# Analysis of Characteristics of Hydrological and Meteorological Drought Evolution in Southwest China

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Study Area and Data

#### 2.1. Study Area

^{4}km

^{2}, and the mean annual precipitation for 1968–2017 was 1058 mm, with a standard deviation of 58 mm. It belongs to the humid and semi humid subtropical monsoon climate with a mean annual daily temperature of around 16.25 °C, affected by the Southwest monsoon. The study area is shown in Figure 1. There are six hydrological stations in the study area, and the basins controlled by the six hydrological stations are Yunjinghong Basin (YJHB), Wutongqiao Basin (WTQB), Sanhui Basin (SHB), Wulong Basin (WLB), Jiangbianjie Basin (JBJB) and Wanxian Basin (WXB).

#### 2.2. Dataset

#### 2.3. Methodology

^{−7}I

^{3}− 7.71 × 10

^{−5}I

^{2}+ 1.79 × 10

^{2}I + 0.492; and K is a correction coefficient computed as a function of the latitude and month:

_{0}= 2.515517, C

_{1}= 0.802853, C

_{2}= 0.010328, d

_{1}= 1.432788, d

_{2}= 0.189269, and d

_{3}= 0.001308.

_{0}: $\rho =0$, H

_{1}: $\rho \ne 0$, α = 0.01.

_{0}is true, then t obeys the t-distribution, whose degree of freedom is n−2.

_{0}is denied, otherwise H

_{0}is accepted.

## 3. Results

#### 3.1. The Characteristics of Meteorological Drought

#### 3.2. The Characteristics of Hydrological Drought

#### 3.3. Historical Droughts

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Zhou, L.; Yang, G. Ecological economic problems and development patterns of the arid inland river basin in Northwest China. Ambio
**2006**, 35, 316–318. [Google Scholar] [CrossRef] [PubMed] - Sivakumar, M.V.K.; Das, H.P.; Brunini, O. Impacts of Present and Future Climate Variability and Change on Agriculture and Forestry in the Arid and Semi-Arid Tropics. Clim. Chang.
**2005**, 70, 31–72. [Google Scholar] [CrossRef] - Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G.; et al. Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proc. Natl. Acad. Sci. USA
**2018**, 115, 10600–10605. [Google Scholar] [CrossRef] [Green Version] - Obasi, G.O.P. WMO‘s Role in the International Decade for Natural Disaster Reduction. Bull. Am. Meteorol. Soc.
**1994**, 75, 1655–1661. [Google Scholar] [CrossRef] [Green Version] - Chen, Y.; Li, L.; Cui, M. Analysis of Meteorological Disasters and Its Impact based on Production Function. Int. J. Hybrid Inf. Technol.
**2012**, 5, 2. [Google Scholar] - Li, X.; Li, Y.; Chen, A.; Gao, M.; Slette, I.; Piao, S. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agric. For. Meteorol.
**2019**, 269–270, 239–248. [Google Scholar] [CrossRef] - Yang, J.; Gong, D.; Wang, W.; Hu, M.; Mao, R. Extreme drought event of 2009/2010 over southwestern China. Theor. Appl. Clim.
**2011**, 115, 173–184. [Google Scholar] [CrossRef] - Yu, M.; Li, Q.; Hayes, M.J.; Svoboda, M.D.; Heim, R.R. Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index: 1951–2010? Int. J. Clim.
**2014**, 34, 545–558. [Google Scholar] [CrossRef] - Liu, M.; Xu, X.; Sun, A.Y.; Wang, K. Decreasing spatial variability of drought in southwest China during 1959–2013. Int. J. Clim.
**2017**, 37, 4610–4619. [Google Scholar] [CrossRef] - Liu, X.; Xu, X.; Yu, M.; Lu, J. Hydrological Drought Forecasting and Assessment Based on the Standardized Stream Index in the Southwest China. Procedia Eng.
**2016**, 154, 733–737. [Google Scholar] [CrossRef] [Green Version] - Qin, N.; Wang, J.; Chen, X.; Yang, G.; Liang, H. Impacts of climate change on regional hydrological regimes of the Wujiang River watershed in the Karst area, Southwest China. Geoenviron. Disasters
**2015**, 2, 10. [Google Scholar] [CrossRef] [Green Version] - Bhunia, P.; Das, P.; Maiti, R. Meteorological Drought Study Through SPI in Three Drought Prone Districts of West Bengal, India. Earth Syst. Environ.
**2019**, 4, 43–55. [Google Scholar] [CrossRef] - Vicente-Serrano, S.M.; Beguería, S.; Lopez-Moreno, I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim.
**2010**, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version] - Ahmad, M.; Sinclair, C.; Werritty, A. Log-logistic flood frequency analysis. J. Hydrol.
**1988**, 98, 205–224. [Google Scholar] [CrossRef] - Mavromatis, T. Drought index evaluation for assessing future wheat production in Greece. Int. J. Clim.
**2007**, 27, 911–924. [Google Scholar] [CrossRef] - Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev.
**1948**, 38, 55. [Google Scholar] [CrossRef] - Abramowitz, M.; Stegun, I.A.; Romer, R.H. Handbook of mathematical functions: With formulas, graphs and mathematical tables. Am. J. Phys.
**1988**, 56, 958. [Google Scholar] [CrossRef] [Green Version] - McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Li, J.; Zeng, Q. A unified monsoon index. Geophys. Res. Lett.
**2002**, 29, 115-1–115-4. [Google Scholar] [CrossRef] - Li, J.; Feng, J.; Li, Y. A possible cause of decreasing summer rainfall in northeast Australia. Int. J. Climatol.
**2012**, 32, 995–1005. [Google Scholar] [CrossRef] - Liu, Y.; Mu, Y.; Chen, K.; Li, Y.; Guo, J. Daily Activity Feature Selection in Smart Homes Based on Pearson Correlation Coefficient. Neural Process. Lett.
**2020**, 51, 1771–1787. [Google Scholar] [CrossRef] - Wang, H.; Shi, W.; Chen, X. The Statistical Significance Test of Regional Climate Change Caused by Land Use and Land Cover Variation in West China. Adv. Atmos. Sci.
**2006**, 23, 355–364. [Google Scholar] [CrossRef] - Cox, D. Statistical significance tests. Diagn. Histopathol.
**2016**, 22, 243–245. [Google Scholar] [CrossRef] - Hansen, J.P. Quality Research Toolbox: CANT MISS: Conquer Any Number Task by Making Important Statistics Simple. Part 6. Tests of Statistical Significance (z Test Statistic, Rejecting the Null Hypothesis, p value), t Test, z Test for Proportions, Statistical Significance Versus Meaningful Difference. J. Healthc. Qual.
**2004**, 26, 43–53. [Google Scholar] [CrossRef] - Johnson, L.A. Analysis of variance of parameter estimates: F tests and t tests. Anal. Biochem.
**1992**, 206, 195–201. [Google Scholar] [CrossRef] - Zenhausern, R. The A test: A simplification of the t test for correlated samples. Psychon. Sci.
**2013**, 7, 288. [Google Scholar] [CrossRef] [Green Version] - Wang, L.; Huang, G.; Chen, W.; Zhou, W.; Wang, W. Wet-to-dry shift over Southwest China in 1994 tied to the warming of tropical warm pool. Clim. Dyn.
**2018**, 51, 3111–3123. [Google Scholar] [CrossRef] - Jiaonan, L.; Yungang, L. Temporal and Spatial Characteristics of Droughts over Yunnan Province During 1961–2012. Mt. Res.
**2016**, 1, 19–27. [Google Scholar] [CrossRef] - Qing, P.; Ping, W. Drought and Flood Change Characteristics Based on RDI Index from 1960 to 2013 in Yunnan Province. Resour. Environ. Yangtza Basin
**2018**, 27, 185–196. [Google Scholar] [CrossRef] - Li, Y.; Wang, Z.; Zhang, Y.; Li, X.; Huang, W. Drought variability at various timescales over Yunnan Province, China: 1961–2015. Theor. Appl. Clim.
**2019**, 138, 743–757. [Google Scholar] [CrossRef] - Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Sci. Rep.
**2021**, 11, 1280. [Google Scholar] [CrossRef] - Cheng, Q.; Gao, L.; Chen, Y.; Liu, M.; Deng, H.; Chen, X. Temporal-Spatial Characteristics of Drought in Guizhou Province, China, Based on Multiple Drought Indices and Historical Disaster Records. Adv. Meteorol.
**2018**, 2018, 1–22. [Google Scholar] [CrossRef] - Xiao, L.; Chen, X.; Zhang, R.; Zhang, Z. Spatiotemporal Evolution of Droughts and Their Teleconnections with Large-Scale Climate Indices over Guizhou Province in Southwest China. Water
**2019**, 11, 2104. [Google Scholar] [CrossRef] [Green Version] - Zhang, C. Moisture sources for precipitation in Southwest China in summer and the changes during the extreme droughts of 2006 and 2011. J. Hydrol.
**2020**, 591, 125333. [Google Scholar] [CrossRef] - Lü, J.; Ju, J.; Ren, J.; Gan, W. The influence of the Madden-Julian Oscillation activity anomalies on Yunnan’s extreme drought of 2009–2010. Sci. China Earth Sci.
**2012**, 55, 98–112. [Google Scholar] [CrossRef] - Sun, S.; Li, Q.; Li, J.; Wang, G.; Zhou, S.; Chai, R.; Hua, W.; Deng, P.; Wang, J.; Lou, W. Revisiting the evolution of the 2009–2011 meteorological drought over Southwest China. J. Hydrol.
**2019**, 568, 385–402. [Google Scholar] [CrossRef] - Jia, Y.; Zhang, B.; Ma, B. Daily SPEI Reveals Long-term Change in Drought Characteristics in Southwest China. Chin. Geogr. Sci.
**2018**, 28, 680–693. [Google Scholar] [CrossRef] [Green Version] - Pradhan, N.S.; Su, Y.; Fu, Y.; Zhang, L.; Yang, Y. Analyzing the Effectiveness of Policy Implementation at the Local Level: A Case Study of Management of the 2009–2010 Drought in Yunnan Province, China. Int. J. Disaster Risk Sci.
**2017**, 8, 64–77. [Google Scholar] [CrossRef] [Green Version] - Wang, L.; Zhang, X.; Wang, S.; Salahou, M.K.; Fang, Y. Analysis and Application of Drought Characteristics Based on Theory of Runs and Copulas in Yunnan, Southwest China. Int. J. Environ. Res. Public Health
**2020**, 17, 4654. [Google Scholar] [CrossRef] - Cheng, Q.; Gao, L.; Zhong, F.; Zuo, X.; Ma, M. Spatiotemporal variations of drought in the Yunnan-Guizhou Plateau, southwest China, during 1960–2013 and their association with large-scale circulations and historical records. Ecol. Indic.
**2020**, 112, 106041. [Google Scholar] [CrossRef] - Prudhomme, C.; Giuntoli, I.; Robinson, E.; Clark, D.B.; Arnell, N.W.; Dankers, R.; Fekete, B.M.; Franssen, W.; Gerten, D.; Gosling, S.N.; et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA
**2014**, 111, 3262–3267. [Google Scholar] [CrossRef] [Green Version] - Wanders, N.; Wada, Y.; Van Lanen, H.A.J. Global hydrological droughts in the 21st century under a changing hydrological regime. Earth Syst. Dyn.
**2015**, 6, 1–15. [Google Scholar] [CrossRef] [Green Version] - Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int.
**1985**, 10, 111–120. [Google Scholar] [CrossRef] [Green Version] - Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol.
**2010**, 391, 202–216. [Google Scholar] [CrossRef] - van Genderen, J. Drought: Past problems and future scenarios. Int. J. Digit. Earth
**2012**, 5, 456–457. [Google Scholar] [CrossRef] - Lloyd-Hughes, B. The impracticality of a universal drought definition. Theor. Appl. Clim.
**2014**, 117, 607–611. [Google Scholar] [CrossRef] [Green Version] - Heim, R.R. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc.
**2002**, 83, 1149–1166. [Google Scholar] [CrossRef] [Green Version] - Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of Drought Indices. Bull. Am. Meteorol. Soc.
**2002**, 83, 1167–1180. [Google Scholar] [CrossRef] - Tsakiris, G.; Nalbantis, I.; Vangelis, H.; Verbeiren, B.; Huysmans, M.; Tychon, B.; Jacquemin, I.; Canters, F.; Vanderhaegen, S.; Engelen, G.; et al. A System-based Paradigm of Drought Analysis for Operational Management. Water Resour. Manag.
**2013**, 27, 5281–5297. [Google Scholar] [CrossRef] - Dai, A. Drought under global warming: A review. WIREs Clim. Chang.
**2010**, 2, 45–65. [Google Scholar] [CrossRef] [Green Version] - Van Loon, A.F. Hydrological drought explained. WIREs Water
**2015**, 2, 359–392. [Google Scholar] [CrossRef] - Burke, E.J.; Brown, S.J. Evaluating Uncertainties in the Projection of Future Drought. J. Hydrometeorol.
**2008**, 9, 292–299. [Google Scholar] [CrossRef] - Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature
**2012**, 491, 435–438. [Google Scholar] [CrossRef] [PubMed] - Valipour, M.; Bateni, S.; Sefidkouhi, M.G.; Raeini-Sarjaz, M.; Singh, V. Complexity of Forces Driving Trend of Reference Evapotranspiration and Signals of Climate Change. Atmosphere
**2020**, 11, 1081. [Google Scholar] [CrossRef] - Hamed, K.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol.
**1998**, 204, 182–196. [Google Scholar] [CrossRef]

**Figure 1.**Geographical location and distribution of meteorological and hydrological stations in the study area.

**Figure 2.**The annual variation of SPEI (

**a**) and frequency curve of SPEI-12 in different periods (

**b**). The solid line in (

**a**) shows the change of SPEI in given years, and the dotted line shows the downward trend of SPEI. The three lines in (

**b**), respectively, show the frequency curves of SPEI in three time periods, indicating the probability that SPEI is lower than a certain value in the time period.

**Figure 3.**The annual variation of SPEI in spring (

**a**), summer (

**b**), autumn (

**c**) and winter (

**d**) in Southwest China.

**Figure 5.**Frequency distribution of meteorological drought in different periods. This shows the distribution of drought frequency before the 21st century (

**a**) and since the 21st century (

**b**), as well as the change of drought frequency between the two periods (

**c**).

**Figure 6.**The variation of SRI in Wanxian hydrological station: The change of SRI-1 (

**a**), SRI-3 (

**b**), SRI-12 (

**c**), SRI-24 (

**d**).

**Figure 7.**The frequency of drought at hydrological stations. The blue and red bar charts respectively show the frequency before the 21st century and during the 21st century.

**Figure 8.**The annual variation trend of drought affected area (

**a**) and the decadal variation of drought affected area in different regions (

**b**), i.e., Southwest China, Sichuan, Guizhou and Yunnan.

**Figure 9.**Relationship between drought affected area and the two indices: (

**a**) is the meteorological drought index and (

**b**) is the hydrological drought index.

**Figure 10.**The M-K value of precipitation and temperature: (

**a**) is the M-K value of annual precipitation from 1968 to 2017 and (

**b**) is the M-K value of annual average temperature from 1951 to 2018.

Basins | Hydrological Stations | Longitude | Latitude | Area (km^{2}) | Average Annual Runoff (10^{8} m^{3}) |
---|---|---|---|---|---|

YJHB | Yunjinghong | 100°47′ E | 22°1′ N | 72,625 | 564 |

WTQB | Wutongqiao | 103°49′ E | 29°20′ N | 120,905 | 766 |

SHB | Sanhui | 106°29′ E | 30°1′ N | 33,155 | 111 |

WLB | Wulong | 107°43′ E | 29°19′ N | 76,101 | 487 |

JBJB | Jiangbianjie | 103°36′ E | 24°3′ N | 31,608 | 60 |

WXB | Wanxian | 108°25′ E | 30°45′ N | 630,822 | 4066 |

Grade | Degree | SPEI/SRI |
---|---|---|

1 | No drought | −0.5< |

2 | Light drought | −1.0–−0.5 |

3 | Moderate drought | −1.5–−1.0 |

4 | Severe drought | −2.0–−1.5 |

5 | Extreme drought | ≤−2.0 |

Value Range | Correlation Description |
---|---|

0.8–1.0 | Very strong correlation |

0.6–0.8 | Strong correlation |

0.4–0.6 | Moderate correlation |

0.2–0.4 | Weak correlation |

0.0–0.2 | Very weak correlation or no correlation |

Statistics | r | n | α | t | ${\mathit{t}}_{\mathit{\alpha}/2}{\mathit{t}}_{\mathit{\alpha}/2}$ |
---|---|---|---|---|---|

0.28 | 51 | 0.05 | 2.023 | 1.676 |

Statistics | r | n | α | t | ${\mathit{t}}_{\mathit{\alpha}/2}{\mathit{t}}_{\mathit{\alpha}/2}$ |
---|---|---|---|---|---|

Between affected area and SPEI | −0.01 | 45 | 0.05 | −0.085 | 1.679 |

Between affected area and SRI | −0.29 | 45 | 0.05 | −1.973 | 1.679 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tang, H.; Wen, T.; Shi, P.; Qu, S.; Zhao, L.; Li, Q.
Analysis of Characteristics of Hydrological and Meteorological Drought Evolution in Southwest China. *Water* **2021**, *13*, 1846.
https://doi.org/10.3390/w13131846

**AMA Style**

Tang H, Wen T, Shi P, Qu S, Zhao L, Li Q.
Analysis of Characteristics of Hydrological and Meteorological Drought Evolution in Southwest China. *Water*. 2021; 13(13):1846.
https://doi.org/10.3390/w13131846

**Chicago/Turabian Style**

Tang, Han, Tong Wen, Peng Shi, Simin Qu, Lanlan Zhao, and Qiongfang Li.
2021. "Analysis of Characteristics of Hydrological and Meteorological Drought Evolution in Southwest China" *Water* 13, no. 13: 1846.
https://doi.org/10.3390/w13131846