Biomass Production and Removal of Nitrogen and Phosphorus from Processed Municipal Wastewater by Salix schwerinii: A Field Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Setup
2.2. Scheme of Processed Wastewater (WW) Irrigation and Weather Conditions
2.3. Processed Wastewater Flow and Outflow to the Field and Nutrients Load
2.4. Diameter Growth, Biomass Production Assessment, and Survival
2.5. Nitrogen and Phosphorus Accumulation and Uptake (%)
2.6. Chemical Analysis
2.7. Statistical Analysis
3. Results
3.1. Effects of Processed Wastewater (WW) Irrigation on the Willow Diameter Growth and Total Dry Biomass Production
3.2. Nitrogen and Phosphorus Concentration in Willow Biomass
3.3. Total Nitrogen and Phosphorus Accumulation Percentage
3.4. Nutrient and Metal Concentrations in the Soil Treated with Processed Wastewater (WW)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guignard, M.S.; Leitch, A.R.; Acquisti, C.; Eizaguirre, C.; Elser, J.J.; Hessen, D.O.; Jeyasingh, P.D.; Neiman, M.; Richardson, A.E.; Soltis, P.; et al. Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and Agriculture. Front. Ecol. Evol. 2017, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Hasan, C.K.; Rahman, H.; Hossain, M.A.; Uddin, S.A. Prospects of Using Wastewater as a Resource-Nutrient Recovery and Energy Generation. Am. J. Environ. Sci. 2015, 11, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, H. Source Separation of Human Urine Separation Efficiency and Effects on Water Emissions, Crop Yield, Energy Usage and Reliability. In Proceedings of the 1st International Conference on Ecological Sanitation (CES’01), Nanning, China, 5–8 November 2001. [Google Scholar]
- Finnish Environmental Institute, 2015. Rivers Still Carry High Quantities of Nutrients. Available online: https://www.ymparisto.fi/enUS/Maps_and_statistics/The_state_of_the_environment_indicators/Fresh_water_and_the_sea/Rivers_still_carry_high_quantities_of_nu(28933) (accessed on 26 September 2020).
- Amofah, L.R.; Mattsson, J.; Hedström, A. Willow Bed Fertigated with Domestic Wastewater to Recover Nutrients in Subarctic Climates. Ecol. Eng. 2012, 47, 174–181. [Google Scholar] [CrossRef]
- Lebrun, M.; Macri, C.; Miard, F.; Hattab-Hambli, N.; Motelica-Heino, M.; Morabito, D.; Bourgerie, S. Effect of Biochar Amendments on As and Pb Mobility and Phytoavailability in Contaminated Mine Technosols Phytoremediated by Salix. J. Geochem. Explor. 2017, 182, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Peuke, A.D.; Heinz, R. Phytoremediation Molecular Biology, Requirements for Application, Environmental Protection, Public Attention and Feasibility. EMBO Rep. 2005, 6, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Fendrihan, S.; Pop, C.E. Biotechnological Potential of Plant Associated Microorganisms. Rom. Biotechnol. Lett. 2021, 26, 2700–2706. [Google Scholar] [CrossRef]
- Guo, L.B.; Sims, R.E.H.; Horne, D.J. Biomass Production and Nutrient Cycling in Eucalyptus Short Rotation Energy Forests in New Zealand.: I: Biomass and Nutrient Accumulation. Bioresour. Technol. 2002, 85, 273–283. [Google Scholar] [CrossRef]
- Salam, M.M.A.; Kaipiainen, E.; Mohsin, M.; Villa, A.; Kuittinen, S.; Pulkkinen, P.; Pelkonen, P.; Mehtätalo, L.; Pappinen, A. Effects of Contaminated Soil on the Growth Performance of Young Salix (Salix Schwerinii E. L. Wolf) and the Potential for Phytoremediation of Heavy Metals. J. Environ. Manag. 2016, 183, 467–477. [Google Scholar] [CrossRef]
- Salam, M.M.A.; Mohsin, M.; Pulkkinen, P.; Pelkonen, P.; Pappinen, A. Effects of Soil Amendments on the Growth Response and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. schwerinii × S. dasyclados) Grown in Contaminated Soils. Ecotoxicol. Environ. Safe 2019, 171, 753–770. [Google Scholar] [CrossRef]
- Wani, K.A.; Sofi, Z.M.; Malik, J.A.; Wani, J.A. Phytoremediation of Heavy Metals Using Salix (Willows). In Bioremediation and Biotechnology; Bhat, R., Hakeem, K., Dervash, M., Eds.; Springer: Cham, Switzerland, 2020; Volume 2, pp. 161–174. [Google Scholar]
- Mohsin, M.; Kuittinen, S.; Salam, M.M.A.; Peräniemi, S.; Laine, S.; Pulkkinen, P.; Kaipiainen, E.; Vepsäläinen, J.; Pappinen, A. Chelate-Assisted Phytoextraction: Growth and Ecophysiological Responses by Salix Schwerinii E.L Wolf Grown in Artificially Polluted Soils. J. Geochem. Explor. 2019, 205, 106335. [Google Scholar] [CrossRef]
- Dimitriou, I.; Aronsson, P. Nitrogen Leaching from Short-Rotation Willow Coppice after Intensive Irrigation with Wastewater. Biomass Bioenergy 2004, 26, 433–441. [Google Scholar] [CrossRef]
- Perttu, K.L.; Kowalik, P.J. Salix Vegetation Filters for Purification of Waters and Soils. Biomass Bioenergy 1997, 12, 9–19. [Google Scholar] [CrossRef]
- Yang, X.E.; Wu, X.; Hao, H.L.; He, Z.L. Mechanisms and Assessment of Water Eutrophication. J. Zhejiang Univ. Sci. B 2008, 9, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Finnish Environment Institute, 2013. The Assessment of the Ecological Status of Finland’s Surface Waters. ELY Centers and Finnish Game and Fisheries Research Institute. Available online: https://www.syke.fi/en-US/Current/Assessment_of_the_status_of_Finlands_wat(51413) (accessed on 19 January 2021).
- Morugán-Coronado, A.; García-Orenes, F.; Mataix-Solera, J.; Arcenegui, V.; Mataix-Beneyto, J. Short-Term Effects of Treated Wastewater Irrigation on Mediterranean Calcareous Soil. Soil Till Res. 2011, 112, 18–26. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. Int. J. Environ. Res. Public Health 2018, 15, 895. [Google Scholar] [CrossRef] [Green Version]
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-Industrial Wastewater Reuse for Irrigation of a Vegetable Crop Succession under Mediterranean Conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Bedbabis, S.; Ferrara, G.; Rouina, B.B.; Boukhris, M. Effects of Irrigation with Treated Wastewater on Olive Tree Growth, Yield and Leaf Mineral Elements at Short Term. Sci. Hortic. 2010, 126, 345–350. [Google Scholar] [CrossRef]
- Smith, D.M. CROPWAT: A Computer Program for Irrigation Planning and Management; FAO Irrigation and Drainage Paper 46; FAO: Rome, Italy, 1992. [Google Scholar]
- Ehsan, S.; Ali, S.; Noureen, S.; Farid, M.; Shakoor, M.B.; Aslam, A.; Bharwana, S.A.; Touqeer, H.M. Comparative Assessment of Different Heavy Metals in Urban Soil and Vegetables Irrigated with Sewage/Industrial Wastewater. Ecoterra 2013, 35, 37–53. [Google Scholar]
- Karnib, M.; Kabbani, A.; Holail, H.; Olama, Z. Heavy Metals Removal Using Activated Carbon, Silica and Silica Activated Carbon Composite. Energy Procedia 2014, 50, 113–120. [Google Scholar] [CrossRef] [Green Version]
- SFS-EN ISO 11905-1. Water Quality—Determination of Nitrogen—Part 1: Method Using Oxidatived with Peroxodisulfate (ISO 11905-1:1997); Swedish Institute for Standards: Stockholm, Sweden, 1998. [Google Scholar]
- SFS-EN ISO 13395. Water Quality—Determination of Nitrite Nitrogen and Nitrate Nitrogen and the Sum of Both by Flow Analysis (CFA and FIA) and Spectrometric Detection; Swedish Standard; Swedish Institute for Standards: Stockholm, Sweden, 1997. [Google Scholar]
- SFS-EN ISO 6878. Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method; Swedish Standard; Swedish Institute for Standards: Stockholm, Sweden, 2004. [Google Scholar]
- Environmental Protection Agency. Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices (3052); Environmental Protection Agency: Washington, DC, USA, 1996. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/3052.pdf (accessed on 15 September 2020).
- Bullard, M.J.; Mustill, S.J.; McMillan, S.D.; Nixon, P.M.I.; Carver, P.; Britt, C.P. Yield Improvements through Modification of Planting Density and Harvest Frequency in Short Rotation Coppice Salix Spp.—1. Yield Response in Two Morphologically Diverse Varieties. Biomass Bioenergy 2002, 22, 15–25. [Google Scholar] [CrossRef]
- Moffat, A.J.; Armstrong, A.T.; Ockleston, J. The Optimization of Sewage Sludge and Effluent Disposal on Energy Crops of Short Rotation Hybrid Poplar. Biomass Bioenergy 2001, 20, 161–169. [Google Scholar] [CrossRef]
- Labrecque, M.; Teodorescu, T.I.; Daigle, S. Effect of Wastewater Sludge on Growth and Heavy Metal Bioaccumulation of Two Salix Species. Plant Soil 1995, 171, 303–316. [Google Scholar] [CrossRef]
- Kowalik, P.J.; Randerson, P.F. Nitrogen and Phosphorus Removal by Willow Stands Irrigated with Municipal Waste Water-A Review of the Polish Experience. Biomass Bioenergy 1994, 6, 133–139. [Google Scholar] [CrossRef]
- Felix, E.; Tilley, D.R.; Felton, G.; Flamino, E. Biomass Production of Hybrid Poplar (Populus Sp.) Grown on Deep-Trenched Municipal Biosolids. Ecol. Eng. 2008, 33, 8–14. [Google Scholar] [CrossRef]
- Malik, J.A.; Wani, A.A.; Wani, K.A.; Bhat, M.A. Role of White Willow (Salix alba L.) for Cleaning Up the Toxic Metal Pollution. In Bioremediation and Biotechnology; Hakeem, K., Bhat, R., Qadri, H., Eds.; Springer: Cham, Switzerland, 2020; pp. 257–268. [Google Scholar]
- Börjesson, P.; Berndes, G. The Prospects for Willow Plantations for Wastewater Treatment in Sweden. Biomass Bioenergy 2006, 30, 428–438. [Google Scholar] [CrossRef]
- Heaton, R.J.; Slater, F.M.; Randerson, P.F.; Samuel, W.R. The Influence of Fertilisation on the Yield of Short Rotation Willow Coppice in the Uplands of Mid-Wales. Asp. Appl. Biol. 2001, 65, 77–82. [Google Scholar]
- Holm, B.; Heinsoo, K. Municipal Wastewater Application to Short Rotation Coppice of Willows—Treatment Efficiency and Clone Response in Estonian Case Study. Biomass Bioenergy 2013, 57, 126–135. [Google Scholar] [CrossRef]
- Seo, B.S.; Park, C.M.; Song, U.; Park, W.J. Nitrate and Phosphate Removal Potentials of Three Willow Species and a Bald Cypress from Eutrophic Aquatic Environment. Landsc. Ecol. Eng. 2010, 6, 211–217. [Google Scholar] [CrossRef]
- Rasheed, F.; Zafar, Z.; Waseem, Z.A.; Rafay, M.; Abdullah, M.; Salam, M.M.A.; Mohsin, M.; Khan, W.R. Phytoaccumulation of Zn, Pb, and Cd in Conocarpus Lancifolius Irrigated with Wastewater: Does Physiological Response Influence Heavy Metal Uptake? Int. J. Phytoremed. 2020, 22, 287–294. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Nutrient Removal and Biomass Production in Land Treatment Systems Receiving Domestic Effluent. Ecol. Eng. 2009, 35, 1485–1492. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Jiang, X.; Zhou, S.; Wu, M.; Pan, M.; Chen, H. Microbial Community Compositional Analysis for Membrane Bioreactor Treating Antibiotics Containing Wastewater. Chem. Eng. J. 2017, 325, 300–309. [Google Scholar] [CrossRef]
- Shahid, M.; Abbas, A.; Cheema, A.I.; Noman, M.; Javed, M.T.; Naqqash, T.; Ahmed, T.; Manzoor, I. Plant-Microbe Interactions in Wastewater-Irrigated Soils. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives; Springer: Singapore, 2020; pp. 673–699. [Google Scholar] [CrossRef]
- Srivastava, N. Phytomicrobiome. In Synergistic Relationship in Bioremediation of Soil for Sustainable Agriculture; Verma, A., Saini, J.K., Hesham, A.E.L., Singh, H.B., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2021; pp. 150–163. [Google Scholar] [CrossRef]
- Raza, W.; Shen, Q. Volatile organic compounds mediated plant-microbe interactions in soil. In Molecular Aspects of Plant Beneficial Microbes in Agriculture; Academic Press: Cambridge, MA, USA, 2020; pp. 209–219. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Hussain, I.; Rasheed, R.; Iqbal, M.; Riaz, M.; Arif, M.S. Advances in Microbe-Assisted Reclamation of Heavy Metal Contaminated Soils over the Last Decade: A Review. J. Environ. Manag. 2017, 198, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Stålnacke, P.; Bechmann, M.; Iital, A. Introduction: Nitrogen Losses from Agriculture in the Baltic Sea Region. Agric. Ecosyst. Environ. 2014, 198, 1–3. [Google Scholar] [CrossRef]
Month | WW (m3) | RW (m3) | WW + RW (m3) | Outflow (m3) | Evapotranspiration (mm) |
---|---|---|---|---|---|
2018 | |||||
May | 600 | 112 | 712 | 247 | 465 |
June | 800 | 213 | 1013 | 413 | 600 |
July | 1080 | 289 | 1369 | 439 | 930 |
August | 1240 | 386 | 1626 | 696 | 930 |
September | 1200 | 254 | 1454 | 854 | 600 |
Total | 4920 | 1254 | 6174 | 2649 | 3525 |
2019 | |||||
May | 520 | 80 | 600 | 135 | 465 |
June | 1200 | 290 | 1490 | 890 | 600 |
July | 1240 | 386 | 1626 | 696 | 930 |
August | 1240 | 232 | 1472 | 542 | 930 |
September | 1200 | 68 | 1268 | 668 | 600 |
Total | 5400 | 1056 | 6456 | 2931 | 3525 |
Year | N Load (kg·ha−1) | N Outflow (kg·ha−1) | P Load (kg·ha−1) | P Outflow (kg·ha−1) |
---|---|---|---|---|
2018 | 89.80 | 35.66 | 0.66 | 0.33 |
2019 | 129.04 | 76.38 | 1.15 | 0.78 |
Year | Parameters of the Model | Determination | |
---|---|---|---|
a | b | R2 | |
2017 | 0.042 | 2.846 | 0.986 |
2018 | 0.105 | 2.595 | 0.983 |
2019 | 0.059 | 2.861 | 0.981 |
Parameter | Unit | 2018 | 2019 |
---|---|---|---|
Temperature | °C | 13 | 10 |
pH | - | 7.98 | 8.09 |
Conductivity | µS·cm−1 | 1150 | 865 |
Total N | µg·L−1 | 2450.43 | 1340 |
Total P | µg·L−1 | 266.66 | 326 |
NH4-N | µg·L−1 | 1583.66 | 2133.33 |
NO3-N | µg·L−1 | 483.33 | 266.66 |
Properties | Unit | Outokumpu | Siikasalmi |
---|---|---|---|
Dry matter | % | 98 | 95 |
Ash | % | 93 | 90 |
Organic matter | % | 7 | 5 |
pH | - | 5 | 5.6 |
N | Mg·kg−1 d.w. | 3100 | 16 |
P | mg·kg−1 d.w. | 1949 | 4.10 |
K | mg·kg−1 d.w. | 2068 | 52 |
Ca | mg·kg−1 d.w. | 2524 | 290 |
Mg | mg·kg−1 d.w. | 5016 | 42 |
Cu | mg·kg−1 d.w. | 86 | 10.90 |
Ni | mg·kg−1 d.w. | 18 | 8.20 |
Zn | mg·kg−1 d.w. | 83 | 18.20 |
Cr | mg·kg−1 d.w. | 23 | 13.3 |
As | mg·kg−1 d.w. | 1 | 1.10 |
Cd | mg·kg−1 d.w. | 0.10 | 0.03 |
Pb | mg·kg−1 d.w. | 10 | 3.40 |
Property | 2017 | 2018 | 2019 | |||
---|---|---|---|---|---|---|
Control | WW | Control | WW | Control | WW | |
Dry weight (g) | 39.32 ± 20.21 | 55.41 ± 13.49 | 111 ± 48.98 | 443 ± 146 | 1021 ± 70.45 | 1658 ± 318 |
Number of shoots | 3 | 2.10 | 2.1 | 1.60 | 1.6 | 1.27 |
Mortality rate (%) | 11 | 10 | 13 | 7 | 16 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohsin, M.; Kaipiainen, E.; Salam, M.M.A.; Evstishenkov, N.; Nawrot, N.; Villa, A.; Wojciechowska, E.; Kuittinen, S.; Pappinen, A. Biomass Production and Removal of Nitrogen and Phosphorus from Processed Municipal Wastewater by Salix schwerinii: A Field Trial. Water 2021, 13, 2298. https://doi.org/10.3390/w13162298
Mohsin M, Kaipiainen E, Salam MMA, Evstishenkov N, Nawrot N, Villa A, Wojciechowska E, Kuittinen S, Pappinen A. Biomass Production and Removal of Nitrogen and Phosphorus from Processed Municipal Wastewater by Salix schwerinii: A Field Trial. Water. 2021; 13(16):2298. https://doi.org/10.3390/w13162298
Chicago/Turabian StyleMohsin, Muhammad, Erik Kaipiainen, Mir Md Abdus Salam, Nikolai Evstishenkov, Nicole Nawrot, Aki Villa, Ewa Wojciechowska, Suvi Kuittinen, and Ari Pappinen. 2021. "Biomass Production and Removal of Nitrogen and Phosphorus from Processed Municipal Wastewater by Salix schwerinii: A Field Trial" Water 13, no. 16: 2298. https://doi.org/10.3390/w13162298