A Collaborative Sensing System for Farmland Water Conservancy Project Maintenance through Integrating Satellite, Aerial, and Ground Observations
Abstract
:1. Introduction
2. The System Architecture Proposed
3. Maintenance Service Analysis of the Collaborative Sensing System
3.1. Favorable Sensing Data for FWCP Maintenance
3.2. Service Analysis
3.2.1. Routine Maintenance Analysis
3.2.2. Emergency Maintenance Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nagaraj, D.; Proust, E.; Todeschini, A.; Rulli, M.C.; D’Odorico, P. A new dataset of global irrigation areas from 2001 to 2015. Adv. Water Resour. 2021, 152, 103910. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Pastor, A.; Biemans, H.; Gerten, D. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kinzli, K.D.; Martinez, M.; Oad, R.; Prior, A.; Gensler, D. Using an ADCP to determine canal seepage loss in an irrigation distric. Agric. Water Manag. 2010, 97, 801–810. [Google Scholar] [CrossRef]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Global Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Yan, J. Spatiotemporal analysis for investment efficiency of China’s rural water conservancy based on DEA model and Malmquist productivity index model. Sustain. Comput. Inform. Syst. 2019, 21, 56–71. [Google Scholar] [CrossRef]
- Rosa, L.; Rulli, M.C.; Davis, K.F.; Chiarelli, D.D.; Passera, C.; D’Odorico, P. Closing the yield gap while ensuring water sustainability. Environ. Res. Lett. 2018, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Habteyes, B.G.; Ward, F.A. Economics of irrigation water conservation: Dynamic optimization for consumption and investment. J. Environ. Manage. 2020, 258, 110040. [Google Scholar] [CrossRef]
- Shang, S.; Jiang, L.; Yang, Y. Review of remote sensing-based assessment method for irrigation and crop water use efficiency. Trans. Chin. Soc. Agric. Mach. 2015, 46, 81–92. (In Chinese) [Google Scholar]
- Cui, Y.S.; Shi, X.; Cui, P. Discussion on performance appraisal method for comprehensive reform of agricultural water price based on factor system. Water Resour. Dev. Res. 2018, 18, 27–30. (In Chinese) [Google Scholar]
- Oad, R.; Garcia, L.; Kinzli, K.D.; Patterson, D.; Shafike, N. Decision Support Systems for Efficient Irrigation in the Middle Rio Grande Valley. J. Irrig. Drain. Eng. 2009, 135, 177–185. [Google Scholar] [CrossRef]
- Ma, H.; Luo, Z.; Chen, P.; Guan, B. Application of remote sensing technology in construction and management of irrigation and drainage engineering. Hubei Agric. Sci. 2019, 58, 16–20. (In Chinese) [Google Scholar]
- Wang, G.; Yao, J.; Li, D.; Zhao, P. Study on application of remote sensing by Unmanned Aerial Vehicle in hydraulic engineering survey. Geomat. Spat. Inf. Technol. 2016, 39, 113–115. (In Chinese) [Google Scholar]
- Wang, L.; Liu, Z.; Yu, X. Application of 3S technology in ditch line selection for farmland irrigation and drainage (in Chinese). Chin. Agric. Sci. Bull. 2014, 30, 140–144. [Google Scholar]
- Chao, Z.; Liu, N.; Zhang, P.; Ying, T.; Song, K. Estimation methods developing with remote sensing information for energy crop biomass: A comparative review. Biomass Bioenergy 2019, 122, 414–425. [Google Scholar] [CrossRef]
- Shao, Y.; Zhao, Z.; Huang, F.; Xiao, Q.; Wang, Y.; Zhang, F. Precise emergency service system construction and demonstration through synergy observation of spaceborne, airborne, and ground remote sensing. J. Remote Sens. 2016, 20, 1485–1490. (In Chinese) [Google Scholar]
- Zhang, L.; Li, G.; Zhu, L.; Guo, H. Construction and service demonstration of Hainan remote sensing big data platform. J. Remote Sens. 2019, 23, 327–335. (In Chinese) [Google Scholar]
- Duan, H.; Wan, N.; Qiu, Y.; Liu, G.; Chen, Q.; Luo, J.; Chen, Y.; Qi, T. Discussions and practices on the framework of monitoring system in eutrophic lakes and reservoirs. J. Lake Sci. 2020, 32, 1396–1405. (In Chinese) [Google Scholar]
- The Communist Party of China and the State Council. The Opinions on Comprehensively Deepening Rural Reform and Speeding up the Modernization of Agriculture. Available online: http://www.gov.cn/zhengce/2021-02/21/content_55880 (accessed on 21 February 2021). (In Chinese)
- Lan, K.; Chen, X.; Ridoutt, B.G.; Huang, J.; Scherer, L. Closing yield and harvest area gaps to mitigate water scarcity related to China’s rice production. Agric. Water Manag. 2021, 245, 106602. [Google Scholar] [CrossRef]
- Tang, H.; Yun, W.; Liu, W.; Sang, L. Structural changes in the development of China’s farmland consolidation in 1998–2017: Changing ideas and future framework. Land Use Policy 2019, 89, 104212. [Google Scholar] [CrossRef]
- Fan, Z.; Lin, S.; Zhang, X.; Jiang, Z.; Yang, K.; Jian, D.; Chen, Y.; Li, J.; Chen, Q.; Wang, J. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agric. Water Manag. 2014, 144, 11–19. [Google Scholar] [CrossRef]
- Shao, G.; Deng, S.; Liu, N.; Yu, S.; Wang, M.; She, D. Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice. Europ. J. Agron. 2014, 53, 1–9. [Google Scholar] [CrossRef]
- He, G.; Wang, Z.; Cui, Z. Managing irrigation water for sustainable rice production in China. J. Clean. Prod. 2020, 245, 118928. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Jalilvand, E.; Tajrishy, M.; Ghazi Zadeh Hashemi, S.A.; Brocca, L. Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sens. Environ. 2019, 231, 111226. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D’Urso, U.; Menenti, M. Remote sensing for crop water management: From ET modelling to services for the end users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping maizewater stress based on UAV multispectral remote sensing. Remote Sens. 2019, 11, 605. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Guo, H.; Dong, X.L.; Liang, S.; Chen, J.; Gong, P.; Yang, X.; Cheng, J.; Lin, M.; Zhang, P.; et al. Developments and future strategies of Earth science from space in China. Chin. J. Sp. Sci. 2021, 41, 95–117. (In Chinese) [Google Scholar]
- Han, W.; Guo, C.; Zhang, L.; Yang, J.; Lei, Y.; Wang, Z. Classification method of land cover and irrigated farm land use based on UAV remote sensing in irrigation. Trans. Chin. Soc. Agric. Mach. 2016, 47, 270–277. (In Chinese) [Google Scholar]
- Wang, P.; Luo, X.; Zhou, Z.; Yang, Y.; Hu, L. Key technology for remote sensing information acquisition based on micro UAV. Trans. Chin. Soc. Agric. Eng. 2014, 30, 1–12. (In Chinese) [Google Scholar]
- Han, W.; Zhang, L.; Niu, Y.; Xiang, S. Review on UAV Remote Sensing Application in Precision Irrigation. Trans. Chin. Soc. Agric. Mach. 2020, 51, 1–14. (In Chinese) [Google Scholar]
- Zhang, Y.; Zhang, L.; Zhang, H.; Song, C.; Han, W. Crop coefficient estimation method of maize by UAV remote sensing and soil moisture monitoring. Trans. Chin. Soc. Agric. Eng. 2019, 35, 83–89. (In Chinese) [Google Scholar]
- Wu, F.; Zhang, M.; Wu, B. Object-oriented rapid estimation of rice acreage from UAV imagery. J. Geo-Inf. Sci. 2019, 21, 89–798. (In Chinese) [Google Scholar]
- Taghvaeian, S.; Neale, C.M.U.; Osterberg, J.C.; Sritharan, S.I.; Watts, D.R. Remote Sensing and GIS Techniques for Assessing Irrigation Performance: Case Study in Southern California. J. Irrig. Drain. Eng. 2018, 144, 05018002. [Google Scholar] [CrossRef]
- Hassani, Y.; Hashemy Shahdany, S.M.; Maestre, J.M.; Zahraie, B.; Ghorbani, M.; Henneberry, S.R.; Kulshreshtha, S.N. An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing. Agric. Water Manag. 2019, 221, 348–361. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, W.; Jiang, Y. Remote sensing of cropping structure in the middle reaches of the Heihe river basin. J. Geo-Inf. Sci. 2019, 21, 1629–1641. (In Chinese) [Google Scholar]
- Liu, J.; Chen, P.; Zhang, D.; Zhao, H. Crop planting structure in Lishui County based on time-series Sentinel-2 images. Jiangsu J. Agric. Sci. 2020, 36, 1428–1436. (In Chinese) [Google Scholar]
- Yang, J.; Zhang, S.; Bai, Y.; Huang, A.; Zhang, J. SPEI simulation for monitoring drought-based machine learning integrating multi-source remote sensing data in Shandong. Chin. J. Agrometeorol. 2021, 42, 230–242. (In Chinese) [Google Scholar]
- Yan, L.; Long, D.; Bai, L.; Zhang, C.; Han, Z.; Li, X.; Wang, W.; Shen, S.; Ye, Y. A review on water resources stereoscopic monitoring systems based on multisource data. J. Remote Sens. 2020, 24, 787–803. (In Chinese) [Google Scholar]
- Jiang, L.; Yang, Y.; Shang, S. Evaluation on irrigation efficiency of irrigation district in arid region based on evapotranspiration estimated from remote sensing data. Trans. Chin. Soc. Agric. Eng. 2013, 29, 95–101. (In Chinese) [Google Scholar]
- Tong, D.; Qian, H.; Wang, R.; Cui, Y. Methodologies of metering water with electricity in pumping stations of plain river systems: Application of comprehensive reform of agricultural water pricing. China Water 2019, 21, 43–45. (In Chinese) [Google Scholar]
- Wu, W.; Shi, Y.; Duan, Y.; Yu, Q.; Song, Q.; Qian, J.; Zhang, B.; Lu, M.; Yang, P.; Zhou, Q.; et al. The precise management of orchard production driven by the remote sensing big data with the SAGI. China Agric. Inform. 2019, 31, 1–9. (In Chinese) [Google Scholar]
- Li, X.; Xie, Z. Introduction to the water-soil-air-plant-human nexus: Modeling and observing complex land-surface systems at river basin scale. J. Geophys. Res. Atmos. 2019, 124, 12375–12379. [Google Scholar] [CrossRef]
- Jin, R.; Li, X.; Liu, S.M. Understanding the Heterogeneity of Soil Moisture and Evapotranspiration Using Multiscale Observations from Satellites, Airborne Sensors, and a Ground-Based Observation Matrix. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2132–2136. [Google Scholar] [CrossRef]
- Jiang, F.; Kutia, M.; Ma, K.; Chen, S.; Long, J.; Sun, H. Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture. Sci. Total Environ. 2021, 785, 147335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Pan, Y.; Zhang, J.; Hu, T.; Zhao, J.; Li, N.; Chen, Q. A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution. Remote Sens. Environ. 2020, 247, 111912. [Google Scholar] [CrossRef]
- Li, D.; Ding, L.; Shao, Z. Application-oriented real-time remote sensing service technology. J. Remote Sens. 2021, 25, 15–24. (In Chinese) [Google Scholar]
Item | Elements |
---|---|
Basic information database | Irrigated area, soil permeability and types, water depth, depth to the groundwater table, impermeable soil layers, cropping patterns, crop types, meteorological data, etc. |
FWCP base | Lateral canal, main canal, irrigation service area, canal length, irrigated area, main canal layout, lateral canal layout, wells, drains, pump station type, pump head, service life of pump, the hydroelectric conversion coefficient of the pump station, FWCP maintenance criteria, etc. |
Data Source | Data Characteristic | Sensed Elements | Data Acquisition Cost | ||
---|---|---|---|---|---|
Sensor | Band | Spatial Resolution | |||
GF series | Panchromatic, multispectral, hyperspectral sensors | Panchromatic, red, green, blue, near infrared, red edge | Pan: 1 m or 2 m, multispectral: 4, 8, 16 m | Crop growth, crop planting area, FWCP, surface temperature, soil moisture, etc. | Free under the agreement |
UAVs | Multispectral, hyperspectral, thermal infrared | Multispectral, hyperspectral, thermal infrared | Centimeter scale | Crop growth, FWCP, surface temperature, soil moisture, etc. | Low cost, high flexibility, but short operating cycle |
Ground sensors | Thermal infrared radiometer, TDR (time-domain reflectometry), pan evaporation, water level meter, Acoustic Doppler Current Profile | Surface temperature, soil temperature, evapotranspiration, precipitation, runoff, etc. | High cost, distribute discretely, low coverage |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, Z.; Fang, X.; Na, J.; Che, M. A Collaborative Sensing System for Farmland Water Conservancy Project Maintenance through Integrating Satellite, Aerial, and Ground Observations. Water 2021, 13, 2163. https://doi.org/10.3390/w13162163
Chao Z, Fang X, Na J, Che M. A Collaborative Sensing System for Farmland Water Conservancy Project Maintenance through Integrating Satellite, Aerial, and Ground Observations. Water. 2021; 13(16):2163. https://doi.org/10.3390/w13162163
Chicago/Turabian StyleChao, Zhenhua, Xuan Fang, Jiaming Na, and Mingliang Che. 2021. "A Collaborative Sensing System for Farmland Water Conservancy Project Maintenance through Integrating Satellite, Aerial, and Ground Observations" Water 13, no. 16: 2163. https://doi.org/10.3390/w13162163
APA StyleChao, Z., Fang, X., Na, J., & Che, M. (2021). A Collaborative Sensing System for Farmland Water Conservancy Project Maintenance through Integrating Satellite, Aerial, and Ground Observations. Water, 13(16), 2163. https://doi.org/10.3390/w13162163