp.8 | X | |||||
Alexandrium sp.10 | X | |||||
Alexandrium sp. | X | X | ||||
cf. Calciodinellum albatrosianum (Kamptner) Janofske & Karwath | X | X | ||||
Calciodinellum operosum (Deflandre) Montresor | X | X | ||||
*Calciperidinium asymmetricum Versteegh | X | X | X | |||
Ceratium candelabrum (Ehrenberg) Stein | X | |||||
Ceratium furca (Ehrenberg) Claparède & Lachmann | X | |||||
Ceratium fusus (Ehrenberg) Dujardin | X | |||||
Ceratium horridum (Cleve) Gran | X | |||||
Ceratium cf. longipes (J.W. Bailey) Gran | X | |||||
Ceratium sp. | X | |||||
Cochlodinium polykrikoides Margalef (2 cyst types) | X | X | X | |||
Dinophysis caudata Saville-Kent | X | |||||
Dinophysis cf. sacculus Stein | X | X | ||||
Dinophysis rotundata Claparède & Lachmann | X | |||||
Dinophysis sp. | X | X | ||||
Diplopelta parva (Abé) Matsuoka | X | |||||
Diplopsalis lenticula Bergh | X | X | X | X | ||
cf. Dissodinium pseudocalani (Gonnert) Drebes ex Elbrachter | X | X | ||||
*Follisdinellum splendidum Versteegh | X | X | ||||
Goniodoma polyedricum (Pouchet) Jørgensen | X | |||||
Goniodoma sp. | X | |||||
Gonyaulax cf. polygramma Stein | X | X | ||||
Gonyaulax cf. scrippsae Kofoid | X | |||||
Gonyaulax spinifera (Claparède & Lachmann) Diesing | X | X | X | |||
Gonyaulax sp. | X | X | ||||
Gonyaulax group | X | X | ||||
Gymnodinium impudicum (Fraga & Bravo) G. Hansen & Moestrup cyst type argyr | X | X | X | |||
Gymnodinium cf. impudicum (Fraga & Bravo) G. Hansen & Moestrup | X | |||||
Gymnodinium cf. litoralis A. Reñé (2 cyst types) | X | X | X | |||
Gymnodinium nolleri Ellegaard & Moestrup | X | X | ||||
Gymnodinium uncatenatum (Hulburt) Hallegraeff | X | X | ||||
Gymnodinium sp.1 | X | X | ||||
Gymnodinium sp.3 | X | |||||
Gymnodinium sp.4 | X | |||||
Gymnodinium sp.7 | X | |||||
Gymnodinium sp.8 | X | |||||
Gymnodinium sp. | X | X | ||||
Lingulodinium polyedrum (Stein) Dodge | X | X | X | X | ||
*Melodomuncula berlinensis Versteegh | X | X | ||||
Nematodinium armatum (Dogiel) Kofoid & Schwezy | X | X | ||||
Nematodinium sp. | X | |||||
Neoceratium furca (Ehrenberg) Gomez, Moreira & Lopez-Garcia | X | |||||
Oblea rotunda (Lebour) Balech ex Sournia | X | X | X | X | X | |
Ornithocercus sp. | X | |||||
Oxyphysis sp. | X | |||||
Oxytoxum sp. | X | |||||
Pentapharsodinium dalei Indelicato & Loeblich | X | X | X | |||
Pentapharsodinium cf. dalei Indelicato & Loeblich | X | |||||
Pentapharsodinium tyrrhenicum Montresor, Zingone & Marino (2 types) | X | X | X | |||
Polykrikos hartmannii Zimmermann | X | X | ||||
Polykrikos kofoidii Chatton | X | |||||
Polykrikos schwartzii Bütschli | X | X | ||||
Posoniella tricarinelloides (Versteegh) Streng et al. | X | X | ||||
Prorocentrum compressum (Bailey) Abè ex Dodge | X | |||||
Prorocentrum micans Ehrenberg | X | X | ||||
Prorocentrum cf. rhathymum A.R.Loeblich III, Sherley & Schmidt | X | |||||
Prorocentrum cf. triestinum J. Schiller | X | |||||
Prorocentrum sp. | X | |||||
Protoceratium sp. | X | |||||
Protoperidinium abei (Paulsen) Balech | X | |||||
Protoperidinium claudicans (Paulsen) Balech | X | |||||
Protoperidinium compressum (Abé) Balech | X | X | X | X | ||
Protoperidinium conicum (Gran) Balech | X | X | X | |||
Protoperidinium cf. minutum (Kofoid) Loeblich III | X | |||||
Protoperidinium mite (Pavillard) Balech | X | X | ||||
Protoperidinium oblongum (Aurivillius) Parke & Dodge | X | X | X | X | X | |
Protoperidinium ovatum Pouchet | X | |||||
Protoperidinium cf. pacificum (Kofoid & Michener) F.J.R.Taylor & Balech ex Balech | X | X | ||||
Protoperidinium parthenopes Zingone & Montresor | X | X | X | |||
Protoperidinium cf. pyriforme (Paulsen) Balech | X | |||||
Protoperidinium quinquecorne (Abé) Balech | X | X | X | |||
Protoperidinium shanghaiense Gu, Liu & Mertens | X | |||||
Protoperidinium cf. steinii (Jørgensen) Balech | X | |||||
Protoperidinium subinerme (Paulsen) Loeblich III | X | |||||
Protoperidinium cf. subinerme (Paulsen) Loeblich III | X | X | ||||
Protoperidinium thorianum (Paulsen) Balech | X | X | ||||
Protoperidinium sp. a | X | |||||
Protoperidinium sp. b | X | |||||
Protoperidinium sp. c | X | |||||
Protoperidinium sp. 1 | X | X | ||||
Protoperidinium sp. 4 | X | |||||
Pyrophacus horologium Stein | X | X | ||||
Pyrophacus steinii (Schiller) Wall & Dale | X | |||||
Scrippsiella acuminata (Ehrenb.) Kretschmann et al. (4 cyst types) | X | X | X | X | X | |
Scrippsiella cf. erinaceus (Kamptner) Kretschmann, Zinssmeister & Gottschling, type bal | X | X | X | |||
Scrippsiella kirschiae Zinnssmeister, S. Soehner, S. Meier & Gottschling | X | |||||
Scrippsiella lachrymosa Lewis | X | X | X | |||
Scrippsiella precaria Montresor & Zingone | X | X | ||||
Scrippsiella ramonii Montresor | X | X | X | |||
Scrippsiella spinifera Honsell & Cabrini | X | X | ||||
Scrippsiella cf. spinifera Honsell & Cabrini | X | |||||
Scrippsiella trifida Lewis | X | |||||
Scrippsiella sp.1 | X | X | ||||
Scrippsiella sp.4 | X | X | ||||
Scrippsiella sp.5 | X | X | ||||
Scrippsiella sp.6 | X | X | ||||
Scrippsiella sp.8 | X | X | ||||
Scrippsiella sp. | X | |||||
Thoracosphaeraceae spp. | X | X | ||||
Warnowia rosea (Pouchet) Kofoid & Schwezy | X | |||||
Dinophyta sp.2 | X | X | ||||
Dinophyta sp. 9 | X | |||||
Dinophyta sp.14 | X | |||||
Dinophyta sp.33 | X | X | ||||
Dinophyta spp. | X | |||||
Foraminifera | Globigerina sp. | X | ||||
Miliolidacea spp. | X | |||||
Rotaliacea spp. | X | |||||
Textulariacea spp. | X | |||||
Foraminifera undetermined | X | |||||
Radiolaria | undetermined | X | ||||
Acantharia | Diploconus sp. | X | ||||
Acantharia undetermined | X | |||||
Ciliophora | Codonellopsis sp. | X | ||||
Coxliella sp. | X | |||||
cf. Cyrtostrombidium boreale Kim, Suzuki & Taniguchi, 2002 | X | |||||
Cyttarocilis sp. | X | |||||
Eutintinnus sp. | X | |||||
Favella sp. | X | |||||
Hexasterias problematica Cleve, 1900 | X | |||||
Laboea strobila Lohman, 1908 | X | X | ||||
Strombidium acutum Leegaard, 1915 | X | X | ||||
Strombidium biarmatum Agatha, Struder-Kypke, Beran & Lynn, 2005 | X | X | ||||
Strombidium conicum (Lohmann, 1908) Wulff, 1919 | X | X | ||||
Strombidium crassulum (Leegaard, 1915) Kahl, 1932 | X | |||||
Tintinnopsis sp. | X | X | ||||
Tintinnina spp. | X | |||||
Ciliophora sp.a | X | |||||
Ciliophora sp.b | X | |||||
Ciliophora sp.c | X | |||||
Ciliophora sp.d | X | |||||
Ciliophora sp.e | X | |||||
Ciliophora sp.f | X | |||||
Ciliophora sp.2 | X | |||||
Ciliophora sp.4 | X | |||||
Ciliophora sp.5 | X | X | ||||
Ciliophora sp.6 | X | |||||
Rotifera | Synchaeta sp. | X | ||||
Synchaeta sp.1 (rest. egg smooth type) | X | X | ||||
Synchaeta sp.2 (rest. egg rough type) | X | X | ||||
Synchaeta sp.3 (rest. egg spiny type) | X | |||||
Hydrozoa | Medusae undetermined | X | ||||
Mollusca | Bivalvia veliger | X | ||||
Gastropoda veliger | X | |||||
Thecosomata spp. | X | |||||
Polychaeta | Owenidae mitraria | X | ||||
Spionidae larvae | X | |||||
Polychaeta undetermined | X | |||||
Crustacea | Acartia clausi Giesbrecht, 1889 | X | ||||
Acartia clausi/margalefi (resting egg) | X | |||||
Acartia italica Steuer, 1910 | X | X | X | |||
Acartia sp.2 | X | |||||
Calanidae spp. | X | |||||
Canuella sp. | X | |||||
Centropages kroyeri Giesbrecht, 1893 | X | |||||
Centropages ponticus Karavaev, 1895 | X | |||||
Centropages sp. (resting egg) | X | X | ||||
Centropagidae spp. | X | |||||
Cirripedia Balanomorpha (nauplius) | X | |||||
Cirripedia Lepadomorpha (nauplius) | X | |||||
Coryceidae spp. | X | |||||
Cyclopoida undetermined | X | |||||
Decapoda Anomura (zoea) | X | |||||
Decapoda Brachyura (zoea) | X | |||||
Decapoda Natantia (zoea) | X | |||||
Euterpina acutifrons (Dana, 1847) | X | |||||
Evadne sp. | X | |||||
Facetotecta (nauplius Y) | X | |||||
Harpacticoida undetermined | X | X | ||||
Longipedia sp. | X | |||||
Microsetella sp. | X | |||||
Oithona nana Giesbrecht, 1893 | X | |||||
Oithonidae undetermined | X | |||||
Oncaeidae undetermined | X | |||||
Paracalanidae undetermined | X | |||||
Paracartia latisetosa (Kriczaguin, 1873) | X | X | ||||
Penilia avirostris Dana, 1849 | X | |||||
Podon sp. | X | |||||
Pteriacartia josephinae (Crisafi, 1974) | X | X | X | |||
Temora stylifera (Dana, 1849) | X | |||||
Temoridae undetermined | X | |||||
Amphipoda undetermined | X | |||||
Isopoda undetermined | X | |||||
Ostracoda undetermined | X | |||||
Echinodermata | Holothuroidea auricularia | X | ||||
Echinoidea pluteus | X | |||||
Ophiuroidea pluteus | X | |||||
Chordata | Ascidiacea tadpole larva | X | ||||
Branchiostoma sp. | X | |||||
Fritillaria sp. | X | |||||
Oikopleura sp. | X | |||||
Osteychthies undetermined | X | |||||
Unidentified | Phytoplankton cells | X | ||||
Cyst type 6 | X | |||||
Resting Egg 1 | X | |||||
Resting Egg 9 | X | X | ||||
Total Total pelagic stages Total encysted stages Additional pelagic stages germinated from cysts | 108 | 38 | 81 | 69 | 20 | |
127 | ||||||
91 | ||||||
14 |
T1 | min | max | T2 | min | max | Tot Average | |
---|---|---|---|---|---|---|---|
Sep–Dec | May–Sep | ||||||
indiv. 11 m−3 | |||||||
plankton (Niskin bottle) | 1.4 × 109 | 0.7 × 109 | 2.5 × 109 | 2.8 × 109 | 1.2 × 109 | 4.6 × 109 | 2.3 × 109 |
plankton (net) | 0.6 × 106 | 0.2 × 106 | 1.6106 | 0.2 × 106 | 0.1 × 106 | 0.1 × 106 | 0.4 × 106 |
indiv. m−2 d−1 | |||||||
cyst production | 40,864 | 23,655 | 66,489 | 36,767 | 13,911 | 77,706 | 38,816 |
(sediment traps) | |||||||
cyst germination | 9850 | 521 | 62,500 | 1300 | 0 | 5200 | 5600 |
(inverted traps) | |||||||
indiv. m−2 | |||||||
cyst bank content | 3.87 × 106 | 3.56 × 106 | 3.71 × 106 | ||||
Scrippsiella acuminata | |||||||
indiv. 11 m−3 | |||||||
plankton (Niskin bottle) | 382 × 106 | 50 × 106 | 922 × 106 | 583 × 106 | 133 × 106 | 1.45 × 109 | 482 × 106 |
indiv. m−2 d−1 | |||||||
cyst production | 17,900 | 9900 | 28,500 | 22,000 | 6100 | 63,000 | 19,900 |
(sediment traps) | |||||||
cyst germination | 1340 | 0 | 10,800 | 87 | 0 | 521 | 714 |
(inverted traps) | |||||||
indiv. m−2 | |||||||
cyst bank content | 1.44 × 106 | 1.40 × 106 | 1.42 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubino, F.; Belmonte, G. Habitat Shift for Plankton: The Living Side of Benthic-Pelagic Coupling in the Mar Piccolo of Taranto (Southern Italy, Ionian Sea). Water 2021, 13, 3619. https://doi.org/10.3390/w13243619
Rubino F, Belmonte G. Habitat Shift for Plankton: The Living Side of Benthic-Pelagic Coupling in the Mar Piccolo of Taranto (Southern Italy, Ionian Sea). Water. 2021; 13(24):3619. https://doi.org/10.3390/w13243619
Chicago/Turabian StyleRubino, Fernando, and Genuario Belmonte. 2021. "Habitat Shift for Plankton: The Living Side of Benthic-Pelagic Coupling in the Mar Piccolo of Taranto (Southern Italy, Ionian Sea)" Water 13, no. 24: 3619. https://doi.org/10.3390/w13243619
APA StyleRubino, F., & Belmonte, G. (2021). Habitat Shift for Plankton: The Living Side of Benthic-Pelagic Coupling in the Mar Piccolo of Taranto (Southern Italy, Ionian Sea). Water, 13(24), 3619. https://doi.org/10.3390/w13243619