Next Article in Journal
Evidence of Taxonomic and Functional Recovery of Macroinvertebrate Communities Following River Restoration
Next Article in Special Issue
Temporal Influences of Vegetation Cover (C) Dynamism on MUSLE Sediment Yield Estimates: NDVI Evaluation
Previous Article in Journal
Spatiotemporal Analysis of Meteorological and Hydrological Droughts and Their Propagations
Previous Article in Special Issue
Erosion Transportation Processes as Influenced by Gully Land Consolidation Projects in Highly Managed Small Watersheds in the Loess Hilly–Gully Region, China
Article

Multi-Step Calibration Approach for SWAT Model Using Soil Moisture and Crop Yields in a Small Agricultural Catchment

1
Institute for Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
2
Federal Agency for Water Management, Institute for Land and Water Management Research, 3252 Petzenkirchen, Austria
3
Institute of Soil and Water Conservation, Northwest A & F University, Xianyang 712100, China
4
Departments of Ecology and Conservation Biology and Biological and Agricultural Engineering, Texas A&M University, Collage Station, TX 77843-2258, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Maria Mimikou
Water 2021, 13(16), 2238; https://doi.org/10.3390/w13162238
Received: 29 June 2021 / Revised: 11 August 2021 / Accepted: 12 August 2021 / Published: 17 August 2021
(This article belongs to the Special Issue Modelling of Soil Conservation, Soil Erosion and Sediment Transport)
The quantitative prediction of hydrological components through hydrological models could serve as a basis for developing better land and water management policies. This study provides a comprehensive step by step modelling approach for a small agricultural watershed using the SWAT model. The watershed is situated in Petzenkirchen in the western part of Lower Austria and has total area of 66 hectares. At present, 87% of the catchment area is arable land, 5% is used as pasture, 6% is forested and 2% is paved. The calibration approach involves a sequential calibration of the model starting from surface runoff, and groundwater flow, followed by crop yields and then soil moisture, and finally total streamflow and sediment yields. Calibration and validation are carried out using the r-package SWATplusR. The impact of each calibration step on sediment yields and total streamflow is evaluated. The results of this approach are compared with those of the conventional model calibration approach, where all the parameters governing various hydrological processes are calibrated simultaneously. Results showed that the model was capable of successfully predicting surface runoff, groundwater flow, soil profile water content, total streamflow and sediment yields with Nash-Sutcliffe efficiency (NSE) of greater than 0.75. Crop yields were also well simulated with a percent bias (PBIAS) ranging from −17% to 14%. Surface runoff calibration had the highest impact on streamflow output, improving NSE from 0.39 to 0.77. The step-wise calibration approach performed better for streamflow prediction than the simultaneous calibration approach. The results of this study show that the step-wise calibration approach is more accurate, and provides a better representation of different hydrological components and processes than the simultaneous calibration approach. View Full-Text
Keywords: SWAT; SWATplusR; soil erosion model; step-wise calibration; HOAL; soil moisture; crop yields; sediment yield; streamflow; sequential calibration SWAT; SWATplusR; soil erosion model; step-wise calibration; HOAL; soil moisture; crop yields; sediment yield; streamflow; sequential calibration
Show Figures

Figure 1

MDPI and ACS Style

Musyoka, F.K.; Strauss, P.; Zhao, G.; Srinivasan, R.; Klik, A. Multi-Step Calibration Approach for SWAT Model Using Soil Moisture and Crop Yields in a Small Agricultural Catchment. Water 2021, 13, 2238. https://doi.org/10.3390/w13162238

AMA Style

Musyoka FK, Strauss P, Zhao G, Srinivasan R, Klik A. Multi-Step Calibration Approach for SWAT Model Using Soil Moisture and Crop Yields in a Small Agricultural Catchment. Water. 2021; 13(16):2238. https://doi.org/10.3390/w13162238

Chicago/Turabian Style

Musyoka, Francis K., Peter Strauss, Guangju Zhao, Raghavan Srinivasan, and Andreas Klik. 2021. "Multi-Step Calibration Approach for SWAT Model Using Soil Moisture and Crop Yields in a Small Agricultural Catchment" Water 13, no. 16: 2238. https://doi.org/10.3390/w13162238

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop