Investigation of Spatial and Temporal Variability of Hydrological Drought in Slovenia Using the Standardised Streamflow Index (SSI)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
3. Results and Discussion
3.1. Comparison of the Wet and Dry Years
3.2. Analysis of the Number of Extreme Droughts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Loon, A.F. Hydrological drought explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Stahl, K.; Hisdal, H.; Tallaksen, L.; Lanen, H.A.J.; Hannaford, J.; Sauquet, E. Trends in Low Flows and Streamflow Droughts across Europe; UNESCO: Paris, France, 2008. [Google Scholar]
- Hasan, H.H.; Razali, S.F.M.; Muhammad, N.S.; Ahmad, A. Research trends of hydrological drought: A systematic review. Water 2019, 11, 2252. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A.; Glantz, M.H. Understanding the drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Bazza, M. Water Resources Planning and Management for Drought Mitigation Mohamed. In Proceedings of the Regional Workshop on Capacity Building on Drought Mitigation in the Near East; Food and Agriculture Organization of the United Nations, Regional Office for the Near East: Rabbat, Morocco, 2002. [Google Scholar]
- Zamani, S.; Gobin, A.; Van de Vyver, H.; Gerlo, J. Atmospheric drought in Belgium—Statistical analysis of precipitation deficit. Int. J. Climatol. 2016, 36, 3056–3071. [Google Scholar] [CrossRef] [Green Version]
- Crausbay, S.D.; Ramirez, A.R.; Carter, S.L.; Cross, M.S.; Hall, K.R.; Bathke, D.J.; Betancourt, J.L.; Colt, S.; Cravens, A.E.; Dalton, M.S.; et al. Defining ecological drought for the twenty-first century. Bull. Am. Meteorol. Soc. 2017, 98, 2543–2550. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B. The impracticality of a universal drought definition. Theor. Appl. Climatol. 2014, 117, 607–611. [Google Scholar] [CrossRef] [Green Version]
- Van Lanen, H.A.J.; Wanders, N.; Tallaksen, L.M.; Van Loon, A.F. Hydrological drought across the world: Impact of climate and physical catchment structure. Hydrol. Earth Syst. Sci. 2013, 17, 1715–1732. [Google Scholar] [CrossRef] [Green Version]
- Barker, L.J.; Hannaford, J.; Chiverton, A.; Svensson, C. From meteorological to hydrological drought using standardised indicators. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 12827–12875. [Google Scholar] [CrossRef] [Green Version]
- Ghaderpour, E.; Vujadinovic, T.; Hassan, Q.K. Application of the Least-Squares Wavelet software in hydrology: Athabasca River Basin. J. Hydrol. Reg. Stud. 2021, 36, 100847. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; Hisdal, H.; Lanen, H.A.J.V. Space-time modelling of catchment scale drought characteristics. J. Hydrol. 2009, 375, 363–372. [Google Scholar] [CrossRef]
- Awotwi, A.; Annor, T.; Anornu, G.K.; Quaye-Ballard, J.A.; Agyekum, J.; Ampadu, B.; Nti, I.K.; Gyampo, M.A.; Boakye, E. Climate change impact on streamflow in a tropical basin of Ghana, West Africa. J. Hydrol. Reg. Stud. 2021, 34, 100805. [Google Scholar] [CrossRef]
- Booij, M.J.; Schipper, T.C.; Marhaento, H. Attributing changes in streamflow to land use and climate change for 472 catchments in australia and the United States. Water 2019, 11, 1059. [Google Scholar] [CrossRef] [Green Version]
- Telesca, L.; Lovallo, M.; Lopez-Moreno, I.; Vicente-Serrano, S. Investigation of scaling properties in monthly streamflow and Standardized Streamflow Index (SSI) time series in the Ebro basin (Spain). Phys. A Stat. Mech. Its Appl. 2012, 391, 1662–1678. [Google Scholar] [CrossRef]
- Lorenzo-Lacruz, J.; Moŕan-Tejeda, E.; Vicente-Serrano, S.M.; Ĺopez-Moreno, J.I. Streamflow droughts in the Iberian Peninsula between 1945 and 2005: Spatial and temporal patterns. Hydrol. Earth Syst. Sci. 2013, 17, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.; Peña-Gallardo, M.; Hannaford, J.; Lorenzo-Lacruz, J.; Svoboda, M.; Quiring, S.; Dominguez-Castro, F.; Maneta, M.; Tomas-Burguera, M.; El Kenawy, A. Complex spatial and temporal influences of climatic drought time-scales on hydrological droughts in natural basins of US. In Proceedings of the International Electronic Conference on Hydrological Cycle (CHyCle-2017), Online, 12–16 November 2017; pp. 1–6. [Google Scholar]
- Wu, J.; Chen, X.; Yao, H.; Gao, L.; Chen, Y.; Liu, M. Non-linear relationship of hydrological drought responding to meteorological drought and impact of a large reservoir. J. Hydrol. 2017, 551, 495–507. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.; Zhong, R.; Wang, Z.; Wu, X.; Chen, X.; Wang, P.; Lian, Y. Monitoring hydrological drought using long-term satellite-based precipitation data. Sci. Total Environ. 2019, 649, 1198–1208. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, L.; Liu, T.; Li, J.; Feng, P. A Non-stationary Standardized Streamflow Index for hydrological drought using climate and human-induced indices as covariates. Sci. Total Environ. 2020, 699, 134278. [Google Scholar] [CrossRef]
- World Meteorological Organization and Global Water Partnership. Handbook of Drought Indicators and Indices; World Meteorological Organization and Global Water Partnership: Geneva, Switzerland, 2016; ISBN 9781351967525. [Google Scholar]
- Sušnik, A.; Gregorič, G.; Uhan, J.; Kobold, M.; Andjelov, M.; Petan, S.; Pavlič, U.; Valher, A. Drought variability in Slovenia and analysis of drought in 2013. In Proceedings of the 24. Mišičev Vodarski dan 2013; Vodnogospodarski biro: Maribor, Slovenia, 2013; pp. 102–109. [Google Scholar]
- Cunja, J.; Kobold, M.; Šraj, M. Analysis of runoff deficit using the treshold method for the case of three gauging stations in Slovenia. Acta Hydrotech. 2020, 33, 113–127. [Google Scholar] [CrossRef]
- ARSO. Ocena Tveganja za Sušo; ARSO MOP: Ljubljana, Slovenia, 2017. (In Slovenian) [Google Scholar]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A calculation algorithm. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Šebenik, U.; Brilly, M.; Šraj, M. Drought Analysis Using the Standardized Precipitation Index (SPI). Acta Geogr. Slov. 2017, 57, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Mckee, B.T.; Doesken, J.N.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eight Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 1–6. [Google Scholar]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Zabret, K.; Rakovec, J.; Šraj, M. Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree species in urban area. J. Hydrol. 2018, 558, 29–41. [Google Scholar] [CrossRef]
- Zaki, M.J.; Meira, M.J. Data Mining and Analysis: Fundamental Concepts and Algorithms; Cambridge University Press: New York, NY, USA, 2013; ISBN 9780521766333. [Google Scholar]
- Demšar, J.; Curk, T.; Erjavec, A.; Gorup, Č.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing 2021; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project (accessed on 7 May 2021).
- SAGA. System for Automated Geoscientific Analyses; University of Hamburg, Institute of Geography: Hamburg, Germany, 2007; Available online: http://www.saga-gis.org/ (accessed on 17 March 2019).
- Cunja, J.; Kobold, M.; Šraj, M. Temporal and spatial analysis of the largest hydrological droughts in Slovenia. Ujma 2019, 33, 95–103. [Google Scholar]
- Sušnik, A. Dinamika primanjkljaja vode za kmetijske rastline včeraj, danes in jutri. In Proceedings of the Mišičev Vodarski dan 2003; Vodnogospodarski Biro: Maribor, Slovenia, 2003; pp. 84–91. [Google Scholar]
- ARSO. Ranljivost Slovenskega Kmetijstva in Gozdarstva na Podnebno Spremenljivost in Ocena Predvidenega Vpliva; ARSO MOP: Ljubljana, Slovenia, 2003. (In Slovenian) [Google Scholar]
- Jelovčan, M.; Šraj, M. Analysis of groundwater levels in piezometers in the Vipava Valley. Acta Hydrotech. 2020, 33, 61–78. [Google Scholar] [CrossRef]
- Sapač, K.; Rusjan, S.; Šraj, M. Assessment of consistency of low-flow indices of a hydrogeologically non-homogeneous catchment: A case study of the Ljubljanica river catchment, Slovenia. J. Hydrol. 2020, 583, 124621. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I. Hydrological response to different time scales of climatological drought: An evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrol. Earth Syst. Sci. 2005, 9, 523–533. [Google Scholar] [CrossRef] [Green Version]
- DMCSEE. Drought Management Centre for Southeastern Europe. 2007. Available online: http://www.dmcsee.org/en/drought_monitor/ (accessed on 3 November 2021).
- EDO. European Drought Observatory. 2021. Available online: https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1000 (accessed on 3 November 2021).
Station Code | Gauging Station | River | Station Elevation [m a.s.l.] | Catchment Area [km2] |
---|---|---|---|---|
1060 | Gornja Radgona I | Mura | 202.34 | 10,197.2 |
1070 | Petanjci | Mura | 193.65 | 10,391.4 |
1140 | Pristava I | Ščavnica | 169.37 | 272.8 |
1220 | Polana I | Ledava | 191.35 | 209.4 |
1260 | Čentiba | Ledava | 154.31 | 861.7 |
2250 | Otiški Vrh I | Meža | 334.00 | 552.6 |
2652 | Videm | Dravinja | 209.04 | 767.3 |
2900 | Zamušani I | Pesnica | 201.85 | 479.8 |
3180 | Podhom | Radovna | 566.07 | 166.8 |
3200 | Sveti Janez | Sava Bohinjka | 525.04 | 94.4 |
3400 | Mlino I | Jezernica | 467.57 | 8.6 |
3420 | Radovljica I | Sava | 408.18 | 908.0 |
3660 | Litija | Sava | 230.55 | 4849.7 |
3850 | Čatež I | Sava | 736.70 | 10232.4 |
4120 | Kokra I | Kokra | 18.01 | 113.1 |
4200 | Suha I | Sora | 7.98 | 568.9 |
4480 | Nevlje I | Nevljica | 1.20 | 82.2 |
4695 | Jelovec | Mirna | 208.49 | 271.2 |
4750 | Rakovec | Sotla | 140.12 | 561.3 |
4820 | Petrina | Kolpa | 219.31 | 467.3 |
4860 | Metlika | Kolpa | 126.96 | 1966.3 |
4969 | Gradac I | Lahinja | 133.46 | 218.9 |
5030 | Vrhnika | Ljubljanica | 285.93 | 1135.1 |
5078 | Moste I | Ljubljanica | 281.32 | 1778.0 |
5240 | Verd I | Ljubija | 286.28 | karst |
5540 | Razori | Šujica | 298.37 | 46.9 |
5800 | Prestranek | Pivka | 519.75 | karst |
5880 | Hasberg | Unica | 444.88 | karst |
6060 | Nazarje | Savinja | 337.03 | 457.1 |
6200 | Laško I | Savinja | 215.07 | 1668.2 |
6240 | Kraše | Dreta | 365.55 | 100.8 |
6691 | Črnolica I | Voglajna | 263.27 | 54.7 |
7029 | Podbukovje I | Krka | 258.49 | 346.9 |
7160 | Podbočje | Krka | 146.27 | 2253.0 |
7340 | Prečna | Prečna | 163.82 | 295.2 |
8080 | Kobarid I | Soča | 194.94 | 437.1 |
8180 | Solkan I | Soča | 53.77 | 1580.4 |
8242 | Kal-Koritnica I | Koritnica | 404.7 | 86.0 |
8270 | Žaga | Učja | 341.56 | 50.2 |
8350 | Podroteja I | Idrijca | 327.05 | 111.3 |
8450 | Hotešk | Idrijca | 160.86 | 443.5 |
8500 | Bača pri Modreju | Bača | 164.04 | 143.1 |
8561 | Vipava II | Vipava | 96.09 | 131.9 |
8601 | Miren I | Vipava | 35.93 | 588.3 |
9050 | Cerkvenikov mlin | Reka | 342.70 | 332.1 |
9210 | Kubed II | Rižana | 61.16 | 204.7 |
SPI/SSI Value | Category |
---|---|
2.00 or more | Extremely wet |
1.50 to 1.99 | Severely wet |
1.00 to 1.49 | Moderately wet |
0.00 to 0.99 | Mildly wet |
0.00 to −0.99 | Mild drought |
−1.00 to −1.49 | Moderate drought |
−1.50 to −1.99 | Severe drought |
−2.00 or less | Extreme drought |
Station Code | Gauging Station | SSI-1 | SSI-6 | SSI-12 | |||
---|---|---|---|---|---|---|---|
SSI < −1.5 | SSI < −2 | SSI < −1.5 | SSI < −2 | SSI < −1.5 | SSI < −2 | ||
1060 | Gornja Radgona I | 19 | 3 | 42 | 10 | 47 | 15 |
1140 | Pristava I | 7 | 0 | 50 | 22 | 44 | 23 |
1220 | Polana I | 12 | 1 | 43 | 18 | 46 | 20 |
2250 | Otiški Vrh I | 23 | 1 | 41 | 14 | 46 | 22 |
3180 | Podhom | 15 | 1 | 25 | 7 | 29 | 1 |
3200 | Sveti Janez | 25 | 5 | 30 | 10 | 44 | 17 |
3420 | Radovljica I | 29 | 5 | 32 | 11 | 48 | 2 |
3660 | Litija | 31 | 11 | 48 | 17 | 48 | 19 |
3850 | Čatež I | 35 | 10 | 52 | 23 | 51 | 22 |
4120 | Kokra I | 19 | 4 | 20 | 8 | 25 | 1 |
4480 | Nevlje I | 26 | 7 | 46 | 22 | 36 | 23 |
4695 | Jelovec | 21 | 2 | 59 | 21 | 49 | 26 |
4750 | Rakovec | 16 | 0 | 53 | 21 | 52 | 23 |
4820 | Petrina | 31 | 6 | 39 | 12 | 20 | 12 |
4860 | Metlika | 35 | 14 | 56 | 27 | 47 | 11 |
4969 | Gradac I | 34 | 11 | 61 | 30 | 64 | 25 |
5030 | Vrhnika | 45 | 22 | 54 | 34 | 50 | 26 |
5078 | Moste I | 41 | 11 | 52 | 28 | 51 | 25 |
5540 | Razori | 31 | 4 | 59 | 23 | 55 | 22 |
5800 | Prestranek | 0 | 0 | 67 | 40 | 56 | 30 |
5880 | Hasberg | 43 | 8 | 59 | 26 | 49 | 15 |
6060 | Nazarje | 31 | 9 | 39 | 19 | 48 | 26 |
6200 | Laško I | 29 | 5 | 56 | 24 | 51 | 31 |
6240 | Kraše | 22 | 2 | 34 | 15 | 40 | 19 |
7029 | Podbukovje I | 15 | 1 | 58 | 18 | 53 | 17 |
7340 | Prečna | 23 | 0 | 48 | 19 | 62 | 15 |
8080 | Kobarid I | 27 | 7 | 33 | 11 | 37 | 12 |
8270 | Žaga | 31 | 4 | 35 | 11 | 39 | 8 |
8350 | Podroteja I | 20 | 7 | 41 | 11 | 39 | 4 |
8450 | Hotešk | 20 | 6 | 39 | 16 | 61 | 22 |
8500 | Bača pri Modreju | 28 | 7 | 41 | 12 | 50 | 19 |
8561 | Vipava II | 42 | 12 | 50 | 25 | 60 | 15 |
8601 | Miren I | 26 | 1 | 35 | 13 | 30 | 14 |
9050 | Cerkvenikov mlin | 25 | 6 | 59 | 23 | 45 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalokar, L.; Kobold, M.; Šraj, M. Investigation of Spatial and Temporal Variability of Hydrological Drought in Slovenia Using the Standardised Streamflow Index (SSI). Water 2021, 13, 3197. https://doi.org/10.3390/w13223197
Zalokar L, Kobold M, Šraj M. Investigation of Spatial and Temporal Variability of Hydrological Drought in Slovenia Using the Standardised Streamflow Index (SSI). Water. 2021; 13(22):3197. https://doi.org/10.3390/w13223197
Chicago/Turabian StyleZalokar, Lenka, Mira Kobold, and Mojca Šraj. 2021. "Investigation of Spatial and Temporal Variability of Hydrological Drought in Slovenia Using the Standardised Streamflow Index (SSI)" Water 13, no. 22: 3197. https://doi.org/10.3390/w13223197
APA StyleZalokar, L., Kobold, M., & Šraj, M. (2021). Investigation of Spatial and Temporal Variability of Hydrological Drought in Slovenia Using the Standardised Streamflow Index (SSI). Water, 13(22), 3197. https://doi.org/10.3390/w13223197