Spatiotemporal Characteristics and Trends of Meteorological Droughts in the Wadi Mina Basin, Northwest Algeria
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Used
3. Methodology
3.1. SPI
3.2. Trend Analysis
3.3. Drought Charcateristics
3.3.1. Frequency Analysis
3.3.2. Drought Intensity (DI)
3.3.3. Drought Magnitude (DM)
3.3.4. Drought Duration (DD)
3.4. Return Period of Drought
4. Results and Discussion
4.1. Temporal Variability
4.2. Spatial Variability
4.3. Drought Evaluation Indicators
4.3.1. Frequency Analysis
4.3.2. Calculation of Return Period and the Severity-Area-Frequency (SAF) Curve
4.3.3. Spatial Pattern of Return Periods of Droughts
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Years | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1970 | NN | NN | NN | NN | NN | NN | NN | MW | MW | NN | MW | NN | NN | NN | NN | NN |
1971 | NN | EW | EW | EW | VW | VW | NN | VW | EW | VW | EW | VW | VW | EW | EW | VW |
1972 | MW | NN | MW | MW | MW | NN | NN | NN | MW | EW | NN | VW | MW | VW | MW | MW |
1973 | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | MW | VW | MW | VW |
1974 | VW | MW | NN | NN | NN | VW | NN | NN | NN | NN | NN | NN | EW | MW | MW | NN |
1975 | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN |
1976 | VW | VW | MW | NN | NN | NN | NN | NN | NN | MW | NN | NN | NN | NN | NN | NN |
1977 | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN |
1978 | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | MW | NN | NN | NN |
1979 | NN | NN | NN | NN | VW | NN | MW | NN | NN | NN | NN | NN | NN | NN | MW | NN |
1980 | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | VW | NN | NN | ED | NN |
1981 | SD | MD | NN | NN | NN | NN | NN | NN | NN | NN | MD | MD | MD | MD | SD | SD |
1982 | NN | MD | MD | MD | MD | NN | MD | MD | SD | MD | NN | MD | NN | NN | NN | NN |
1983 | NN | NN | NN | MD | NN | NN | SD | NN | SD | MD | NN | SD | NN | NN | NN | NN |
1984 | NN | NN | NN | MD | NN | MD | NN | NN | NN | NN | NN | NN | NN | MD | MD | NN |
1985 | VW | NN | NN | NN | NN | NN | NN | MD | NN | NN | NN | NN | NN | MD | NN | MD |
1986 | NN | MW | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | MW | NN |
1987 | NN | NN | NN | MD | MD | NN | MD | NN | NN | NN | NN | NN | NN | NN | NN | NN |
1988 | NN | NN | NN | NN | MD | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN |
1989 | SD | MD | SD | NN | SD | MD | NN | MD | MD | MD | MD | NN | NN | NN | NN | MD |
1990 | NN | NN | NN | MD | NN | NN | NN | NN | NN | MW | NN | NN | NN | NN | NN | NN |
1991 | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN |
1992 | NN | NN | SD | NN | NN | NN | MD | NN | SD | SD | MD | SD | NN | MD | MD | MD |
1993 | SD | NN | MD | NN | MD | SD | NN | NN | NN | NN | MD | NN | NN | MD | NN | NN |
1994 | NN | NN | NN | NN | NN | NN | NN | MW | NN | NN | NN | NN | NN | NN | NN | NN |
1995 | VW | VW | EW | VW | NN | NN | EW | VW | VW | VW | EW | VW | VW | EW | VW | EW |
1996 | NN | NN | NN | NN | MD | SD | NN | NN | NN | NN | MD | NN | SD | SD | MD | SD |
1997 | MW | NN | NN | NN | NN | NN | NN | NN | MD | MD | NN | NN | NN | NN | NN | NN |
1998 | NN | NN | NN | MD | SD | SD | MD | NN | NN | NN | MD | SD | SD | MD | MD | NN |
1999 | NN | MD | MD | MD | SD | MD | MD | NN | MD | SD | SD | NN | MD | MD | NN | SD |
2000 | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | MW | NN |
2001 | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN |
2002 | MD | NN | NN | NN | MW | MW | NN | NN | NN | NN | NN | NN | NN | NN | SD | NN |
2003 | NN | NN | NN | NN | NN | MW | MW | VW | NN | NN | NN | NN | NN | NN | NN | NN |
2004 | MD | ED | SD | MD | NN | NN | SD | MD | SD | MD | NN | SD | SD | NN | NN | NN |
2005 | NN | NN | MW | NN | MW | MW | MW | VW | MW | NN | NN | NN | NN | NN | NN | NN |
2006 | MD | MD | NN | MD | NN | NN | NN | NN | NN | NN | MD | NN | MD | NN | MD | NN |
2007 | SD | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | NN | MD | NN |
2008 | MW | NN | VW | EW | EW | EW | EW | EW | VW | MW | VW | MW | MW | VW | NN | MW |
2009 | NN | NN | NN | MW | NN | NN | VW | EW | VW | VW | NN | VW | VW | NN | NN | NN |
Stations | Events | Duration DD (Years) | Intensity DI | Magnitude DM | SPI Values | ||||
---|---|---|---|---|---|---|---|---|---|
Average | Maximum | Year | Minimum | Year | |||||
S1 | 1 | 1 | −0.11 | −0.11 | −0.74 | −1.71 | 1989/90 | −0.07 | 1984/85 |
2 | 1 | −0.39 | −0.39 | ||||||
3 | 4 | −0.86 | −3.42 | ||||||
4 | 8 | −0.80 | −6.42 | ||||||
5 | 1 | −0.21 | −0.21 | ||||||
6 | 2 | −0.43 | −0.86 | ||||||
7 | 6 | −0.93 | −5.58 | ||||||
S2 | 1 | 1 | −0.39 | −0.39 | −0.79 | −2.56 | 2004/05 | −0.01 | 1985/86 |
2 | 5 | −0.74 | −3.71 | ||||||
3 | 1 | −0.86 | −0.86 | ||||||
4 | 1 | −1.25 | −1.25 | ||||||
5 | 4 | −0.29 | −1.14 | ||||||
6 | 2 | −0.83 | −1.66 | ||||||
7 | 6 | −1.13 | −6.76 | ||||||
S3 | 1 | 1 | −0.32 | −0.32 | −0.84 | −1.84 | 2004/05 | −0.04 | 1980/81 |
2 | 5 | −0.74 | −3.71 | ||||||
3 | 7 | −0.89 | −6.24 | ||||||
4 | 1 | −0.44 | −0.44 | ||||||
5 | 4 | −0.96 | −3.84 | ||||||
6 | 1 | −1.84 | −1.84 | ||||||
7 | 1 | −0.31 | −0.31 | ||||||
S4 | 1 | 1 | −0.21 | −0.21 | −0.80 | −1.36 | 1999/00 | −0.02 | 1991/92 |
2 | 4 | −1.12 | −4.48 | ||||||
3 | 7 | −0.63 | −4.43 | ||||||
4 | 1 | −0.67 | −0.67 | ||||||
5 | 4 | −0.92 | −3.67 | ||||||
6 | 1 | −1.09 | −1.09 | ||||||
7 | 2 | −0.71 | −1.42 | ||||||
S5 | 1 | 1 | −0.94 | −0.94 | −0.86 | −1.88 | 1999/00 | −0.05 | 1997/98 |
2 | 13 | −0.76 | −9.84 | ||||||
3 | 4 | −1.25 | −4.98 | ||||||
4 | 1 | −0.54 | −0.54 | ||||||
S6 | 1 | 2 | −0.10 | −0.19 | −0.77 | −1.93 | 1989/99 | −0.06 | 1977/78 |
2 | 1 | −0.21 | −0.21 | ||||||
3 | 7 | −0.74 | −5.16 | ||||||
4 | 6 | −0.88 | −5.30 | ||||||
5 | 4 | −1.29 | −5.15 | ||||||
6 | 1 | −0.17 | −0.17 | ||||||
S7 | 1 | 3 | −0.62 | −1.87 | −0.97 | −1.98 | 2004/05 | −0.26 | 1977/78 |
2 | 7 | −0.85 | −5.97 | ||||||
3 | 1 | −0.41 | −0.41 | ||||||
4 | 2 | −0.95 | −1.90 | ||||||
5 | 1 | −0.59 | −0.59 | ||||||
6 | 4 | −0.94 | −3.77 | ||||||
7 | 1 | −1.98 | −1.98 | ||||||
8 | 1 | −0.52 | −0.52 | ||||||
S8 | 1 | 2 | −0.31 | −0.62 | −0.62 | −1.33 | 1983/84 | −0.02 | 1978/79 |
2 | 16 | −0.73 | −11.67 | ||||||
3 | 1 | −0.55 | −0.55 | ||||||
4 | 2 | −0.51 | −1.02 | ||||||
5 | 2 | −0.20 | −0.40 | ||||||
6 | 1 | −1.22 | −1.22 | ||||||
7 | 1 | −0.14 | −0.14 | ||||||
S9 | 1 | 1 | −0.01 | −0.01 | −0.81 | −1.60 | 2004/05 | −0.01 | 1973/74 |
2 | 3 | −0.59 | −1.77 | ||||||
3 | 3 | −1.19 | −3.56 | ||||||
4 | 8 | −0.49 | −3.91 | ||||||
5 | 4 | −0.92 | −3.69 | ||||||
6 | 1 | −0.27 | −0.27 | ||||||
7 | 1 | −1.60 | −1.6 | ||||||
8 | 1 | −0.53 | −0.53 | ||||||
S10 | 1 | 1 | −0.28 | −0.28 | −0.85 | −1.96 | 1992/93 | −0.11 | 1984/85 |
2 | 1 | −0.41 | −0.41 | ||||||
3 | 3 | −0.91 | −2.74 | ||||||
4 | 4 | −0.75 | −2.98 | ||||||
5 | 2 | −1.12 | −2.24 | ||||||
6 | 4 | −0.91 | −3.65 | ||||||
7 | 2 | −0.79 | −1.57 | ||||||
8 | 1 | −1.45 | −1.45 | ||||||
9 | 2 | −0.81 | −1.61 | ||||||
S11 | 1 | 1 | −0.07 | −0.07 | −0.85 | −1.67 | 1999/00 | −0.07 | 1977/78 |
2 | 2 | −0.90 | −1.80 | ||||||
3 | 2 | −0.66 | −1.32 | ||||||
4 | 3 | −0.81 | −2.42 | ||||||
5 | 3 | −1.00 | −2.99 | ||||||
6 | 1 | −1.29 | −1.29 | ||||||
7 | 2 | −1.37 | −2.73 | ||||||
8 | 3 | −0.49 | −1.47 | ||||||
9 | 1 | −0.19 | −0.19 | ||||||
S12 | 1 | 1 | −0.37 | −0.37 | −0.8 | −1.70 | 1983/84 | −0.10 | 1978/79 |
2 | 1 | −0.10 | −0.10 | ||||||
3 | 5 | −0.93 | −4.65 | ||||||
4 | 1 | −0.76 | −0.76 | ||||||
5 | 1 | −0.34 | −0.34 | ||||||
6 | 3 | −0.91 | −2.73 | ||||||
7 | 1 | −0.90 | −0.90 | ||||||
8 | 5 | −0.75 | −3.76 | ||||||
9 | 1 | −1.50 | −1.50 | ||||||
10 | 1 | −0.98 | −0.98 | ||||||
S13 | 1 | 1 | −1.25 | −1.25 | −0.77 | −1.77 | 1998/99 | −0.04 | 1991/92 |
2 | 3 | −0.49 | −1.48 | ||||||
3 | 2 | −0.69 | −1.38 | ||||||
4 | 3 | −0.57 | −1.70 | ||||||
5 | 12 | −0.87 | −10.42 | ||||||
S14 | 1 | 1 | −0.17 | −0.17 | −0.68 | −2.02 | 1996/97 | −0.02 | 1980/81 |
2 | 3 | −0.61 | −1.83 | ||||||
3 | 2 | −1.07 | −2.13 | ||||||
4 | 3 | −0.54 | −1.62 | ||||||
5 | 3 | −0.81 | −2.42 | ||||||
6 | 5 | −0.56 | −2.79 | ||||||
7 | 4 | −0.31 | −1.22 | ||||||
8 | 2 | −0.42 | −0.83 | ||||||
S15 | 1 | 2 | −0.32 | −0.64 | −0.81 | −2.03 | 1980/81 | −0.17 | 2005/06 |
2 | 3 | −1.29 | −3.86 | ||||||
3 | 1 | −1.14 | −1.14 | ||||||
4 | 1 | −0.71 | −0.71 | ||||||
5 | 2 | −0.39 | −0.78 | ||||||
6 | 2 | −1.03 | −2.05 | ||||||
7 | 1 | −1.25 | −1.25 | ||||||
8 | 2 | −0.68 | −1.35 | ||||||
9 | 7 | −0.76 | −5.32 | ||||||
S16 | 1 | 1 | −1.88 | −1.88 | −0.76 | −1.88 | 1981/82 | −0.01 | 2005/06 |
2 | 7 | −0.63 | −4.43 | ||||||
3 | 4 | −0.70 | −2.80 | ||||||
4 | 1 | −1.73 | −1.73 | ||||||
5 | 2 | −1.11 | −2.21 | ||||||
6 | 2 | −0.54 | −1.07 | ||||||
7 | 4 | −0.47 | −1.87 |
References
- Rossi, G. Drought mitigation measures: A comprehensive frame work. In Drought and Drought Migation in Europe; Voght, J.V., Somma, F., Eds.; Kluwer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Achite, M.; Buttafuoco, G.; Toubal, K.A.; Lucà, F. Precipitation spatial variability and dry areas temporal stability for different elevation classes in the Macta basin (Algeria). Environ. Earth Sci. 2017, 76, 458. [Google Scholar] [CrossRef]
- Hossard, L.; Fadlaoui, A.; Ricote, E.; Belhouchette, H. Assessing the resilience of farming systems on the Saïs plain, Morocco. Reg. Environ. Chang. 2021, 21, 36. [Google Scholar] [CrossRef]
- Lionello, P.; Bhend, J.; Buzzi, A.; Della-Marta, P.M.; Krichak, S.O.; Jansa, A.; Maheras, P.; Sanna, A.; Trigo, I.F.; Trigo, R. Cyclones in the Mediterranean region: Climatology and effects on the environment. In Mediterranean Climate Variability Developments in Earth and Environmental Sciences; Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 4, pp. 325–372. [Google Scholar] [CrossRef]
- Norrant, C.; Douguedroit, A. Tendances recentes des precipitations et des pressions de surface dans le Bassin mediterraneen. Ann. Geogr. 2003, 631, 298–305. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Caloiero, T.; Coscarelli, R. Spatial and temporal patterns of the mean annual precipitation at decadal time scale in southern Italy (Calabria region). Appl. Clim. 2011, 105, 431–444. [Google Scholar] [CrossRef]
- Rossi, G. Drought Mitigation Measures: A Comprehensive Framework, in: Advances in Natural and Technological Hazards Research. Adv. Nat. Technol. Hazards Res. 2000, 14, 233–246. [Google Scholar] [CrossRef]
- Ghouil, H.; Sancho-Knapik, D.; Ben Mna, A.; Amimi, N.; Ammari, Y.; Escribano, R.; Alonso-Forn, D.; Ferrio, J.P.; Peguero-Pina, J.J.; Gil-Pelegrín, E. Southeastern Rear Edge Populations of Quercus suber L. Showed Two Alternative Strategies to Cope with Water Stress. Forests 2020, 11, 1344. [Google Scholar] [CrossRef]
- Akbas, A.; Freer, J.; Ozdemir, H.; Bates, P.D.; Turp, M.T. What about reservoirs? Questioning anthropogenic and climatic interferences on water availability. Hydrol. Process. 2020, 34, 5441–5455. [Google Scholar] [CrossRef]
- Lyon, B. The strength of El Niño and the spatial extent of tropical drought. Geophys. Res. Lett. 2004, 31, 21204. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The Crop Moisture Index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H. Establishing a drought index incorporating evapotranspiration. Eur. Water 2005, 9/10, 3–11. [Google Scholar]
- Byun, H.R.; Wilhite, D.A. Daily quantification of drought severity and duration. J. Clim. 1996, 5, 1181–1201. [Google Scholar]
- Bokwa, A.; Klimek, M.; Krzaklewski, P.; Kukułka, W. Drought Trends in the Polish Carpathian Mts. in the Years 1991–2020. Atmosphere 2021, 12, 1259. [Google Scholar] [CrossRef]
- Strommen, N.D.; Motha, R.P. An operational early warning agricultural weather system. In Planning for Drought: Toward a Reduction of Societal Vulnerability; Wilhite, D.A., Easterling, W.E., Wood, D.A., Eds.; Westview Press: Boulder, CO, USA, 1987. [Google Scholar]
- Alley, W.M. The Palmer Drought Severity Index: Limitations and assumptions. J. Appl. Meteorol. 1984, 23, 1100–1109. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.; Doesken Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- Bordi, I.; Fraedrich, K.; Jiang, J.-M.; Sutera, A. Spatio-temporal variability of dry and wet periods in eastern China. Theor. Appl. Climatol. 2004, 79, 81–91. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Hayes, M.J.; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the Standardized Precipitation Index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Umran Komuscu, A. “Using the SPI to Analyze Spatial and Temporal Patterns of Drought in Turkey” Drought Network News (1994–2001). 1999. Available online: https://digitalcommons.unl.edu/droughtnetnews/49 (accessed on 2 November 2021).
- Kemal Sonmez, K.; Umran Komuscu, A.; Erkan, A.; Turgu, E. An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index. Nat. Hazards 2005, 35, 243–264. [Google Scholar] [CrossRef]
- Lana, X.; Serra, C.; Burgueno, A. Patterns of monthly rainfall shortage and execess In terms of standardized precipitation index for Catalonia (NE Spain). Int. J. Climatol. 2001, 21, 1669–1691. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; González-Hidalgo, J.C.; de Luis, M.; Raventós, J. Drought patterns in the Mediterranean area: The Valencia region (eastern Spain). Clim. Res. 2004, 26, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorso, B.; Cancelliere, A.; Rossi, G.; Sutera, A. Spatial Variability of Drought: An Analysis of the SPI in Sicily. Water Resour. Manag. 2003, 17, 273–296. [Google Scholar] [CrossRef]
- Piccarreta, M.; Capolongo, D.; Boenzi, F. Trend analysis of precipitation and drought in Basilicata from 1923 to 2000 within a Southern Italy context. Int. J. Climatol. 2004, 24, 907–922. [Google Scholar] [CrossRef]
- Capra, A.; Consoli, S.; Scicolone, B.; Calafiore, G. Precipitation and drought variability in the last century in Calabria (Italy). In Proceedings of the XXXIII CIOSTA-CIGR V Conference Technology and Management to Ensure Sustainable Agriculture, Agro-Systems, Forestry and Safety, Reggio Calabria, Italy, 17–19 June 2009; pp. 1655–1659. [Google Scholar]
- Vergni, L.; Todisco, F. Spatio-temporal variability of precipitation, temperature and agricultural drought indices in central Italy. Agric. Meteorol. 2010, 151, 301–313. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Caloiero, T.; Coscarelli, R. Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index. Water Resour. Manag. 2015, 29, 557–573. [Google Scholar] [CrossRef]
- Raziei, T.; Saghafian, B.; Paulo, A.A.; Pereira, L.S.; Bordi, I. Spatial Patterns and Temporal Variability of Drought in Western Iran. Water Resour. Manag. 2009, 23, 439. [Google Scholar] [CrossRef] [Green Version]
- Moradi, H.R.; Rajabi, M.; Faragzadeh, M. Investigation of meteorological drought characteristics in Fars province, Iran. Catena 2011, 84, 35–46. [Google Scholar] [CrossRef]
- Nafarzadegana, A.R.; Zadeha, M.R.; Kherada, M.; Ahania, H.; Gharehkhania, A.; Karampoora, M.A.; Kousari, M.R. Drought area monitoring during the past three decades in Fars Province, Iran. Quat. Int. 2012, 250, 27–36. [Google Scholar] [CrossRef]
- Livada, I.; Assimakopoulos, V.D. Spatial and temporal analysis of drought in greece using the standardized precipitation index (SPI). Theor. Appl. Climatol. 2007, 89, 143–153. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Karavitis, C.A.; Alexandris, S.; Tsesmelis, D.E.; Athanasopoulos, G. Application of the Standardized Precipitation Index (SPI) in Greece. Water 2013, 3, 787–805. [Google Scholar] [CrossRef]
- AL-Timimi, Y.K.; Loay, G.E.; AL-Jiboori Monim, H. Drought Risk Assessment In Iraq Using Remote Sensing And GIS Techniques. Iraqi. J. Sci. 2012, 53, 1078–1082. [Google Scholar]
- Awchi, T.A.; Kalyana, M.M. Meteorological drought analysis in northern Iraq using SPI and GIS. Sustain. Water Resour. Manag. 2017, 3, 451–463. [Google Scholar] [CrossRef]
- Jasim Ansam, I.; Awchi Taymoor, A. Regional meteorological drought assessment in Iraq. Arab. J. Geosci. 2020, 13, 284. [Google Scholar] [CrossRef]
- Shadeed, S. Spatio-temporal Drought Analysis in Arid and Semi-arid Regions: A Case Study from Palestine. Arab. J. Sci Eng. 2013, 38, 2303–2313. [Google Scholar] [CrossRef]
- Djellouli, F.; Abderrazak, B.; Baba-Hamed, K. Efficiency of some meteorological drought indices in different time scales, case study: Wadi Louza basin (NW-Algeria). J. Water Land Dev. 2016, 31, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Khezazna, A.; Amarchi, H.; Derdous, O.; Bousakhria, F. Drought monitoring in the Seybouse basin (Algeria) over the last decades. J. Water Land Dev. 2017, 33, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Brahim, H.; Meddi, M.; Torfs, P.J.J.F.; Remaoun, M.; Van Lanen, H.A.J. Characterisation and prediction of meteorological drought using stochastic models in the semi-arid Chéli–Zahrez basin (Algeria). J. Hydrol. Reg. Stud. 2018, 16, 15–31. [Google Scholar] [CrossRef]
- Fellag, M.; Achite, M.; Wałęga, A. Spatial-temporal characterization of meteorological drought using the Standardized precipitation index. Case study in Algeria. Acta Sci. Polonorum. Form. Circumiectus 2021, 20, 19–31. [Google Scholar]
- Achite, M.; Krakauer, N.Y.; Wałęga, A.; Caloiero, T. Spatial and Temporal Analysis of Dry and Wet Spells in the Wadi Cheliff Basin, Algeria. Atmosphere 2021, 12, 798. [Google Scholar] [CrossRef]
- Ouatiki, H.; Boudhar, A.; Ouhinou, A.; Arioua, A.; Hssaisoune, M.; Bouamri, H.; Benabdelouahab, T. Trend analysis of rainfall and drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010. Arab. J. Geosci. 2019, 12, 128. [Google Scholar] [CrossRef]
- Jemai, S.; Ellouze, M.; Agoubi, B.; Abida, H. Drought intensity and spatial variability in Gabes Watershed, south-eastern Tunisia. J. Water Land Dev. 2016, 31, 63–72. [Google Scholar] [CrossRef]
- Jemai, H.; Ellouze, M.; Abida, H.; Laignel, B. Spatial and temporal variability of rainfall: Case of Bizerte-Ichkeul Basin (Northern Tunisia). Arab. J. Geosci. 2018, 11, 177. [Google Scholar] [CrossRef]
- Ben Abdelmalek Nouiri, I. Study of trends and mapping of drought events in Tunisia and their impacts on agricultural production. Sci. Total Environ. 2020, 734, 139311. [Google Scholar] [CrossRef]
- Rapport d’Information Déposé en Application de L’article 145 du Règlement par la Commission des Affaires Étrangères de France en Conclusion des Travaux D’une Mission d’Information Constituée le 5 Octobre 2010 sur La Géopolitique de L’eau. 2011. Available online: https://www.assemblee-nationale.fr/dyn/15/rapports/cion_afetr/l15b3581_rapport-information (accessed on 30 September 2021).
- Hamiche, A.; Stambouli, A.; Flazi, S. A review on the water and energy sectors in Algeria: Current forecasts, scenario and sustainability issues’. Renew. Sustain. Energy Rev. 2016, 41, 261–276. [Google Scholar] [CrossRef]
- Mensah, C.; Šigut, L.; Fischer, M.; Foltýnová, L.; Jocher, G.; Acosta, M.; Kowalska, N.; Kokrda, L.; Pavelka, M.; Marshall, J.D.; et al. Assessing the Contrasting Effects of the Exceptional 2015 Drought on the Carbon Dynamics in Two Norway Spruce Forest Ecosystems. Atmosphere 2021, 12, 988. [Google Scholar] [CrossRef]
- Achite, M. Sécheresse et Gestion des Ressources en Eau Dans le Bassin Versant de la Mina. Algérie. 2ème Colloque International Sur L’eau et L’Environnement. 30 et 31 Janvier 2007. Sidi Fredj. Alger (Algérie). Available online: https://www.worldwatercouncil.org/ (accessed on 5 September 2021).
- Ng, C.K.; Ng, J.L.; Huang, Y.F.; Tan, Y.X.; Mirzaei, M. Tropical rainfall trend and stationarity analysis. Water Supply 2020, 20, 2471–2483. [Google Scholar] [CrossRef]
- Santos, J.F.; Portela, M.M.; Pulido-Calvo, I. Regional frequency analysis of droughts in Portugal. Water Resour. Manag. 2011, 25, 3537–3558. [Google Scholar] [CrossRef]
- Thom, H.C.S. A note on the gamma distribution. Mon. Weather Rev. 1958, 86, 117–122. [Google Scholar] [CrossRef]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th century drought in the United States at multiple scales. Atmos. Sci. Pap. 1997, 634, 1–30. [Google Scholar]
- Abramowitz, M. Stegun, I.A. Handbook of Mathematical Functions; Dover Publications: New York, NY, USA, 1965. [Google Scholar]
- Młyński, D.; Wałęga, A.; Petroselli, A.; Tauro, F.; Cebulska, M. Estimating Maximum Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere 2019, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M. Differences in spatial patterns of drought on different time scales: An analysis of the Iberian Peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Elouissi, A.; Sen, Z.; Habi, M. Algerian rainfall innovative trend analysis and its implications to Macta watershed. Arab. J. Geosci. 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Caloiero, T.; Caloiero, P.; Frustaci, F. Long-term precipitation trend analysis in Europe and in the Mediterranean basin. Water Environ. J. 2018, 32, 433–445. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Jun, H. A Study of the Influence of the Spatial Distribution of Rain Gauge Networks on Areal Average Rainfall Calculation. Water 2018, 10, 1635. [Google Scholar] [CrossRef] [Green Version]
- Hingray, B.; Picouet, C.; Muy, A. Hydrology. In A Science for Engineers; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Lorenzo-Lacruz, J.; Kenawy, A.; Azorin-Molina, C.; Morán-Tejeda, E.; Pasho, E.; Zabalza, J.; Beguería, S.; Angulo-Martínez, M. The NAO Impact on Droughts in the Mediterranean Region. In Advances in Global Change Research; Springer Science and Business Media LLC: Berlin, Germany, 2011; pp. 23–40. [Google Scholar]
- Hoerling, M.P.; Eischeid, J.K.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P.J. On the Increased Frequency of Mediterranean Drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef] [Green Version]
- Meddi, H.; Meddi, M.; Assani, A.A. Study of Drought in Seven Algerian Plains. Arab. J. Sci. Eng. 2013, 39, 339–359. [Google Scholar] [CrossRef]
- Giannini, A.; Saravanan, R.; Chang, P. Oceanic Forcing of Sahel Rainfall on Interannual to Interdecadal Time Scales. Science 2003, 302, 1027–1030. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Desa, V.R. Spatial and temporal drought analysis in the Kansabati river basin. India. Intl. J. River Basin Manag. 2005, 3, 31–41. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, Y.; Yao, Y.; Chen, Q. Probabilistic Analysis of Drought Spatiotemporal Characteristics in the Beijing-Tianjin-Hebei Metropolitan Area in China. Atmosphere 2015, 6, 431–450. [Google Scholar] [CrossRef] [Green Version]
- Alemaw Berhanu, F.; Kileshye-Onema, J.M.; Love, D. Regional Drought Severity Assessment at a Basin Scale in the Limpopo Drainage System. J. Water Resour. Prot. 2013, 5, 1110–1116. [Google Scholar] [CrossRef] [Green Version]
- Meddi, H.; Meddi, M. Variabilité spatiale et temporelle des précipitations du Nord-Ouest de l’Algérie. Géogr. Tech. 2007, 2, 49–55. [Google Scholar]
- Henchiri, M.; Liu, Q.; Essifi, B.; Javed, T.; Zhang, S.; Bai, Y.; Zhang, J. Spatio-Temporal Patterns of Drought and Impact on Vegetation in North and West Africa Based on Multi-Satellite Data. Remote Sens. 2020, 12, 3869. [Google Scholar] [CrossRef]
- Attia, A.; El-Hendawy, S.; Al-Suhaibani, N.; Alotaibi, M.; Tahir, M.U.; Kamal, K.Y. Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation. Agric. Water Manag. 2021, 249, 106812. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Wagner, W. A new method for rainfall estimation through soil moisture observations. Geophys. Res. Lett. 2013, 40, 853–858. [Google Scholar] [CrossRef]
Geographical Coordinates | Elevation | Period of Observation | ||||
---|---|---|---|---|---|---|
Rain Station | ID | Name | Longitude (E) | Latitude (N) | ||
(°) | (°) | (m) | ||||
S1 | 12702 | Rahuia | 1°00′ | 35°31′ | 650 | Septmber 1970–August 2010 |
S2 | 13001 | Kef Mahboula | 0°49′ | 35°18′ | 475 | |
S3 | 13002 | Frenda | 1°01′ | 35°04′ | 990 | |
S4 | 13004 | Ain El Haddid | 0°51′ | 35°04′ | 829 | |
S5 | 13101 | Mechra Safa | 1°02′ | 35°23′ | 655 | |
S6 | 13102 | Djilali Benamar | 0°49′ | 35°27′ | 300 | |
S7 | 13201 | Ain Kermes | 1°05′ | 34°55′ | 1162 | |
S8 | 13202 | Rosfa | 0°49′ | 34°54′ | 960 | |
S9 | 13203 | Tiricine | 0°32′ | 34°54′ | 1070 | |
S10 | 13204 | Sidi Youcef | 0°33′ | 34°48′ | 1100 | |
S11 | 13302 | Ain Hamara | 0°39′ | 35°23′ | 288 | |
S12 | 13304 | Takmaret | 0°37′ | 35°06′ | 655 | |
S13 | 13306 | Oues El-Abtal | 0°40′ | 35°28′ | 354 | |
S14 | 13401 | Sidi A.E.K Djilali | 0°34′ | 35°29′ | 225 | |
S15 | 13407 | El Hachem | 0°28′ | 35°23′ | 417 | |
S16 | 13410 | SMBA | 0°35′ | 35°34′ | 145 |
N° | Min (mm) | Max (mm) | Mean (mm) | Median (mm) | SD (mm) | Cv (%) | Cs | Ck |
---|---|---|---|---|---|---|---|---|
S1 | 210.00 | 524.70 | 352.53 | 333.10 | 89.27 | 25.32 | −0.87 | 0.19 |
S2 | 143.00 | 672.20 | 343.63 | 326.85 | 106.90 | 31.11 | 1.06 | 0.88 |
S3 | 221.00 | 672.90 | 396.42 | 388.00 | 11203 | 28.26 | 0.09 | 0.61 |
S4 | 194.80 | 610.00 | 312.83 | 302.65 | 102.92 | 32.90 | 1.60 | 1.23 |
S5 | 197.70 | 734.40 | 378.03 | 366.40 | 119.22 | 31.54 | 1.02 | 0.88 |
S6 | 158.60 | 645.10 | 345.38 | 314.35 | 120.84 | 34.99 | 0.15 | 0.75 |
S7 | 155.70 | 580.20 | 323.70 | 320.80 | 107.93 | 33.34 | 0.25 | 0.83 |
S8 | 77.70 | 557.00 | 218.40 | 187.80 | 113.76 | 52.09 | 2.18 | 1.55 |
S9 | 115.20 | 561.50 | 306.84 | 306.75 | 104.40 | 34.02 | 0.11 | 0.54 |
S10 | 159.20 | 631.00 | 294.89 | 270.40 | 99.59 | 33.77 | 1.76 | 1.15 |
S11 | 164.80 | 506.40 | 265.10 | 260.55 | 74.97 | 28.28 | 3.13 | 1.51 |
S12 | 120.50 | 413.10 | 254.25 | 241.65 | 73.14 | 28.77 | −0.34 | 0.57 |
S13 | 129.60 | 558.00 | 278.65 | 266.10 | 84.84 | 30.45 | 2.12 | 1.18 |
S14 | 135.60 | 474.20 | 254.13 | 239.55 | 72.12 | 28.38 | 1.33 | 1.08 |
S15 | 152.60 | 517.00 | 291.01 | 276.25 | 78.85 | 27.10 | 0.21 | 0.57 |
S16 | 141.00 | 436.60 | 237.97 | 226.95 | 63.09 | 26.51 | 1.86 | 1.15 |
Station | Monthly Series p-Value | Seasonal Series p-Value | Yearly Series p-Value |
---|---|---|---|
S1 | 0.576 | 0.427 | 0.412 |
S2 | 0.459 | 0.529 | 0.425 |
S3 | 0.756 | 0.871 | 0.345 |
S4 | 0.842 | 0.777 | 0.310 |
S5 | 0.912 | 0.867 | 0.610 |
S6 | 0.956 | 0.569 | 0.524 |
S7 | 0.875 | 0.784 | 0.459 |
S8 | 0.758 | 0.657 | 0.351 |
S9 | 0.910 | 0.741 | 0.301 |
S10 | 0.986 | 0.891 | 0.295 |
S11 | 0.886 | 0.741 | 0.287 |
S12 | 0.782 | 0.625 | 0.254 |
S13 | 0.975 | 0.412 | 0.210 |
S14 | 0.754 | 0.541 | 0.354 |
S15 | 0.621 | 0.459 | 0.311 |
S16 | 0.524 | 0.567 | 0.421 |
SPI Values | Drought Category | Probability (%) |
---|---|---|
2.00 or more | Extremely wet | 2.3 |
1.50 to 1.99 | Very wet | 4.4 |
1.00 to 1.49 | Moderately wet | 9.2 |
−0.99 to 0.99 | Near normal | 68.2 |
−1.00 to −1.49 | Moderate drought | 9.2 |
−1.50 to −1.99 | Severe drought | 4.4 |
−2.00 or less | Extreme drought | 2.3 |
Stations | Area (km2) | Z | Sen’s Slope | Describtion |
---|---|---|---|---|
S1 | 57.40 | −1.969 | −0.031 | Significant at 95% level of confidence or p = 0.05 |
S2 | 413.10 | −2.540 | −0.038 | Significant at 95% level of confidence or p = 0.05 |
S3 | 160.60 | −1.037 | −0.015 | |
S4 | 560.20 | −1.340 | −0.02 | |
S5 | 150.30 | −0.722 | −0.012 | |
S6 | 254.60 | 0.011 | 0.001 | |
S | 165.20 | 0.163 | 0.002 | |
S8 | 607.40 | 0.524 | 0.063 | |
S9 | 398.90 | 0.000 | 0.080 | |
S10 | 534.40 | −1.002 | 0.334 | |
S11 | 261.70 | −2.005 | 0.455 | Significant at 95% level of confidence or p = 0.05 |
S12 | 568.90 | −1.270 | −0.019 | |
S13 | 193.30 | −3.251 | −0.906 | Significant at 99% level of confidence or p = 0.01 |
S14 | 205.40 | −1.969 | −0.554 | Significant at 95% level of confidence or p = 0.05 |
S15 | 300.40 | −1.899 | −0.653 | Significant at 90% level of confidence or p = 0.1 |
S16 | 68.30 | −2.237 | −0.650 | Significant at 95% level of confidence or p = 0.05 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EW | 0 | 2.5 | 5 | 5 | 0 | 2.5 | 5 | 5 | 2.5 | 2.5 | 5 | 0 | 2.5 | 5 | 2.5 | 2.5 |
VW | 10 | 5 | 2.5 | 2.5 | 5 | 5 | 2.5 | 10 | 7.5 | 7.5 | 2.5 | 13 | 7.5 | 7.5 | 2.5 | 5 |
MW | 7.5 | 5 | 7.5 | 5 | 7.5 | 7.5 | 7.5 | 5 | 7.5 | 7.5 | 2.5 | 2.5 | 10 | 2.5 | 15 | 5 |
NN | 65 | 73 | 70 | 65 | 65 | 70 | 68 | 70 | 65 | 65 | 70 | 70 | 65 | 65 | 58 | 73 |
MD | 7.5 | 13 | 7.5 | 23 | 13 | 7.5 | 13 | 10 | 7.5 | 13 | 18 | 5 | 7.5 | 18 | 15 | 7.5 |
SD | 10 | 0 | 7.5 | 0 | 7.5 | 7.5 | 5 | 0 | 10 | 5 | 2.5 | 10 | 7.5 | 2.5 | 5 | 7.5 |
ED | 0 | 2.5 | 0 | 0 | 2.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.5 | 0 |
Sums | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achite, M.; Wałęga, A.; Toubal, A.K.; Mansour, H.; Krakauer, N. Spatiotemporal Characteristics and Trends of Meteorological Droughts in the Wadi Mina Basin, Northwest Algeria. Water 2021, 13, 3103. https://doi.org/10.3390/w13213103
Achite M, Wałęga A, Toubal AK, Mansour H, Krakauer N. Spatiotemporal Characteristics and Trends of Meteorological Droughts in the Wadi Mina Basin, Northwest Algeria. Water. 2021; 13(21):3103. https://doi.org/10.3390/w13213103
Chicago/Turabian StyleAchite, Mohammed, Andrzej Wałęga, Abderrezak Kamel Toubal, Hamidi Mansour, and Nir Krakauer. 2021. "Spatiotemporal Characteristics and Trends of Meteorological Droughts in the Wadi Mina Basin, Northwest Algeria" Water 13, no. 21: 3103. https://doi.org/10.3390/w13213103
APA StyleAchite, M., Wałęga, A., Toubal, A. K., Mansour, H., & Krakauer, N. (2021). Spatiotemporal Characteristics and Trends of Meteorological Droughts in the Wadi Mina Basin, Northwest Algeria. Water, 13(21), 3103. https://doi.org/10.3390/w13213103