Rainwater Use for Vertical Greenery Systems: Development of a Conceptual Model for a Better Understanding of Processes and Influencing Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Step 1—Identification of Processes and Influencing Factors for Irrigation of VGS
2.2. Step 2—Definition of Sub-Modules
2.3. Step 3—Definition of Boundary Conditions
3. Results
3.1. Involved Processes and Influencing Factors for Irrigation of VGS
3.2. Conceptual Model
3.3. Description of Sub-Modules
3.3.1. Sub-Module 1: Atmosphere
3.3.2. Sub-Module 2: Hydraulic
3.3.3. Sub-Module 3: Quality
3.3.4. Sub-Module 4: Rainwater Harvesting
3.3.5. Sub-Module 5: Vertical Greenery System
if API > 20 mm: α = 1.26
if Vm,t > Vmax: Qoverflow m,t = Vm,t − Vmax
if Vm,t > VFC: Qd m,t = Ad × de = Ad × ((θt − θFC) × (1 − e(−∆t/tt)) × n/∆t)
if Vm,t ≤ VRAW: It = ∑m=1→M (VFC − Vm,t)/∆t
3.4. Boundary Conditions
4. Discussion
5. Conclusions
- The irrigation of VGS with rainwater can be depicted by five sub-modules: the atmospheric, hydraulic, quality, RWH and VGS sub-module.
- The conceptual model shows the main processes and influencing factors of these five sub-modules, which are relevant for a holistic understand of VGS irrigation with rainwater.
- The optimal irrigation amount of VGS is dependent on the soil water content. If the soil water content drops below the readily available water, additional water input via irrigation is necessary.
- The soil water content is changed by the inflows and outflows to the VGS, which are evapotranspiration, overflow from the system and drainage. These processes are altered by influencing factors from the other sub-modules.
- Different designs of VGS result in changes of the inflows and outflows. For the calculation of the irrigation demand, the boundary conditions for each type must be considered.
- The conceptual model helps to identify the available RWH potential and at what point another resource for irrigation will be needed to cover the actual VGS demand.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | run-off area (L2) | Qd m,t | drainage volume (L3·T−1) |
α | reduction coefficient (-) | θFC | water content at field capacity (-) |
Ad | area of the drainage opening (L2) | Qoverflow m,t | overflow volume per day (L3·T−1) |
AET | actual evapotranspiration flux (L·T) | Qd m,t | drainage volume (L3·T−1) |
Ag | greened area (L2) | θPWP | water content at the permanent wilting point (-) |
API | antecedent precipitation index (L) | θt | the water content (-) |
Cr(V) | coverage rate for a selected storage volume (-) | RC | run-off coefficient (-) |
∆ | slope of the saturation vapour pressure-temperature curve (M·L−1·T−2·θ−1) | Rn | net radiation (M·T−3) |
d | index for the values 1 to 28 (T) | RWH | rainwater harvesting |
dd | dry period (T) | Sr,t | abstraction from the tank per day (L3·T−1) |
de | drainage rate (L·T−1) | t | index for time (T) |
e | Euler’s number | Tmean | average air temperature between maximum and minimum values (θ) |
ET | evapotranspiration | tt | travel time of water through the module/layer (T) |
ETm,t | evapotranspiration per day (L3·T−1) | UHI | urban heat island |
G | soil heat-flux density at the soil surface (M·T−3) | V | useable volume of the tank (L3) |
ht | precipitation height per day (L·T−1) | VFC | water volume at field capacity (L3) |
It | irrigation water demand per day (L3·T−1) | VGF m,t | water volume in the PGM of green facades (L3·T−1) |
K | dimensionless recession constant (-) | VGS | vertical greenery system |
kunsat | unsaturated hydraulic conductivity in the module (L·T−1) | VLWS m,t | water volume in the PGM of living walls (L3·T−1) |
m | index for the module | Vm,t | water volume in the PGM (L3·T−1) |
M | total number of VGS modules (-) | Vmax | maximum water volume that can be retained in the VGS (L3) |
η | hydraulic treatment efficiency coefficient (-) | Vr,t | rainwater volume in the storage tank per day (L3) |
n | thickness of the module/layer (L) | VRAW | readily available water volume (L3) |
NbS | nature-based solution | Vs | PGM volume (L3) |
p | average fraction which can be depleted before plant moisture stress (-) | Yt | run-off yield per day (L3·T−1) |
PGM | plant growing media | γ | psychrometric constant (M·L−1·T−2·θ−1) |
PWP | permanent wilting point |
References
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef] [Green Version]
- Ellena, M.; Breil, M.; Soriani, S. The heat-health nexus in the urban context: A systematic literature review exploring the socio-economic vulnerabilities and built environment characteristics. Urban Clim. 2020, 34, 100676. [Google Scholar] [CrossRef]
- Gabriel, K.M.; Endlicher, W.R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ. Pollut. 2011, 159, 2044–2050. [Google Scholar] [CrossRef]
- Köhler, M. Green facades—a view back and some visions. Urban Ecosyst. 2008, 11, 423–436. [Google Scholar] [CrossRef]
- Hunter, A.M.; Williams, N.; Rayner, J.P.; Aye, L.; Hes, D.; Livesley, S. Quantifying the thermal performance of green façades: A critical review. Ecol. Eng. 2014, 63, 102–113. [Google Scholar] [CrossRef]
- Alexandri, E.; Jones, P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Hoelscher, M.-T.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy Build. 2016, 114, 283–290. [Google Scholar] [CrossRef]
- Cameron, R.W.; Taylor, J.E.; Emmett, M.R. What’s ‘cool’ in the world of green façades? How plant choice influences the cooling properties of green walls. Build. Environ. 2014, 73, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Price, A.; Jones, E.C.; Jefferson, F. Vertical Greenery Systems as a Strategy in Urban Heat Island Mitigation. Water Air Soil Pollut. 2015, 226, 1–11. [Google Scholar] [CrossRef]
- Šuklje, T.; Medved, S.; Arkar, C. On detailed thermal response modeling of vertical greenery systems as cooling measure for buildings and cities in summer conditions. Energy 2016, 115, 1055–1068. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Martorell, I.; Cabeza, L.F. Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renew. Sustain. Energy Rev. 2014, 39, 139–165. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M.; Ding, L.; Fiorito, F.; Oldfield, P.; Osmond, P.; Paolini, R.; Prasad, D.; Synnefa, A. Passive and active cooling for the outdoor built environment—Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Sol. Energy 2017, 154, 14–33. [Google Scholar] [CrossRef]
- Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Mateo, M.C.G.; Atanasova, N. Implementing nature-based solutions for creating a resourceful circular city. Blue-Green Syst. 2020, 2, 173–185. [Google Scholar] [CrossRef]
- Nika, C.; Gusmaroli, L.; Ghafourian, M.; Atanasova, N.; Buttiglieri, G.; Katsou, E. Nature-based solutions as enablers of circularity in water systems: A review on assessment methodologies, tools and indicators. Water Res. 2020, 183, 115988. [Google Scholar] [CrossRef]
- Fowdar, H.S.; Hatt, B.E.; Breen, P.; Cook, P.L.; Deletic, A. Designing living walls for greywater treatment. Water Res. 2017, 110, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Masi, F.; Bresciani, R.; Rizzo, A.; Edathoot, A.; Patwardhan, N.; Panse, D.; Langergraber, G. Green walls for greywater treatment and recycling in dense urban areas: A case-study in Pune. J. Water, Sanit. Hyg. Dev. 2016, 6, 342–347. [Google Scholar] [CrossRef]
- Pradhan, S.; Al-Ghamdi, S.G.; Mackey, H.R. Greywater recycling in buildings using living walls and green roofs: A review of the applicability and challenges. Sci. Total Environ. 2019, 652, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Boano, F.; Caruso, A.; Costamagna, E.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. Assessment of the Treatment Performance of an Open-Air Green Wall Fed with Graywater under Winter Conditions. ACS ES&T Water 2021, 1, 595–602. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, G.; Du, Y.; Ren, Y.; Lu, Y.; Fan, L.; Chang, J.; Ge, Y.; Bao, Z. Estimating irrigation water demand for green spaces in humid areas: Seeking a sustainable water management strategy. Urban Water J. 2017, 15, 16–22. [Google Scholar] [CrossRef]
- Nolde, E. Possibilities of rainwater utilisation in densely populated areas including precipitation runoffs from traffic surfaces. Desalination 2007, 215, 1–11. [Google Scholar] [CrossRef]
- Chao-Hsien, L.; En-Hao, H.; Yie-Ru, C. Designing a rainwater harvesting system for urban green roof irrigation. Water Supply 2014, 15, 271–277. [Google Scholar] [CrossRef]
- Stratigea, D.; Makropoulos, C. Balancing water demand reduction and rainfall runoff minimisation: Modelling green roofs, rainwater harvesting and greywater reuse systems. Water Supply 2015, 15, 248–255. [Google Scholar] [CrossRef]
- Charalambous, K.; Bruggeman, A.; Eliades, M.; Camera, C.; Vassiliou, L. Stormwater Retention and Reuse at the Residential Plot Level—Green Roof Experiment and Water Balance Computations for Long-Term Use in Cyprus. Water 2019, 11, 1055. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Reséndiz, J.A.; Ruiz-García, L.; Olivieri, F.; Ventura-Ramos, E. Experimental assessment of the thermal behavior of a living wall system in semi-arid environments of central Mexico. Energy Build. 2018, 174, 31–43. [Google Scholar] [CrossRef]
- Barron, N.J.; Deletic, A.; Jung, J.; Fowdar, H.; Chen, Y.; Hatt, B.E. Dual-mode stormwater-greywater biofilters: The impact of alternating water sources on treatment performance. Water Res. 2019, 159, 521–537. [Google Scholar] [CrossRef] [PubMed]
- Bustami, R.A.; Belusko, M.; Ward, J.; Beecham, S. Vertical greenery systems: A systematic review of research trends. Build. Environ. 2018, 146, 226–237. [Google Scholar] [CrossRef]
- Başdoğan, G.; Çiğ, A. Ecological-Social-Economical Impacts of Vertical Gardens in the Sustainable City Model. Yüzüncü Yıl Üniv. Tarım Bilim. Derg. 2016, 26, 430–438. [Google Scholar]
- Cruz, M.; Beckett, R. Bioreceptive design: A novel approach to biodigital materiality. Arq. Arch. Res. Q. 2016, 20, 51–64. [Google Scholar] [CrossRef]
- De Jesus, M.P.; Lourenco, J.M.; Arce, R.M.; Macias, M. Green façades and in situ measurements of outdoor building thermal behaviour. Build. Environ. 2017, 119, 11–19. [Google Scholar] [CrossRef] [Green Version]
- González-Méndez, B.; Chávez-García, E. Re-thinking the Technosol design for greenery systems: Challenges for the provision of ecosystem services in semiarid and arid cities. J. Arid. Environ. 2020, 179, 104191. [Google Scholar] [CrossRef]
- Manso, M.; Castro-Gomes, J. Green wall systems: A review of their characteristics. Renew. Sustain. Energy Rev. 2015, 41, 863–871. [Google Scholar] [CrossRef]
- Omrany, H.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Raahemifar, K.; Tookey, J. Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 62, 1252–1269. [Google Scholar] [CrossRef]
- Radić, M.; Dodig, M.B.; Auer, T. Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits. Sustainability 2019, 11, 4579. [Google Scholar] [CrossRef] [Green Version]
- Rathnayake, U.; Lau, D.; Chow, C. Review on Energy and Fire Performance of Water Wall Systems as a Green Building Façade. Sustainability 2020, 12, 8713. [Google Scholar] [CrossRef]
- Talaei, M.; Mahdavinejad, M.; Azari, R. Thermal and energy performance of algae bioreactive façades: A review. J. Build. Eng. 2020, 28, 101011. [Google Scholar] [CrossRef]
- Leong, J.Y.C.; Oh, K.S.; Poh, P.E.; Chong, M.N. Prospects of hybrid rainwater-greywater decentralised system for water recycling and reuse: A review. J. Clean. Prod. 2017, 142, 3014–3027. [Google Scholar] [CrossRef]
- Zabidi, H.A.; Goh, H.W.; Chang, C.K.; Chan, N.W.; Zakaria, N.A. A Review of Roof and Pond Rainwater Harvesting Systems for Water Security: The Design, Performance and Way Forward. Water 2020, 12, 3163. [Google Scholar] [CrossRef]
- ÖNORM EN 16941-1 On-Site Non-Potable Water Systems—Part 1: Systems for the Use of Rainwater; Austrian Standards Institute: Vienna, Austria, 2018.
- Riley, B. The state of the art of living walls: Lessons learned. Build. Environ. 2017, 114, 219–232. [Google Scholar] [CrossRef]
- Van de Wouw, P.; Ros, E.; Brouwers, H. Precipitation collection and evapo(transpi)ration of living wall systems: A comparative study between a panel system and a planter box system. Build. Environ. 2017, 126, 221–237. [Google Scholar] [CrossRef]
- Mobilia, M.; Longobardi, A.; Sartor, J.F. Including A-Priori Assessment of Actual Evapotranspiration for Green Roof Daily Scale Hydrological Modelling. Water 2017, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Blocken, B.B.; Carmeliet, J.J. Pedestrian Wind Environment around Buildings: Literature Review and Practical Examples. J. Therm. Envel. Build. Sci. 2004, 28, 107–159. [Google Scholar] [CrossRef]
- Franco, A.; Cañero, R.F.; Pérez-Urrestarazu, L.; Valera, D. Wind tunnel analysis of artificial substrates used in active living walls for indoor environment conditioning in Mediterranean buildings. Build. Environ. 2012, 51, 370–378. [Google Scholar] [CrossRef]
- Pérez, G.; Rincón, L.; Vila, A.; González, J.; Cabeza, L. Behaviour of green facades in Mediterranean Continental climate. Energy Convers. Manag. 2011, 52, 1861–1867. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Z.; Li, Z.; Tang, J.; Caldwell, P.; Zhang, W. Biophysical control of whole tree transpiration under an urban environment in Northern China. J. Hydrol. 2011, 402, 388–400. [Google Scholar] [CrossRef]
- Hernández-Santana, V.; David, T.; Martínez-Fernández, J. Environmental and plant-based controls of water use in a Mediterranean oak stand. For. Ecol. Manag. 2008, 255, 3707–3715. [Google Scholar] [CrossRef]
- Dingman, S.L. Physical Hydrology, 3rd ed.; Waveland Press: Long Grove, IL, USA, 2015; ISBN 9781478611189. [Google Scholar]
- Lee, L.S.; Jim, C. Subtropical summer thermal effects of wirerope climber green walls with different air-gap depths. Build. Environ. 2017, 126, 1–12. [Google Scholar] [CrossRef]
- Pérez-Urrestarazu, L.; Egea, G.; Franco-Salas, A.; Fernández-Cañero, R.; Cegarra, G.E. Irrigation Systems Evaluation for Living Walls. J. Irrig. Drain. Eng. 2014, 140, 04013024. [Google Scholar] [CrossRef]
- Hoelscher, M. Quantification of Cooling Effects and Water Demand of Urban Facade Greenings; Technical University of Berlin: Berlin, Germany, 2018. [Google Scholar]
- Jim, C.; He, H. Estimating heat flux transmission of vertical greenery ecosystem. Ecol. Eng. 2011, 37, 1112–1122. [Google Scholar] [CrossRef]
- Mathers, H.; Lowe, S.; Scagel, C.; Struve, D.; Case, L. Abiotic Factors Influencing Root Growth of Woody Nursery Plants in Containers. HortTechnology 2007, 17, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Woods Ballard, B.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. The SUDS Manual; CIRIA: London, UK, 2015; ISBN 978-0-86017-760-9. [Google Scholar]
- Kew, B.; Pennypacker, E.; Echols, S. Can Greenwalls Contribute to Stormwater Management? A Study of Cistern Storage Greenwall first Flush Capture. J. Green Build. 2014, 9, 85–99. [Google Scholar] [CrossRef]
- Susorova, I.; Angulo, M.; Bahrami, P.; Stephens, B. A model of vegetated exterior facades for evaluation of wall thermal performance. Build. Environ. 2013, 67, 1–13. [Google Scholar] [CrossRef]
- Farreny, R.; Morales-Pinzón, T.; Guisasola, A.; Tayà, C.; Rieradevall, J.; Gabarrell, X. Roof selection for rainwater harvesting: Quantity and quality assessments in Spain. Water Res. 2011, 45, 3245–3254. [Google Scholar] [CrossRef] [PubMed]
- Angrill, S.; Petit-Boix, A.; Morales-Pinzón, T.; Josa, A.; Rieradevall, J.; Gabarrell, X. Urban rainwater runoff quantity and quality—A potential endogenous resource in cities? J. Environ. Manag. 2017, 189, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Nehls, T.; Peters, A.; Kraus, F.; Rim, Y.N. Water dynamics at the urban soil-atmosphere interface—rainwater storage in paved surfaces and its dependence on rain event characteristics. J. Soils Sediments 2021, 21, 2025–2034. [Google Scholar] [CrossRef]
- Tondera, K.; Blecken, G.-T.; Tournebize, J.; Viklander, M.; Österlund, H.; Wikström, A.A.; Tanner, C.C. Emerging Contaminants: Occurrence, Treatment Efficiency and Accumulation Under Varying Flows. In Ecotechnologies for the Treatment of Variable Stormwater and Wastewater Flows; Springer: Cham, Switzerland, 2018; pp. 93–109. [Google Scholar] [CrossRef]
- Barron, N.J.; Hatt, B.; Jung, J.; Chen, Y.; Deletic, A. Seasonal operation of dual-mode biofilters: The influence of plant species on stormwater and greywater treatment. Sci. Total Environ. 2020, 715, 136680. [Google Scholar] [CrossRef] [PubMed]
- Simperler, L.; Ertl, T.; Matzinger, A. Spatial Compatibility of Implementing Nature-Based Solutions for Reducing Urban Heat Islands and Stormwater Pollution. Sustainability 2020, 12, 5967. [Google Scholar] [CrossRef]
- Angrill, S.; Farreny, R.; Gasol, C.M.; Gabarrell, X.; Viñolas, B.; Josa, A.; Rieradevall, J. Environmental analysis of rainwater harvesting infrastructures in diffuse and compact urban models of Mediterranean climate. Int. J. Life Cycle Assess. 2012, 17, 25–42. [Google Scholar] [CrossRef]
- Berlin Senate for Urban Development Communications Rainwater Management Concepts—Greening Buildings, Cooling Buildings; Berlin Senate for Urban Development: Berlin, Germany, 2010.
- Cheng, C.; Cheung, K.K.; Chu, L. Thermal performance of a vegetated cladding system on facade walls. Build. Environ. 2010, 45, 1779–1787. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Sol, S.; Cabeza, L.F. Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect. Appl. Energy 2017, 187, 424–437. [Google Scholar] [CrossRef] [Green Version]
- Besir, A.B.; Cuce, E. Green roofs and facades: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Perini, K.; Bazzocchi, F.; Croci, L.; Magliocco, A.; Cattaneo, E. The use of vertical greening systems to reduce the energy demand for air conditioning. Field monitoring in Mediterranean climate. Energy Build. 2017, 143, 35–42. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Haas, E.M.; Raiteri, R. Vertical greening systems, a process tree for green façades and living walls. Urban Ecosyst. 2013, 16, 265–277. [Google Scholar] [CrossRef]
- Rayner, J.; Raynor, K.; Williams, N. Façade Greening: A Case Study from Melbourne, Australia. Acta Hortic. 2010, 881, 709–713. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 9251042195. [Google Scholar]
- Marasco, D. Alternative Metrics of Green Roof Hydrologic Performance: Evapotranspiration and Peak Flow Reduction; Columbia University: New York, NY, USA, 2014. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Rozos, E.; Makropoulos, C.; Maksimović, Č. Rethinking urban areas: An example of an integrated blue-green approach. Water Supply 2013, 13, 1534–1542. [Google Scholar] [CrossRef]
- Herrera, J.; Bonilla, C.A.; Castro, L.; Vera, S.; Reyes, R.; Gironás, J. A model for simulating the performance and irrigation of green stormwater facilities at residential scales in semiarid and Mediterranean regions. Environ. Model. Softw. 2017, 95, 246–257. [Google Scholar] [CrossRef]
- Schmidt, M. Energy and Water, a Decentralized Approach to an Integrated Sustainable Urban Development. 2000, pp. 1–6. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1071.561&rep=rep1&type=pdf (accessed on 20 January 2021).
- Koumoudis, S. Green Wall Planting Module, Support Structure and Irrigation Control System. U.S. Patent No. 7,926,224, 7 September 2010. [Google Scholar]
- Roehr, D.; Laurenz, J. Living skins: Environmental benefits of green envelopes in the city context. WIT Trans. Ecol. Environ. 2008, 113, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, M.; Rahimi, M.; Sen, S.; Mackenzie, N.; Imanbayev, Y. Living wall systems: Evaluating life-cycle energy, water and carbon impacts. Urban Ecosyst. 2015, 18, 1–11. [Google Scholar] [CrossRef]
- Lau, J.T.; Mah, D.Y.S. Green Wall for Retention of Stormwater. Pertanika J. Sci. Technol. 2018, 26, 283–298. [Google Scholar]
- Tiwary, A.; Godsmark, K.; Smethurst, J. Field evaluation of precipitation interception potential of green façades. Ecol. Eng. 2018, 122, 69–75. [Google Scholar] [CrossRef]
Water | Irrigation | UHI | Cooling | |||||
---|---|---|---|---|---|---|---|---|
Mentioned | Relevant | Mentioned | Relevant | Mentioned | Relevant | Mentioned | Relevant | |
[27] * | 15 | 0 | 4 | 0 | 6 | 0 | 3 | 0 |
[26] | 20 | 1 | 28 | 4 | 3 | 1 | 34 | 4 |
[28] * | 24 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
[29] * | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 |
[30] | 107 | 13 | 9 | 3 | 5 | 0 | 10 | 3 |
[5] | 15 | 8 | 6 | 2 | 2 | 0 | 26 | 3 |
[31] | 27 | 5 | 28 | 4 | 0 | 0 | 4 | 1 |
[32] * | 16 | 0 | 0 | 0 | 0 | 0 | 26 | 0 |
[11] | 14 | 4 | 2 | 1 | 2 | 0 | 58 | 7 |
[33] | 38 | 7 | 4 | 0 | 2 | 0 | 39 | 0 |
[34] * | 140 | 0 | 0 | 0 | 0 | 0 | 10 | 0 |
[35] * | 15 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
1: Atmosphere | 2: Hydraulic | 3: Quality | 4: RWH | 5: VGS | |
---|---|---|---|---|---|
Processes | Precipitation | Run-off formation | Pollutant absorption | Run-off storage | Evapotranspiration |
Run-off redistribution | Drainage | ||||
Overflow; | |||||
Influencing factors | Radiation intensity; | Catchment area; | Pollutant load; | Tank size; | Vegetation; |
Wind; | Surface type; | Run-off treatment. | Tank material; | PGM; | |
Air temperature; | Run-off coefficient; | Tank position; | Plant containers; | ||
Weather. | Built environment. | Tank design; | Irrigation system; | ||
Conveyance system. | Quality requirements. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prenner, F.; Pucher, B.; Zluwa, I.; Pitha, U.; Langergraber, G. Rainwater Use for Vertical Greenery Systems: Development of a Conceptual Model for a Better Understanding of Processes and Influencing Factors. Water 2021, 13, 1860. https://doi.org/10.3390/w13131860
Prenner F, Pucher B, Zluwa I, Pitha U, Langergraber G. Rainwater Use for Vertical Greenery Systems: Development of a Conceptual Model for a Better Understanding of Processes and Influencing Factors. Water. 2021; 13(13):1860. https://doi.org/10.3390/w13131860
Chicago/Turabian StylePrenner, Flora, Bernhard Pucher, Irene Zluwa, Ulrike Pitha, and Guenter Langergraber. 2021. "Rainwater Use for Vertical Greenery Systems: Development of a Conceptual Model for a Better Understanding of Processes and Influencing Factors" Water 13, no. 13: 1860. https://doi.org/10.3390/w13131860
APA StylePrenner, F., Pucher, B., Zluwa, I., Pitha, U., & Langergraber, G. (2021). Rainwater Use for Vertical Greenery Systems: Development of a Conceptual Model for a Better Understanding of Processes and Influencing Factors. Water, 13(13), 1860. https://doi.org/10.3390/w13131860