Investigation of the Combined Effects of Rising Temperature and Pesticide Contamination on the Swimming Behaviour of Alpine Chironomids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Species
2.2. Test Solutions
2.3. Experimental Procedures
2.4. Statistical Analysis
3. Results
3.1. Survival under Thermal Stress and CPF Exposure
3.2. Behaviour under Thermal Stress and CPF Exposure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- EEA (European Environment Agency). Climate Change, Impacts and Vulnerability in Europe 2012. An Indicator-Based Report. EEA Report No 12/2012; European Environment Agency: Copenhagen, Denmark, 2012; Available online: https://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012 (accessed on 5 September 2021).
- Hageman, K.J.; Hafner, W.D.; Campbell, D.H.; Jaffe, D.A.; Landers, D.H.; Simonich, S.L.M. Variability in pesticide deposition and source contributions to snowpack in Western U.S. National Parks. Environ. Sci. Technol. 2010, 44, 4452–4458. [Google Scholar] [CrossRef] [Green Version]
- Villa, S.; Vighi, M.; Finizio, A. Theoretical and experimental evidences of medium range atmospheric transport processes of polycyclic musk fragrances. Sci. Total Environ. 2014, 481, 27–34. [Google Scholar] [CrossRef]
- Guzzella, L.; Salerno, F.; Freppaz, M.; Roscioli, C.; Pisanello, F.; Poma, G. POP and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): Long–range atmospheric transport, glacier shrinkage, or local impact of tourism? Sci. Total Environ. 2016, 544, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Steinlin, C.; Bogdal, C.; Luthi, M.P.; Pavlova, P.A.; Schwikowski, M.; Zennegg, M.; Schmid, P.; Scheringer, M.; Hungerbhler, K. A temperate alpine glacier as a reservoir of Polychlorinated Biphenyls: Model results of incorporation, transport, and release. Environ. Sci. Technol. 2016, 50, 5572–5579. [Google Scholar] [CrossRef]
- Ferrario, C.; Finizio, A.; Villa, S. Legacy and emerging contaminants in meltwater of three alpine glaciers. Sci. Total Environ. 2017, 574, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, C.; Finizio, A.; Maggi, V.; Villa, S. Spatial–temporal analysis of currently used pesticides in Alpine glaciers. Environ. Pollut. 2019, 248, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Jeremias, G.; Barbosa, J.; Marques, S.M.; Asselman, J.; Gonalves, F.J.M.; Pereira, J.L. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol. Ecol. 2016, 27, 2790–2806. [Google Scholar] [CrossRef] [Green Version]
- Hotaling, S.; Finn, D.S.; Giersch, J.; Weisrock, D.W.; Jacobsen, D. Climate change and alpine stream biology: Progress, challenges, and opportunities for the future. Biol. Rev. 2017, 92, 2024–2045. [Google Scholar] [CrossRef] [Green Version]
- Lencioni, V.; Gobbi, M. Monitoring and conservation of cryophilous biodiversity: Concerns when working with insect populations in vanishing glacial habitats. Insect Conserv. Divers. 2021, 14, 723–729. [Google Scholar] [CrossRef]
- Debiasi, D.; Franceschini, A.; Paoli, F.; Lencioni, V. How do macroinvertebrate communities respond to declining glacial influence in the Southern Alps? Limnetica 2022, 41. [Google Scholar] [CrossRef]
- Lencioni, V. Glacial influence and stream macroinvertebrate biodiversity under climate change: Lessons from the southern Alps. Sci. Total Environ. 2018, 622–623, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Woodward, G.; Perkins, D.M.; Brown, L.E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2093–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lencioni, V.; Bernabò, P. Thermal survival limits of young and mature larvae of a cold stenothermal chironomid from the Alps (Diamesinae: Pseudodiamesa branickii [Nowicki, 1873]). Insect Sci. 2017, 24, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, V.; Bellamoli, F.; Bernabò, P.; Miari, F.; Scotti, A. Response of Diamesa spp. (Diptera: Chironomidae) from Alpine streams to emerging contaminants and pesticides. J. Limnol. 2018, 77, 131–140. [Google Scholar] [CrossRef]
- Willming, M.M.; Qin, G.; Maul, J.D. Effects of environmentally realistic daily temperature variation on pesticide toxicity to aquatic invertebrates. Environ. Toxicol. Chem. 2013, 32, 2738–2745. [Google Scholar] [CrossRef]
- de Beeck, L.O.; Verheyen, J.; Stoks, R. Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high– and low– latitude populations of an aquatic insect. Environ. Pollut. 2017, 224, 714–721. [Google Scholar] [CrossRef]
- Lencioni, V.; Rodriguez-Prieto, A.; Allegrucci, G. Congruence between molecular and morphological systematics of Alpine non-biting midges (Chironomidae, Diamesinae). Zool. Scr. 2021, 50, 455–472. [Google Scholar] [CrossRef]
- Villa, S.; Di Nica, V.; Bellamoli, F.; Pescatore, T.; Ferrario, C.; Finizio, A.; Lencioni, V. Effects on behaviour traits of a treated sewage effluent in Diamesa cinerella and Daphnia magna. J. Limnol. 2018, 77, 121–130. [Google Scholar]
- Lencioni, V.; Rossaro, B. Microdistribution of chironomids (Diptera: Chironomidae) in alpine streams: An autoecological perspective. Hydrobiologia 2005, 533, 61–66. [Google Scholar] [CrossRef]
- Lencioni, V.; Bernabò, P.; Jousson, O.; Guella, G. Cold adaptive potential of chironomids overwintering in a glacial stream. Physiol. Entomol. 2015, 40, 43–53. [Google Scholar]
- Villa, S.; Di Nica, V.; Pescatore, T.; Bellamoli, F.; Miari, F.; Finizio, A.; Lencioni, V. Comparison of the behavioural effects of pharmaceuticals and pesticides on Diamesa zernyi larvae (Chironomidae). Environ. Pollut. 2018, 238, 130–139. [Google Scholar] [CrossRef]
- Di Nica, V.; Muñiz Gonzalez, A.B.; Lencioni, V.; Villa, S. Behavioural and biochemical alterations by chlorpyrifos in aquatic insects: An emerging environmental concern for pristine Alpine habitats. Environ. Sci. Pollut. Res. 2020, 27, 30918–30926. [Google Scholar] [CrossRef]
- Muñiz-González, A.-B.; Paoli, F.; Martínez-Guitarte, J.-L.; Lencioni, V. Molecular biomarkers as tool for early warning by chlorpyrifos exposure on Alpine chironomids. Environ. Pollut. 2021, 290, 118061. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, A. Aquatic behavioral ecotoxicology prospects and limitations. Hum. Ecol. Risk Assess. 2007, 13, 481–491. [Google Scholar] [CrossRef]
- Hellou, J. Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environ. Sci. Pollut. Res. 2011, 18, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saaristo, M.; Brodin, T.; Balshine, S.; Bertram, M.G.; Brooks, B.W.; Ehlman, S.M.; McCallum, E.S.; Sih, A.; Sundin, J.; Wong, B.B.M.; et al. Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 285, 20181297. [Google Scholar] [CrossRef] [PubMed]
- Forbes, V.E.; Calow, P. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ. Toxicol. Chem. 1999, 18, 1544–1556. [Google Scholar] [CrossRef]
- Amiard-Triquet, C. Behavioral disturbances: The missing link between suborganismal and supra-organismal responses to stress? Prospects based on Aquatic Research. Hum. Ecol. Risk Assess. 2009, 15, 87–110. [Google Scholar] [CrossRef]
- Duquesne, S.; Kuster, E. Biochemical metabolic and behavioural responses and recovery of Daphnia magna after exposure to an organophosphate. Ecotoxicol. Environ. Saf. 2010, 73, 353–359. [Google Scholar] [CrossRef]
- Lencioni, V.; Bernabò, P.; Cesari, M.; Rebecchi, L. Thermal stress induces HSP70 proteins synthesis in larvae of the cold stream non–biting midge Diamesa cinerella Meigen. Arch. Insect Biochem. Physiol. 2013, 83, 1–14. [Google Scholar] [CrossRef]
- Rossaro, B.; Lencioni, V. A key to larvae of species belonging to the genus Diamesa from Alps and Apennines (Italy). Eur. J. Environ. Sci. 2015, 5, 62–79. [Google Scholar] [CrossRef] [Green Version]
- OECD. Guidance Document on Aqueous—Phase Aquatic Toxicity Testing of Difficult Test Chemicals Series on Testing and Assessment, No. 23, 2nd ed.; ENV/JM/MONO(2000)6/REV1; OECD Publishing: Paris, France, 2018; Available online: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2000)6/REV1&docLanguage=En (accessed on 5 September 2017).
- Chapman, P.M.; Riddle, M.J. Toxic effects of contaminants in polar marine environments. Environ. Sci. Technol. 2005, 39, 200A–207A. [Google Scholar] [PubMed] [Green Version]
- Bonzini, S.; Verro, R.; Otto, S.; Lazzaro, L.; Finizio, A.; Zanin, G.; Vighi, M. Experimental validation of a geographical information systems-based procedure for predicting pesticide exposure in surface water. Environ. Sci. Technol. 2006, 40, 7561–7569. [Google Scholar] [CrossRef] [PubMed]
- Morselli, M.; Semplice, M.; Villa, S.; Di Guardo, A. Evaluating the temporal variability of POP concentrations in a glacier– fed stream food chain using a combined modelling approach. Sci. Total Environ. 2014, 493, 571–579. [Google Scholar] [CrossRef]
- Kenakin, T.P. Pharmacokinetics Reference to a chapter in an edited book. In A Pharmacology Primer. Techniques for More Effective and Strategic Drug Discovery, 4th ed.; Kenakin, T.P., Ed.; Academic Press: Cambridge, MA, USA; Elsevier Inc.: San Diego, CA, USA, 2014; pp. 213–253. [Google Scholar]
- Bernabò, P.; Gaglio, M.; Bellamoli, F.; Viero, G.; Lencioni, V. DNA damage and translational response during detoxification from copper exposure in a wild population of Chironomus riparius. Chemosphere 2017, 173, 235–244. [Google Scholar] [CrossRef]
- OECD. Test No. 235: Chironomus sp., Acute Immobilisation Test. In OECD Guidelines for the Testing of Chemicals; OECD Publishing: Paris, France, 2011; Section 2. [Google Scholar]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Leveque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Sabater, S.; Elosegi, A.; Ludwig, R. Multiple Stressors in River Ecosystems: Status, Impacts and Prospects for the Future; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Arthington, A.H. Grand Challenges to Support the Freshwater Biodiversity Emergency Recovery Plan. Front. Environ. Sci. 2021, 9, 664313. [Google Scholar] [CrossRef]
- Omerod, S.J.; Dobson, M.; Hildrew, A.G.; Townsend, C.R. Multiple stressors in freshwater ecosystems. Freshw. Biol. 2010, 55 (Suppl. S1), 1–4. [Google Scholar] [CrossRef]
- Craig, L.S.; Olden, J.D.; Arthington, A.H.; Entrekin, S.; Hawkins, C.P.; Kelly, J.J.; Kennedy, T.A.; Maitland, B.M.; Rosi, E.J.; Roy, A.H.; et al. Meeting the challenge of interacting threats in freshwater ecosystems: A call to scientists and managers. Elementa 2017, 5, 72. [Google Scholar] [CrossRef]
- Hasenbein, S.; Poynton, H.; Connon, R.E. Contaminant exposure effects in a changing climate: How multiple stressors can multiply exposure effects in the amphipod Hyalella azteca. Ecotoxicology 2018, 27, 845–859. [Google Scholar] [CrossRef]
- Rostgaard, S.; Jacobsen, D. Respiration rate of stream insects measured in situ along a large altitude range. Hydrobiologia 2005, 549, 79–98. [Google Scholar] [CrossRef]
- Portner, H.O.; Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 2007, 315, 95–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, C.V.M.; Moreira–Santos, M.; Ribeiro, R. Active and passive spatial avoidance by aquatic organisms from environmental stressors: A complementary perspective and a critical review. Environ. Int. 2016, 92–93, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Ašmonaité, G.; Boyer, S.; Bresolin de Souza, K.; Wassmur, B.; Sturve, J. Behavioural toxicity assessment of silver ions and nanoparticles on zebrafish using a locomotion profiling approach. Aquat. Toxicol. 2016, 173, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.C.; Maiolini, B.; Carolli, M.; Silveri, L. Impact of hydropeaking on hyporheic invertebrates in an Alpine stream (Trentino, Italy). Ann. Limnol. Int. J. Limnol. 2009, 45, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Lencioni, V.; Spitale, D. Diversity and distribution of benthic and hyporheic fauna in different stream types on an alpine glacial floodplain. Hydrobiologia 2015, 751, 73–87. [Google Scholar] [CrossRef]
- Calow, P. Physiological costs of combating chemical toxicants: Ecological implications. Comp. Biochem. Physiol. Part C Comp. Pharmacol. Toxicol. 1991, 100, 3–6. [Google Scholar] [CrossRef]
- Rubach, M.N.; Crum, S.J.H.; Van den Brink, P.J. Variability in the dynamics of mortality and immobility responses of freshwater arthropods exposed to chlorpyrifos. Arch. Environ. Contam. Toxicol. 2011, 60, 708–721. [Google Scholar] [CrossRef] [Green Version]
- Augusiak, J.; Van den Brink, P.J. The influence of insecticide exposure and environmental stimuli on the movement behaviour and dispersal of a freshwater isopod. Ecotoxicology 2016, 25, 1338–1352. [Google Scholar] [CrossRef] [Green Version]
- Scherer, C.; Seeland, A.; Oehlmann, J.; Müller, R. Interactive effects of xenobiotic, abiotic and biotic stressors on Daphnia pulex results from a multiple stressor experiment with a fractional multifactorial design. Aquat. Toxicol. 2013, 138–139, 105–115. [Google Scholar] [CrossRef]
- Andrade, T.S.; Henriques, J.F.; Almeida, A.R.; Machado, A.L.; Koba, O.; Giang, P.T.; Soares, A.M.; Domingues, I. Carbendazim exposure induces developmental, biochemical and behavioural disturbance in zebrafish embryos. Aquat. Toxicol. 2016, 170, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Lydy, M.J.; Belden, J.B.; Ternes, M.A. Effects of temperature on the toxicity of m–parathion, chlorpyrifos, and pentachlorobenzene to Chironomus tentans. Arch. Environ. Contam. Toxicol. 1999, 37, 542–547. [Google Scholar] [CrossRef]
- Harwood, A.D.; You, J.; Lydy, M.J. Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: Toxicokinetic confirmation. Environ. Toxicol. Chem. 2009, 28, 1051–1058. [Google Scholar] [CrossRef]
- Van, K.D.; Janssens, L.; Debecker, S.; Stoks, R. Warming increases chlorpyrifos effects on predator but not anti-predator behaviours. Aquat. Toxicol. 2014, 152, 215–221. [Google Scholar]
- Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies. Environ. Toxicol. Chem. 2003, 22, 2806–2812. [Google Scholar] [CrossRef] [PubMed]
- Chapman, P.M. Toxicity delayed in cold freshwaters? J. Great Lakes 2016, 42, 286–289. [Google Scholar] [CrossRef]
- Noyes, P.D.; Lema, S.C. Forecasting the impacts of chemical pollution and climate change interactions on the health of wildlife. Curr. Zool. 2015, 61, 669–689. [Google Scholar] [CrossRef]
- Mohammed, S.; Lamoree, M.; Ansa-Asare, O.D.; de Boer, J. Review of the analysis of insecticide residues and their levels in different matrices in Ghana. Ecotoxicol. Environ. Saf. 2019, 171, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Vecchiato, M.; Gambaro, A.; Kehrwald, N.M.; Ginot, P.; Kutuzov, S.; Mikhalenko, V.; Barbante, C. The Great Acceleration of fragrances and PAHs archived in an ice core from Elbrus, Caucasus. Sci. Rep. 2020, 10, 10661. [Google Scholar] [CrossRef]
- Wang, P.; Ng, Q.X.; Zhang, H.; Zhang, B.; Ong, C.N.; He, Y. Metabolite changes behind faster growth and less reproduction of Daphnia similis exposed to low-dose silver nanoparticles. Ecotoxicol. Environ. Saf. 2018, 163, 266–273. [Google Scholar] [CrossRef]
CTRL 2 °C | CTRL 8 °C | CTRL 11 °C | |
24 h | 100 ± 0.0 | 100 ± 0.0 | 100 ± 0.0 |
48 h | 100 ± 0.0 | 89 ± 11 | 67 ± 17 |
72 h | 89 ± 9 | 78 ± 15 | 56 ± 17 |
CPF (2 °C) | |||
1.1 | 11 | 110 | |
24 h | 100 ± 0.0 | 100 ± 0.0 | 100 ± 0.0 |
48 h | 100 ± 0.0 | 89 ± 11 | 89 ± 11 |
72 h | 100 ± 0.0 | 44 ± 18 | 56 ± 18 |
CPF (8 °C) | |||
1.1 | 11 | 110 | |
24 h | 100 ± 0.0 | 100 ±0.0 | 100 ± 0.0 |
48 h | 100 ± 0.0 | 89 ± 11 | 100 ± 0.0 |
72 h | 89 ± 11 | 78.0 ± 15 | 100 ± 0.0 |
CPF (11 °C) | |||
1.1 | 11 | 110 | |
24 h | 100 ± 0.0 | 100 ± 0.0 | 100 ± 0.0 |
48 h | 100 ± 0.0 | 78.0 ± 15 | 67 ± 17 |
72 h | 100 ± 0.0 | 67 ± 17 | 44 ± 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lencioni, V.; Di Nica, V.; Villa, S. Investigation of the Combined Effects of Rising Temperature and Pesticide Contamination on the Swimming Behaviour of Alpine Chironomids. Water 2021, 13, 3618. https://doi.org/10.3390/w13243618
Lencioni V, Di Nica V, Villa S. Investigation of the Combined Effects of Rising Temperature and Pesticide Contamination on the Swimming Behaviour of Alpine Chironomids. Water. 2021; 13(24):3618. https://doi.org/10.3390/w13243618
Chicago/Turabian StyleLencioni, Valeria, Valeria Di Nica, and Sara Villa. 2021. "Investigation of the Combined Effects of Rising Temperature and Pesticide Contamination on the Swimming Behaviour of Alpine Chironomids" Water 13, no. 24: 3618. https://doi.org/10.3390/w13243618
APA StyleLencioni, V., Di Nica, V., & Villa, S. (2021). Investigation of the Combined Effects of Rising Temperature and Pesticide Contamination on the Swimming Behaviour of Alpine Chironomids. Water, 13(24), 3618. https://doi.org/10.3390/w13243618