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Abstract: Mapping maize water stress status and monitoring its spatial variability at a farm scale
are a prerequisite for precision irrigation. High-resolution multispectral images acquired from an
unmanned aerial vehicle (UAV) were used to evaluate the applicability of the data in mapping water
stress status of maize under different levels of deficit irrigation at the late vegetative, reproductive
and maturation growth stages. Canopy temperature, field air temperature and relative humidity
obtained by a handheld infrared thermometer and a portable air temperature/relative humidity
meter were used to establish a crop water stress index (CWSI) empirical model under the weather
conditions in Ordos, Inner Mongolia, China. Nine vegetation indices (VIs) related to crop water stress
were derived from the UAV multispectral imagery and used to establish CWSI inversion models.
The results showed that non-water-stressed baseline had significant difference in the reproductive
and maturation stages with an increase of 2.1 ◦C, however, the non-transpiring baseline did not
change significantly with an increase of 0.1 ◦C. The ratio of transformed chlorophyll absorption in
reflectance index (TCARI) and renormalized difference vegetation index (RDVI), and the TCARI and
soil-adjusted vegetation index (SAVI) had the best correlations with CWSI. R2 values were 0.47 and
0.50 for TCARI/RDVI and TCARI/SAVI at the reproductive and maturation stages, respectively;
and 0.81 and 0.80 for TCARI/RDVI and TCARI/SAVI at the late reproductive and maturation stages,
respectively. Compared to CWSI calculated by on-site measurements, CWSI values retrieved by
VI-CWSI regression models established in this study had more abilities to assess the field variability
of crop and soil. This study demonstrates the potentiality of using high-resolution UAV multispectral
imagery to map maize water stress.

Keywords: crop water stress index (CWSI); vegetation index; regression model; non-water-stressed
baseline; non-transpiring baseline

1. Introduction

Water resource scarcity is one of the most important challenges for agricultural water management,
especially in arid and semi-arid areas all over the world. Due to drought associated with climate change,
agricultural water resources will be reduced, it is necessary to achieve maximum production per unit
of applied irrigation water. As one of the important ways to enhance water-use efficiency, regulated
deficit irrigation may solve this dilemma [1–4]. However, to achieve a delicate balance between yield
and irrigation water, effective monitoring methods for crop water stress are necessary [5–7].
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Currently, crop water stress can be detected based on soil moisture content, crop physiological
characteristics (e.g., stomatal conductance, leaf water potential) and remote-sensing technology [8].
On-site measurements of soil water content and crop physiological characteristics are time-consuming,
laborious and costly, and do not take into account the spatial variability of soil and crops [9,10].
Measurements of canopy temperature or canopy reflectance based on remote-sensing technology have
the advantages of being easy, non-destructive and of low labor intensity [8,11].

Since numerous data from various remote sensing imagery platforms have become available,
studies of monitoring crop water stress have been done by satellite [12–14] and aerial [15–18]
remote-sensing technology. However, crop monitoring applications are highly demanding with respect
to temporal frequency (1–3 days revisit) of key image acquisition, and spatial resolution requirements
are driven by the minimum management unit that can be in the range of 1–10 m [19]. Satellite
remote sensing has the disadvantages of low spatial-temporal resolution and vulnerability to weather.
For instance, Landsat and SPOT has spatial resolution of 30 and 20 m, and revisit time 16 and 26 days,
respectively. It is often difficult to meet the monitoring need of crop water stress at a farm scale. Aerial
remote sensing has the disadvantages of high operational difficulty and high operating cost. Due to the
advantages of low cost, easy to construct, convenient transportation, high flexibility, short operating
cycle and high spatial-temporal resolution, an unmanned aerial vehicle (UAV) remote-sensing system
could collect crop information in a desirable spatial-temporal resolution [20–22]. This makes it more
suitable to monitor crop water stress quickly and meticulously at a farm scale.

Due to the principle that crop canopy temperature (Tc) rises with increasing water stress in
comparison to crop under well irrigation condition [23], several researchers integrated thermal
cameras into UAV platforms to evaluate crop water stress of the entire field. Zhang et al. [24] used
canopy temperature characteristics derived from UAV thermal images to monitor cotton water status.
The results suggested canopy temperature standard deviation (CTSD) was sensitive to crop water stress
with a coefficient of determination (R2) of 0.88 between CTSD and stomatal conductance. Martínez
et al. [25] assessed the potential of UAV thermal imaging for monitoring plant water stress in a
commercial sugar beet field. The results indicated that a lightweight UAV canopy temperature system
including an infrared thermometer and a microcontroller board as data logger, was robust and reliable,
but there were some constraints related to weather conditions and delimitation of the area covered by
the infrared sensor.

However, Tc is not only affected by water supply but also by the actual micro-meteorological
conditions (such as, air temperature (Ta), relative humidity (RH) and vapor pressure deficit (VPD)).
Therefore, aiming to reduce the influence of meteorological conditions, several temperature-based
indices were developed over the last few decades [17]. The crop water stress index (CWSI) based on
canopy temperature and some meteorological parameters has been investigated as an effective method
to monitor the water status of various plants by many previous researchers, such as maize [26–29],
cotton [30,31], grapevine [16,32–34], peaches [35–37] and olives [38–40]. Good relationships between
CWSI and other on-site crop water stress indicators have been shown, such as soil water content [41–44],
leaf water potential [16,45,46] and stomatal conductance [32,33,47]. There are two widely used CWSI
models: the empirical model proposed by Idso et al. [48] and the theoretical model proposed by
Jackson et al. [49]. Compared to the theoretical model, the empirical model is easier to establish and
only needs Tc, Ta and RH.

When establishing the CWSI empirical model, there are two common methods to establish
non-water-stressed baseline (NWSB) and non-transpiring (stomata fully closed) baseline (NTB), namely
using wet and dry reference, and using the linear segment in the plot of dTLL (the lower limit of
canopy-air temperature difference) vs. VPD (vapor pressure deficit). For example, Wang et al. [44]
established the CWSI empirical model for winter wheat planted in Luancheng area, Hebei Province,
China, by using wet and dry reference to establish NWSB and NTB. However, to ensure the monitoring
effect of crop water stress, it is necessary to select the wet and dry reference position in practical
applications carefully. Taghvaeian et al. [42] established the CWSI empirical model for maize planted
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in Northeastern Colorado, USA by using the linear segment in the plot of dTLL vs. VPD. Compared to
using wet and dry reference, it is easier to establish NWSB and NTB by using the linear segment in the
plot of dTLL vs. VPD in practical applications.

As the key parameter to estimate CWSI, Tc conventionally relies on manual or continuous
point measurements [4,31,50]. However, the ground-based handheld thermometer approach is
labor-intensive, costly, and impractical when monitoring large areas; furthermore, water stress status
at the agricultural fields commonly has spatial variability due to spatially heterogeneous biophysical
conditions between plants or even within a plant [51–54]. To monitor crop water stress and its
spatial variability at a field scale, several researchers started to obtain CWSI maps based on a UAV
remote-sensing system. Bellvert et al. [55] characterized the spatial variability in water status across
vineyards by CWSI maps. The results showed that the CWSI maps thus obtained by UAV thermal
imagery were effective in assessing the spatial variability of water stress across the vineyard. Zhang et
al. [30] evaluated cotton water stress and its spatial variability by UAV thermal remote-sensing system.
The results showed that the R2 between CWSI and leaf stomatal conductance of cotton planted in
Yangling, Shaanxi, China was 0.84.

However, due to the load capacity limitation of UAV platforms, the thermal infrared sensors
currently mounted are mostly lightweight uncooled thermal infrared cameras that have the problems
of unstable canopy temperature acquisition, low mosaic precision (e.g., number of tie-points, number
of geolocated images and mean re-projection error etc.) and needing complex pretreatments (e.g.,
radiometric calibration, temperature correction and canopy temperature extraction) [17,56]. Compared
to the thermal infrared system, a UAV-based multispectral remote-sensing system has the advantages
of stable information acquisition and mature mosaic technology. It could be a supplement to
ground-based infrared thermometry to obtain CWSI maps with a high spatial-temporal resolution at
the field scale.

A vegetation index (VI), which is the mathematical operation result of reflectivity of vegetation
and other ground objects in the corresponding band [57], can be used to monitor surface vegetation
condition. VI has been successfully applied to land cover classification, environmental change, and
drought monitoring [33]. Water stress could affect crop canopy structure, photosynthesis and leaf
moisture content. VIs used to monitor crop water stress can be divided into four categories: structure
index, chlorophyll index, lutein index and moisture index [8]. The structure and chlorophyll indices
based on visible, near infrared and red-edge bands are more widely used, such as normalized difference
vegetation index (NDVI) [58], renormalized difference vegetation index (RDVI) [33], soil-adjusted
vegetation index (SAVI) [59], optimization of soil-adjusted vegetation index (OSAVI) [60], transformed
chlorophyll absorption in reflectance index (TCARI) [60]. To reduce the sensitivity of TCARI to canopy
structure changes, TCARI/OSAVI was used by Haboudane et al. [60]. When structure index was used
to describe canopy structure, its effect would be affected by the soil, crops, and planting structure.
To reduce the sensitivity of TCARI to canopy structure changes, in this study NDVI, RDVI, SAVI and
OSAVI were used, respectively.

To map maize water status and monitor its spatial variability at a farm scale, in this study,
the CWSI empirical model was developed by the ground-based data and high-resolution UAV-based
multispectral images of maize under various levels of deficit irrigation at different growth stages.
The linear segment in the plot of dTLL vs. VPD was used to establish the NWSB and NTB. VIs related
to water stress derived from multispectral imagery were used to establish CWSI inversion model.
Since, the local conditions, irrigation technique, and management practices can greatly influence the
applicability of remote sensing systems for water status evaluation. The specific objectives of this
study were:

(1) To develop the NWSB and NTB for maize under the weather condition in Ordos, Inner
Mongolia, China;

(2) To evaluate UAV-based multispectral VIs that are sensitive to maize water stress and establish
CWSI regression models;
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(3) To obtain CWSI maps with high spatial-temporal resolution at the field scale using the CWSI
regression models.

2. Materials and Methods

2.1. Study Site

This study was conducted in a 1.13 ha research field (40◦26′0.29”N, 109◦36′25.99”E, Elev. 1010 m),
located in Zhaojun Town, Dalate Banner, Ordos, Inner Mongolia, China. Soil samples at the depths
of 30, 60 and 90 cm were collected from the sampling plot (yellow circle in Figure 1a) to estimate
the field hold capacity (volumetric) which were 13.6%, 13.2% and 12.3%, respectively. The average
permanent wilting point of the soil profile was assumed to be 5.6% (volumetric) according to Lv et
al. [61]. The soil bulk density was 1.56. The mixture of soil samples at the depths of 30, 60 and 90 cm
were used to estimate other soil characteristics. The soil type was a loamy sand (80.7% sand, 13.7%
powder, and 5.6% clay), using the United States Department of Agriculture soil taxonomy. The soil pH,
organic matter and C content were 9.27, 47.17 g/Kg and 27.35 g/Kg, respectively. Maize (Junkai 918)
was planted on 20 May 2017, with 0.58 m row spacing and 0.25 m plant spacing and the row direction
was East-West. The maize emerged on June 1, headed on July 20, was harvested on September 7 (silage)
with a 110-day lifespan.Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 25 
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Figure 1. Aerial view of the experimental field indicating treatment region division (a), the location
of sampling plots (a) and sampling sites (b). Air temperature and humidity, and canopy temperature
were taken at each sampling site.

2.2. Experimental Design

The study field was divided into five treatment (TRT) regions (Figure 1a) with different levels of
deficit irrigation at the crop late vegetative, reproductive and maturation growth stages. A 12 × 12 m2

area within each TRT region was chosen as a sampling plot for the TRT (Figure 1a) and data collection
from five sampling sites within the sampling plot were indicated in Figure 1b. The non-stressed crop
evapotranspiration (ET) was estimated by reference evapotranspiration and single crop coefficient
approach [62]. The crop coefficient was equal to 0.55, 1.09 and 0.45 in the initial, mid-season and
late-season development stages. The total crop water requirement of the full watered maize during
the late vegetation, reproductive and maturation stages was 407 mm which was close to the total
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applied water (402 mm) of the control treatment region (TRT 1). Therefore, different levels of deficit
irrigation were described by the percentages of applied water depth of TRT 1 during the late vegetation,
reproductive and maturation stages. For example, during the late vegetation stage, 84% of the applied
water depth at TRT 1 was applied to TRT 2 (Table 1)

Table 1. Experimental treatments and total applied water depth (percentage of full irrigation treatment
in parentheses) that includes amount of irrigation and precipitation in the late vegetative, reproductive
and maturation stages in 2017.

Treatment
Applied Water Depth/mm

Late Vegetative
(07.04–07.28)

Reproductive
(07.29–08.20)

Maturation
(08.21–09.07) Total

TRT 1 188 (100%) 132 (100%) 82 (100%) 402
TRT 2 158 (84%) 128 (97%) 43 (52%) 329
TRT 3 158 (84%) 125 (95%) 43 (52%) 326
TRT 4 158 (84%) 91 (69%) 23 (28%) 272
TRT 5 158 (84%) 124 (94%) 82 (100%) 365

Irrigation was applied during the growing season by using a center pivot sprinkler system
(Valmont Industries, Inc., Omaha, NE, USA) that has two spans and one end gun with a total length
of 143.7 m. More detailed information about the center pivot sprinkler system can be found in Li et
al. [63]. The uniformity test of water application of the center pivot irrigation system was conducted in
accordance with the standard ANSI/ASAE S436.1 and ISO 11545. The coefficient of uniformity of the
first span (research field) calculated by the modified formula of Heermann and Hein [64] was 82.7%
under a walking speed of 20% of the full speed and 88.3% under a walking speed of 40% of the full
speed using R3000 sprinklers. The amount of water applied to each treatment was measured and
recorded by MIK-2000H flow meters (Meacon Automation Technology Co., Ltd, Hangzhou, China).
The actual amount of irrigation and rainfall at each grown stage were shown in Table 1. In order
to eliminate the interference of nutritional stress and weeds, fertilizer and herbicide were applied
according to the planting experience.

2.3. Measurement of Maize Canopy Temperature

Maize canopy temperature (Tc) and UAV multispectral data were synchronously collected under
clear sky conditions between 11:00–13:00 local time (Chinese standard time, 11:44–13:44) during the
study period (2017.08.06~29, including the reproductive and maturation stages). Tc was measured by a
handheld infrared thermometer (RAYTEK, ST60+, Raytek Inc, Santa Cruz, CA, USA). The temperature
range and spectral range were −32–600 ◦C and 8–14 µm, respectively. The measurement error was
±1% of reading or ±1 ◦C, the lager value was adopted in the practical application. The emissivity
value was set to 0.97. To avoid the interference of the soil, the handheld infrared thermometer was
used to sweep the canopy (about 120◦) perpendicular to the row with 30 cm above the canopy and
15◦ horizontal angle (Figure 2). At each sampling site three measurements of Tc were taken and the
average value of these three readings was used to represent the sampling site. The average value of Tc
measured at the five sampling sites (yellow circle in Figure 1b) was used to represent the status of the
sampling plot. During each data collection day, a total of 15 canopy temperature measurements were
obtained for each sampling plot. During the reproductive and maturation stages, the average plant
heights were 263, 258, 252, 253 and 261 cm for TRTs 1~5, respectively.
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Figure 2. Schematic indicating measurement method of canopy temperature in each sampling site.

2.4. Meteorological Data

The field air temperature and relative humidity (Ta_f and RH_f) of each sample plots was obtained
by a handheld hygrometer (Klimalogg Pro, TFA, Germany). During the study period Ta_f and RH_f
were measured synchronously with Tc at a height of 2.2 m above the ground. The average of Ta_f
and RH_f collected at the five sampling sites (Figure 1b) represented the status of one sampling plot.
The weather data were measured at an automated weather station adjacent to the research field,
which included rainfall, Ta and RH, net solar radiation, and wind speed (2 m above the reference
grass surface). In addition to rainfall, the data acquisition interval was 30 min. The main mean
meteorological data during the study period including reproductive stage (07.29–08.20) and maturation
stage (08.21–29) were shown in Table 2. The changing curves of meteorological data were shown in
Figure A1.

Table 2. The main mean meteorological data during the study period including the reproductive stage
and maturation stages in 2017.

Parameter Reproductive
(07.29–08.20)

Maturation
(08.21–29)

Mean air temp./◦C 22.11 17.21
Max. air temp./◦C 31.31 25.46
Min. air temp./◦C 13.61 9.24

Min. relative humidity/% 29.78 33.23
Mean net solar

radiation/MJ·m−2·day−1 10.98 3.00

Mean wind speed/m·s−1 0.47 0.28

2.5. Soil Water Content Data

Soil water content (SWC) was measured two or three times each week on the days before or
after irrigation in each sampling plot by the traditional gravimetric method. At each sampling plot,
three sampling locations were randomly chosen around the center. At each sampling site, soil samples
at the depths of 30, 60 and 90 cm were collected by using soil augers. Soil samples were put in
aluminum boxes to avoid the influence of evaporation. An electronic balance (DJ-2000A, Suzhou
Jiangdong Precision Instrument CO., Ltd., Suzhou, China) with a measurement accuracy of 0.01 g was
used to measure the weight of the aluminum boxes with and without soil samples. After weighting,
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uncapped aluminum boxes were dried to a constant weight by putting in an oven under 105 ◦C. SWC
(volumetric) could be calculated by using Equation (1):

SWC =
W1 −W2

W2 −W3
× 1.56 (1)

where W1 presents the weight of aluminum box and soil sample before drying; W2 presents the weight
of aluminum box and soil sample after drying; W3 presents the weight of aluminum box without soil
sample; 1.56 is the specific soil bulk density of this study site. The changing curve of the average SWC
(volumetric) at the depths of 30, 60 and 90 cm during the reproductive and maturation stages is shown
in Figure 3.

Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 25 

 

where W1 presents the weight of aluminum box and soil sample before drying; W2 presents the 
weight of aluminum box and soil sample after drying; W3 presents the weight of aluminum box 
without soil sample; 1.56 is the specific soil bulk density of this study site. The changing curve of the 
average SWC (volumetric) at the depths of 30, 60 and 90 cm during the reproductive and maturation 
stages is shown in Figure 3. 

 
Figure 3. The changing curve of the average soil water content (SWC, volumetric) at the depths of 30, 
60 and 90 cm during the reproductive and maturation stages in 2017. The black, red, green, blue and 
purple solid lines represent treatment regions (TRTs) 1~5, respectively. The red dotted line is 
boundary between the late vegetation and reproductive stages. The black dotted line is boundary 
between the reproductive and maturation stages. The blue dotted lines indicate dates when data was 
taken for the calculation of non-water-stressed and non-transpiring baselines of the crop water stress 
index (CWSI). 

2.6. Unmanned Aerial Vehicle (UAV) Multispectral System and Data Collection 

Three types of UAV remote-sensing systems are generally used to collect agricultural 
information, namely fixed-wing, single-rotor and multi-rotors UAVs [65]. When selecting a kind of 
UAV platform, factors such as takeoff requirements, coverage area, load capacity, wind resistance, 
and cost and maintenance cost are needed to be considered [56]. In this study, a hexacopter UAV 
multispectral remote-sensing system (Figure 4) was developed with a Pixhawk autopilot (CUAV, 
Guangzhou, China), a RedEdge multispectral camera (MicaSense, Inc., WA, USA) and a MOY 
brushless gimbal (Moyouzhijia, Huizhou, China). This system had the advantages of easy to takeoff 
and land, low operation cost and maintenance cost. The core of the UAV system was a Flight Control 
board, Pixhawk, based on one 32 bit STM32F427 Cortex M4 core with float point unit and one 32 bit 
STM32F103 failsafe co-processor, which communicated with the six brushless controllers by six two-
wire bi-directional wires (pulse width modulation). Pixhawk integrated two gyroscopes, two 
accelerometers, one magnetometer, and one barometer. The gimbal maintained the multispectral 
camera under a relatively stable state during the flight to obtain good quality multispectral images. 
The flight planning was conducted with ground control station software, Mission Planner, which 
allowed the user to generate a route of waypoints as a function of the sensor field of view (FOV), the 
degree of overlap between images and the ground resolution needed. Mission Planner could also 
display real-time flight data. Its main technical parameters were shown in Table 3. 

Figure 3. The changing curve of the average soil water content (SWC, volumetric) at the depths of 30,
60 and 90 cm during the reproductive and maturation stages in 2017. The black, red, green, blue and
purple solid lines represent treatment regions (TRTs) 1~5, respectively. The red dotted line is boundary
between the late vegetation and reproductive stages. The black dotted line is boundary between the
reproductive and maturation stages. The blue dotted lines indicate dates when data was taken for the
calculation of non-water-stressed and non-transpiring baselines of the crop water stress index (CWSI).

2.6. Unmanned Aerial Vehicle (UAV) Multispectral System and Data Collection

Three types of UAV remote-sensing systems are generally used to collect agricultural information,
namely fixed-wing, single-rotor and multi-rotors UAVs [65]. When selecting a kind of UAV platform,
factors such as takeoff requirements, coverage area, load capacity, wind resistance, and cost and
maintenance cost are needed to be considered [56]. In this study, a hexacopter UAV multispectral
remote-sensing system (Figure 4) was developed with a Pixhawk autopilot (CUAV, Guangzhou,
China), a RedEdge multispectral camera (MicaSense, Inc., WA, USA) and a MOY brushless gimbal
(Moyouzhijia, Huizhou, China). This system had the advantages of easy to takeoff and land, low
operation cost and maintenance cost. The core of the UAV system was a Flight Control board, Pixhawk,
based on one 32 bit STM32F427 Cortex M4 core with float point unit and one 32 bit STM32F103
failsafe co-processor, which communicated with the six brushless controllers by six two-wire
bi-directional wires (pulse width modulation). Pixhawk integrated two gyroscopes, two accelerometers,
one magnetometer, and one barometer. The gimbal maintained the multispectral camera under a
relatively stable state during the flight to obtain good quality multispectral images. The flight planning
was conducted with ground control station software, Mission Planner, which allowed the user to
generate a route of waypoints as a function of the sensor field of view (FOV), the degree of overlap
between images and the ground resolution needed. Mission Planner could also display real-time flight
data. Its main technical parameters were shown in Table 3.
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Figure 4. Schematic indicating the main components of UAV multispectral remote sensing system
developed in this study.

Table 3. Main parameters of UAV multispectral image acquisition system.

Parameter Value

UAV

Wheelbase 900 mm
Takeoff weight 6 kg
Payload 2 kg
Flight time 18 min
Communication radius 3 km
Speed 5 m/s

RedEdge

Camera MicaSense RedEdge
Imager resolution 1280 × 960 pixels
Imager size 4.8 mm × 3.6 mm

Spectral bands Blue (475 nm), Green (560 nm), Red (668 nm),
Near infrared (IR) (840 nm), Red-edge (717 nm)

Lens focal length 5.5 mm fixed lens
Lens field of view 47.2◦ horizontal field of view (HFOV)
Weight 150 g
Dimension 121 mm × 66 mm × 46 mm

During the study period (2017.06.20~08.29), eleven UAV flights were conducted on sunny day
between 11:00–13:00 local time (Chinese standard time, 11:44–13:44) with the RedEdge camera lens
vertically downwards, and 80% heading and side overlap. The flight height, speed and ground sample
distance were 70 m (relative flying height), 5 m/s and 4.7 cm, respectively; 2185 images (5 bands)
were collected during a single flight and Pix4DMapper software was used for image mosaicking.
The multispectral images of diffuse reflector (reflectivity 58%, size 3 × 3 m, Group VIII, USA) collected
simultaneously at the same height were used to perform radiometric correction. Then, spectral
reflectance of the objects was obtained.
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2.7. Vegetation Indices’ Selection and Calculation

To establish a regression mode between UAV-based multispectral VI and CWSI, nine VIs, NDVI,
RDVI, SAVI, OSAVI, TCARI, TCARI/NDVI, TCARI/RDVI, TCARI/SAVI, and TCARI/OSAVI were
selected. Their calculation formulas are as follows:

NDVI =
ρnir − ρred
ρnir + ρred

(2)

RDVI =
ρnir − ρred√
ρnir + ρred

(3)

SAVI =
(1 + 0.5) ∗ (ρnir − ρred)

ρnir − ρred + 0.5
(4)

OSAVI =
(1 + 0.16) ∗ (ρnir − ρred)

ρnir − ρred + 0.16
(5)

TCARI = 3
[
(ρrededge − ρred)− 0.2(ρrededge − ρgreen) ∗ (ρrededge/ρred)

]
(6)

where ρnir, ρred, ρrededge and ρgreen are reflectance values of ground objects in near-infrared, red,
red-edge and green bands. A linear regression analysis between CWSI and VI was conducted to
obtain the VI vs. CWSI regression model based on CWSI and VI of sampling plots. For statistical
analysis, R programming language (R-3.4.3, https://www.r-project.org/) and the lm() function
were used. The coefficient of determination (R2) and root mean square error (RMSE) were used
as evaluating indicators.

2.8. Crop Water Stress Index (CWSI) Calculation

The empirical CWSI could be calculated by using Equations (7)–(10):

CWSI =
dTm − dTLL
dTUL − dTLL

(7)

where dTm, dTLL, dTUL are actual measurement, lower limit and upper limit of canopy-temperature
difference, respectively. The upper and lower limit canopy-air temperature difference are the so-called
non-water-stressed baseline (NWSB) and non-transpiring baseline (NTB). They could be calculated by
Equations (8) and (9) [22,37]:

dTLL = m×VPD + b (8)

dTUL = m×VPG + b (9)

where m, b are slope and intercept, respectively; VPD (vapor pressure deficit) is related to Ta and RH,
and calculated by the following Equation (10) with the description of Walter et al. [66]:

VPD = 0.6108× exp(
17.27Ta

Ta + 237.3
)× (

100− RH
100

) (10)

where Ta is air temperature, RH is relative humidity. Vapor pressure gradient (VPG) is the change of
VPD when the Ta increase by b, and calculated by the following Equation (11):

VPG = 0.6108× exp(
17.27(Ta + b)

(Ta + b) + 237.3
)× (

100− RH
100

)−VPD (11)

where b is the intercept in Equations (8) and (9). When CWSI is 0, it indicates no water stress,
while CWSI is 1, it indicates most severe stress.

After effective irrigation/rainfall, it is assumed that the soil water deficit is fully replenished and
crop could obtain sufficient water. Thus, non-water-stressed condition exist and Tc-Ta values could be

https://www.r-project.org/
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regarded as the values of the lower limit of canopy-air temperature difference [29,42]. Graph of hourly
dTLL vs. VPD has a linear segment that extended for 2 h before and 2 h after the solar noon. This linear
segment could be extracted to obtain the coefficients of Equations (8) and (9) by using simple linear
regression [42,67]. In this study, after effective irrigation/rainfall, clear sky sunny days were chosen to
continuously collect (local time 10:00~14:00, with an interval of 15 min) Tc, Ta_f and RH_f in the full
irrigation region (TRT1) during the reproductive and maturation stages. During the reproductive stage,
9 August and 16 August 2017 (clear sky sunny day, day of year (DOY) 221 and 228) were chosen and
28 groups of samples (Tc, Ta_f and RH_f) were obtained. During the maturation stage, 24 August 2017
(clear sky sunny day, DOY 236) was chosen and 13 groups of samples were obtained. When drawing
the dTLL~VPD scatterplot, three-step moving average was used to reduce volatility according to Idso
(1981) [48], making the fitting curve could represent the lower limit of Tc-Ta better under different
saturated VPD.

3. Results

3.1. Non-Water-Stressed Baselines (NWSBs) and Non-Transpiring Baselines (NTBs) of CWSI

It was observed that the slope and intercept of NWSB changed in the maturation stage. A similar
observation was made by previous researchers among crops, such as sunflower [43,68], wheat [69],
barley [69] and maize [70]. Hence, different NWSBs were developed in this study for the reproductive
and maturation stages. The dTLL vs. VPD scatterplots were shown in Figures 5a and 5b, respectively.
The corresponding NWSBs were shown as Equations (12) and (13). The average NWSBs of the
reproductive and maturation stages were −11.0 ◦C and −8.9 ◦C, rose by 2.1 ◦C. In calculating CWSI,
the NTB is estimated using the same coefficients developed for NWSB, and using VPG instead of VPD.
The change in NWSB coefficients from the reproductive to maturation stage resulted a small change in
NTB estimations. The average NTBs of the reproductive and maturation stages were 0.7 ◦C and 0.8 ◦C,
with a rise of 0.1 ◦C. Taghvaeian et al. [42,67] also showed a negligible variation when to estimate
maize NTB in northern Colorado.

dTLL = −2.64×VPD + 0.42 (R2 = 0.89) (12)

dTLL = −3.35×VPD + 2.96 (R2 = 0.98) (13)
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3.2. CWSI of Maize

Finally, the CWSI empirical model was obtained by using Tc, Ta_f and RH_f collected in
the sampling plot. Figure 6 depicts the daily changes of CWSI and irrigation/rainfall events
for the TRT 1 (Figure 6a) and TRT 4 (Figure 6b) during 2017.08.06~29. CWSI decreased after
irrigation/rainfall, reached a minimum around the third day and then slowly increased, responding
well to irrigation/rainfall events. When irrigation/rainfall was less, no more than 4 mm, CWSI did not
change significantly. The average CWSI for the different levels of deficit irrigation in the reproductive
and maturation stages had a clear numerical gradient (Table 4). For example, the average CWSI was
0.11 and 0.27 for TRT 1 and TRT 4 in the reproductive stage, respectively. The average CWSI was 0.03,
0.14 and 0.32 for TRT 1, TRT 2, and TRT 4 in the maturation stage, respectively.
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Figure 6. CWSI changing curves for TRT 1 (a) and TRT 4 (b) during 2017.08.06~29. The depths (mm) of
individual irrigation (I) and precipitation (P) events were plotted as vertical bars.

Table 4. Mean CWSI for each deficit irrigation treatment during the reproductive and maturation
stages in 2017.

Treatment Reproductive (08.06–08.20) Maturation (08.21–08.29)

TRT 1 0.07 0.03
TRT 2 0.12 0.14
TRT 3 0.09 0.12
TRT 4 0.27 0.32
TRT 5 0.05 0.03

3.3. Vegetation Indices

Figure 7 shows the changes of NDVI, RDVI, SAVI, OSAVI, TCARI, TCARI/NDVI, TCARI/RDVI,
TCARI/SAVI, and TCARI/OSAVI during DOY 171–241 (20 June—29 August 2017). Since NDVI,
RDVI, SAVI, and OSAVI were closely related to the canopy structure; they increased with the growth
of maize and reached the maximum on DOY 207 (26 July), decreased with the gradual maturity of
maize. Previous studies showed that maize reaches full cover at a SAVI value of 0.64 [42,71]. SAVI of
each deficit irrigation region was greater than 0.61 on DOY 207, meaning maize canopy had reached
effective coverage. NDVI had the slowest decline rate and the other three VIs were relatively close.
Before the effective coverage of canopy (DOY 207), NDVI, RDVI, SAVI, and OSAVI did not effectively
distinguish deficit irrigation treatments. For example, During DOY 185 (the start of deficit irrigation)
to 206, the RDVI values of TRT 1, TRT 3 and TRT 5 were 0.76, 0.74 and 0.73, respectively, with small
difference no more than 0.03. The RDVI values of TRT 2 and TRT 4 were 0.69 and 0.67 with a small
difference of 0.02. There was clear difference between TRT 3 and TRT 4 that had the same deficit
irrigation level (84%) with a difference value of 0.07. However, when the canopy reached effective
coverage, NDVI, RDVI, SAVI, and OSAVI started to show obvious differences between different deficit
irrigation treatments, especially in the maturation stage. For example, during the maturation stage
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(DOY233~241), the RDVI values of TRT1 and TRT5 (100%), TRT2 and TRT3 (52%), and TRT4 (28%)
were 0.54 and 0.54, 0.52 and 0.51, and 0.47, respectively. There was a clear numerical gradient among
different levels of deficit irrigation treatments.
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plots are shown in Figures A2 and A3). When VIs and CWSI data from four days (DOY 223, 231, 240 
and 241) in the reproductive and maturation stages were used to perform linear regression analysis, 
R2 were all less than 0.50. Among the four canopy structure VIs, NDVI had the best relationship (R2 
= 0.34, p < 0.01). In the case of the five chlorophyll-related VIs, they all had a relatively better 
correlation (all R2 were greater than 0.35). Both TCARI/RDVI and TCARI/SAVI had significant 
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Figure 7. Changes of nine vegetation indices (VIs): normalized difference vegetation index (NDVI)
(a), renormalized difference vegetation index (RDVI) (b), soil-adjusted vegetation index (SAVI) (c),
optimization of soil-adjusted vegetation index (OSAVI) (d), transformed chlorophyll absorption
in reflectance index (TCARI) (e), TCARI/NDVI (f), TCARI/RDVI (g), TCARI/SAVI (h), and
TCARI/OSAVI (i), during DOY 171–241 (20 June, 20–29 August) for all deficit irrigation treatments.
DOY is the abbreviation for day of year. The red, green, blue, black and pink lines represent the TRTs
1~5, respectively.

In the case of TCARI, there were no significant changes during DOY 171–241. At the late
reproductive and maturation stages (DOY 231–241), different levels of deficit irrigation treatments
could be distinguished gradually by TCARI. Similar to NDVI, RDVI, SAVI, and OSAVI, TCARI/NDVI,
TCARI/RDVI, TCARI/SAVI and TCARI/OSAVI which normalized by NDVI, RDVI, SAVI and OSAVI,
changed with the growth of maize, reached minimum when the canopy reached effective coverage
(DOY 207), and then slowly increased. Before the canopy reached effective coverage, they could not
effectively distinguished water stress. However, when canopy reached effective coverage, they started
to distinguish deficit irrigation treatments gradually.
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3.4. Correlations between Vegetation Indices (VIs) and CWSI

Table 5 shows a description of correlations between nine VIs and CWSI (corresponding scatter
plots are shown in Figures A2 and A3). When VIs and CWSI data from four days (DOY 223, 231,
240 and 241) in the reproductive and maturation stages were used to perform linear regression analysis,
R2 were all less than 0.50. Among the four canopy structure VIs, NDVI had the best relationship
(R2 = 0.34, p < 0.01). In the case of the five chlorophyll-related VIs, they all had a relatively better
correlation (all R2 were greater than 0.35). Both TCARI/RDVI and TCARI/SAVI had significant
correlation with CWSI (p < 0.001) and R2 were greater than 0.47. When VIs and CWSI data from three
days (DOY 231, 240 and 241) in the late reproductive and maturation stages were used, the correlations
were significantly improved except for TCARI. All R2 were greater than 0.68 (p < 0.001). TCARI/RDVI
and TCARI/SAVI had the best relationship (both R2 ≥ 0.80, p < 0.001) Therefore, this paper choose
TCARI/RDVI and TCARI/SAVI to establish linear regression models between VI and CWSI. To rescale
the CWSI value between 0 and 1, the linear regression models were shown as Equations (14) and
(15), respectively.

CWSI − 1 =


0 (TCARI/RDVI ≤ 0.195)

2.41 ∗ (TCARI/RDVI)− 0.47 (0.195 < TCARI/RDVI < 0.609)
1 (0.609 ≤ TCARI/RDVI)

(14)

CWSI − 2 =


0 (TCARI/SAVI ≤ 0.182)

2.46 ∗ (TCARI/SAVI)− 0.45 (0.182 < TCARI/SAVI < 0.589)
1 (0.589 ≤ TCARI/SAVI)

(15)

Table 5. Coefficient of determination (R2), root mean square error (RMSE) from different predictions
with CWSI vs. nine VIs based on VIs and CWSI data from three (DOY 231, 240 and 241) or four (DOY
223, 231, 240 and 241) days.

Vegetation Index
Three Corresponding Data Four Corresponding Data

R2 (n = 15) RMSE R2 (n = 20) RMSE

Structural
NDVI 0.72 *** 0.046 0.34 ** 0.063
RDVI 0.81 *** 0.038 0.29 * 0.065
SAVI 0.81 *** 0.037 0.27 * 0.066

OSAVI 0.74 *** 0.044 0.29 * 0.065
Chlorophyll

TCARI 0.55 ** 0.058 0.35 ** 0.062
TCARI/NDVI 0.69 *** 0.048 0.42 ** 0.059
TCARI/RDVI 0.81 *** 0.037 0.47 *** 0.056
TCARI/SAVI 0.80 *** 0.039 0.50 *** 0.055

TCARI/OSAVI 0.77 *** 0.041 0.46 ** 0.057

* p < 0.05; ** p < 0.01; *** p < 0.001.

3.5. Maize Water Stress Maps Based on UAV Multispectral Remote-Sensing Imagery

Equations (14) and (15) were used to retrieve maize water stress maps based on UAV TCARI/RDVI
and TCARI/SAVI maps (Figure 8) for the reproductive (DOY 231) and maturation (DOY 240) stages.
Table 6 shows the comparison of CWSI values (at DOY 231 and DOY 240) using two different methods.
In the first method, CWSI values were calculated by on-site measurements within each sampling plot,
and in the second method, CWSI values, CWSI-1 and CWSI-2, retrieved from CWSI vs. VI regression
models (Equations (14) and (15)). The value of CWSI-1 and CWSI-2 was the average value of the entire
treatment region.
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Figure 8. Maize water stress maps retrieved by CWSI vs. VI regression models (Equations (14) and
(15)). (a,b) are water stress maps retrieved by Equation (14) for the reproductive (DOY 231) and
maturation (DOY 240) stages, respectively. (c,d) are water stress maps retrieved by Equation (15) for
the reproductive (DOY 231) and maturation (DOY 240) stages, respectively.

Table 6. Comparison of CWSI values (at DOY 231 and DOY 240) using two different methods. (1)
CWSI values calculated by on-site measurements within each sampling plot, and (2) CWSI values
retrieved from CWSI vs. VI regression models (Equations (14) and (15)). CWSI-1 and CWSI-2 were the
average value of the entire treatment region.

Treatment
Reproductive (DOY 231) Maturation (DOY 240)

CWSI CWSI-1 CWSI-2 CWSI CWSI-1 CWSI-2

TRT 1 0.06 0.09 0.09 0.02 0.11 0.11
TRT 2 0.04 0.08 0.08 0.20 0.18 0.18
TRT 3 0.05 0.09 0.09 0.14 0.23 0.22
TRT 4 0.19 0.19 0.18 0.26 0.40 0.39
TRT 5 0.04 0.08 0.08 0.10 0.13 0.12
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4. Discussion

Previous research has reported that one of the drawbacks of CWSI empirical model was the
variability of NWSB [26,48,72,73]. Idso et al., (1981) reported that different crops had their own unique
NWSBs. Even for the same crop, NWSB will consequently change at different locations. For instance,
the slopes of maize NWSBs established at different locations vary from−1.10 to−3.77 ◦C/kPa, and the
corresponding intercepts vary from 0.42 to 3.11 ◦C. Most previous researchers ascribe this change to
the following factors:

(1) Climate variables [45,74–76], such as radiation and wind speed;
(2) Ta, RH measurement sitting [28,67,72], for example, Taghvaeian et al. [43] found that if Ta and

RH sensor was installed at full irrigation region, larger NWSB for sunflower would have been
assigned to deficit irrigation region;

(3) Tc monitoring instrument and its measure method [26,72];
(4) Specific hybrid differences [72,73], but previous studies have also suggested that the same NWSBs

can be used for similar varieties of maize [67] and wheat [77].

Many previous researchers have also observed that the coefficients of NWSB among annual crops
will change in different grown stages, such as maize, wheat, barley and sunflower. Idso et al. [69]
reported that the NWSBs of wheat and barley shifted significantly, as they move from the vegetative
to reproductive stage. The change of wheat and barley NWSBs was ascribed to the seed-heads that
absorbed the radiant energy, converted it into sensible heat, and provided a very effective aerodynamic
barrier against the transfer of sensible heat to the transpiring surfaces. Taghvaeian et al. [43] and
Nielsen [68] also observed significant differences in the coefficients of sunflower NWSBs during
the reproductive and maturation stages. The difference of sunflower NWSBs was attributed to the
decrease in sunflower transpiration and increase in head temperature after sunflower transitioned into
maturation stage. A similar observation was made by this study when to establish NWSBs for maize
during the reproductive and maturation stages.

When trying to explain the difference of NWSBs among annual crops in different grown stages,
previous researchers focused on the change of crop physiological characteristics, but ignored the change
of microclimate, such as Ta and RH. In this study, compared to the reproductive stage, the average
daily maximum temperature in the maturation stage decreased from 31.31 ◦C to 25.46 ◦C and average
daily minimum relative humidity increased from 29.78% to 33.23%, with a decrease of 5.85 ◦C and
an increase of 3.45%, respectively (Table 2). The average daily maximum temperature and average
daily minimum relative humidity had a similar changing trend in the study of Taghvaeian et al. [43].
Figure 9a shows the changing trend of VPD along with Ta and RH. The increase of RH and decrease of
Ta will lead to a decrease of VPD. This result will lead to a decrease in transpiration rate of crops under
well-watered conditions, which means the difference between Tc and Ta will lower. In other words,
the decrease in VPD will lead to an increase in NWSB. In this study, compared to the reproductive
stage, VPD decreased in the maturation stage with average value of 0.8 kPa, and NWSB increased with
average value of 2.1 ◦C.

In general terms, plants under well irrigation condition have specific non-water stress lines
that corresponding to average CWSI values. Previous studies about the use of the CWSI as a water
stress indicator in olive and vineyards orchards have indicated that average CWSI in a well irrigation
condition was less than 0.5 [4,16,40,78]. For maize, in this study, average CWSI values were no
more than 0.12 in the reproductive stage, and a much smaller average CWSI, a value of 0.03, in the
maturation stage. An interesting result could be found that average CWSI value for maize under full
irrigation condition, the non-water stress line, was much smaller, compared to the reproductive stage.
The same average CWSI calculated by on- site measurements represented more serious water stress
in the maturation stage than the reproductive stage. For example, the average CWSI of TRT 2 in the
reproductive stage was 0.12, while the average CWSI of TRT 3 in the maturation stage was also 0.12,
with 45% water applied difference. The average CWSI of TRT 4 in the reproductive stage was 0.27,
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while the average CWSI of TRT 4 in the maturation stage was 0.32. 43% water applied difference
corresponded to a 0.05 difference of CWSI value. Similar phenomenon had been observed by Han
Ming et al. [26] for maize in Greeley, CO, USA. In the reproductive stage, average CWSI values were
no more than 0.16, and 0.5 in the maturation stage. This phenomenon may be explained in two ways:

(1) The change of maize physiological characteristics and microclimate from the reproductive to the
maturation stage causes significant difference in NWSBs and insignificant difference in NTBs.

(2) The crop and soil characteristics in the field have significant variability in each deficit irrigation
treatment regions. One sample plot could not represent the entire treatment region well (Figure 8).
Santesteban et al. [79] had also found that an 18-year-old vineyard under same irrigation condition
and without significant pets and diseases had significant variability in water status.
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Previous studies in the vineyard have indicated that multispectral VIs acquired from
remote-sensing images have a significantly high correlation with water stress indicators, revealing
the potential to assess water stress and its variability by using multispectral VIs. Espinoza et al. [80]
found a high correlation (r = 0.65, p < 0.01) between GNDVI and stomatal conductance. Baluja et
al. [81] found a R2 value of 0.68 (n = 10) from the linear regression between NDVI and stem water
potential. Zarco-Tejada et al. [33] found a R2 value of 0.77 (n = 9) between PRInorm and CWSI. However,
the relationship between UAV multispectral VIs and CWSI is not well documented for maize.

In this study, a higher significantly correlation between VIs acquired from UAV multispectral
images and CWSI was found. In particular, compared to CWSI, the R2 values of TCARI/RDVI
and TCARI/SAVI were 0.81 and 0.80 (n = 15) in the late reproductive and maturation stages.
A similar observation was made by Baluja et al. [81] in a commercial vineyard, with the R2 values of
TCARI/OSAVI were 0.58 and 0.84 (n = 10) compared to stem water potential and stomatal conductance,
respectively. The results showed that TCARI/OSAVI were probably reflecting the result of cumulative
water deficits, and hence a long-term response. In this study similar results were found, namely,
when using UAV multispectral VIs to estimate maize water stress, their effects was influenced by the
extended period of water stress. With the prolongation of water stress, UAV multispectral VIs could
better distinguish different levels of deficit irrigation treatments (Figure 7). A similar phenomenon
was also found by Espinoza et al. [80], Li et al. [82] and Zulini et al. [83]. Perhaps, this could explain
that the R2 values of VIs-CWSI were higher in the late reproductive and maturation stages (DOY 231,
240 and 241) than in the reproductive and maturation stages (DOY 223, 231, 240 and 241) (Table 5).
However, Zarco-Tejada et al. [84] found that TCARI/OSAVI was less correlated with leaf stomatal
conductance and water potential in Citrus orchards, with the R2 values of 0.45 and 0.51. The reason for
the different observations might be that TCARI/OSAVI are more related to plant vigor than the plant
dynamic physiological status, with the result that it might correlate well in crops where the biomass
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proportionally increases in parallel to photosynthesis, however, in the case of evergreen crop species,
results were not so satisfactory [85].

TCARI/OSAVI, similar to TCARI/RDVI and TCARI/SAVI in this study, was established by
Haboudane et al. [60] to make accurate predictions of maize chlorophyll content from hyperspectral
remote-sensing imagery in Canada. The results showed that TCARI/OSAVI was both very sensitive to
chlorophyll content variations and very resistant to the variations of leaf area index (LAI). The results of
Zarco-Tejada et al. [86] in vineyard showed that TCARI/OSVAI was also correlated with xanthophyll
and the carotenoid content with R2 value of 0.51 (p < 0.01). Under water stress condition, transpiration
rate of crop may reduce, resulting a reduction of cooling effect [87,88]. To avoid damage to the
tissues, crops need to reduce the absorption of light and dissipate the extra energy through the
reduction of chlorophyll b and the interconversion of the xanthophyll cycle pigments, respectively [89].
Therefore, the correlations of TCARI/OSAVI with chlorophyll and xanthophyll content may be the
crop physiological basis of why TCARI/OSAVI family of indices could monitor crop water stress
status. Future, related research is still needed.

From the CWSI maps retrieved by TCARI/RDVI and TCARI/SAVI, we could find that the water
stress status of maize in each irrigation treatment had spatial variations. Compared to CWSI calculated
by on-site measurements, CWSI based on VI-CWSI regression models could better reflect water stress
conditions of maize in the field scale. Taking CWSI-2 as an example, the average CWSI-2 could
reflect TRT 4 (69%) and TRT 1(100%) in the reproductive stage, with the values of 0.18 and 0.09,
respectively; and could reflect TRT4 (28%), TRT2 and TRT3 (52%), and TRT1 (100%) in the maturation
stage, with the value of 0.39, 0.18 and 0.22, and 0.11, respectively. Compared with CWSI calculated by
on-site measurements, CWSI-2 was more reasonable (Table 6).

5. Conclusions

As one of the most important remote-sensing platforms, an unmanned aerial vehicle (UAV)
system could obtain key information (e.g., water stress status) about a crop at high temporal frequency
(1–3 days revisit) and high spatial resolution (centimeter scale). This study investigated whether
a UAV-based multispectral remote sensing system could map the water stress status of maize at a
farm scale, as a supplement to ground-based empirical crop water stress index (CWSI) model. Since,
the local weather condition and management practices can greatly influence the applicability of the
empirical CWSI model, changes of the non-water stress baseline (NWSB) and the non-transpiring
baseline (NTB) were also analyzed. Our results confirmed that NWSB had a significant difference in
the reproductive and maturation stages, however NTB did not change significantly. The shift of NWSB
from the reproductive to maturation stage is not only related to the change of maize characteristics
(e.g., canopy structure and transpiration rate), but also related to the change of microclimate, such
as air temperature and relative humidity. The ratio of transformed chlorophyll absorption in the
reflectance index (TCARI) and renormalized difference vegetation index (RDVI), and the TCARI
and soil-adjusted vegetation index (SAVI) had high correlations with CWSI. R2 values were 0.47 and
0.50 for TCARI/RDVI at the reproductive and maturation stages, respectively; and 0.81 and 0.80 for
TCARI/SAVI at the late reproductive and maturation stages, respectively. This study demonstrates the
feasibility of mapping maize crop water status and monitoring its spatial variability at a farm scale by
using UAV-based multispectral VI-CWSI regression models established in this study. As a future work,
research into the influence of other meteorological parameters (e.g., extreme illumination) on the water
stress monitoring effect of CWSI will be conducted. What changes of crop physiological characteristics
(e.g., the changes of chlorophyll and xanthophyll caused by photoprotection) enable the vegetation
index (e.g., TCARI/SAVI) to be used to monitor the water stress status of maize will also be studied.
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Figure A1. The changing curves of meteorological data during the reproductive and maturation stages
in 2017. (a): air temperature (Ta); (b) relative humidity (RH); (c) net solar radiation (Rn); (d) weed speed.
DOY is the abbreviation for day of year. The blue, red and black solid lines represent the maximum,
minimum and mean values, respectively. The black dotted line is boundary between the reproductive
and maturation stages. The blue dotted lines indicate dates when data was taken for the calculation of
non-water-stressed and non-transpiring baselines of CWSI.
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