The Role of Frost Processes in the Retreat of River Banks
Abstract
:1. Introduction
2. Study Sites
3. Methods
3.1. Site 1
3.2. Site 2
3.3. Site 3
3.4. Site 4
3.5. Site 5
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawler, D.M.; Thorne, C.R.; Hooke, J.M. Bank erosion and instability. In Applied Fluvial Geomorphology for River Engineering and Management; Thorne, C.R., Hey, R.D., Newson, M.D., Eds.; Wiley: Chichester, UK, 1997; pp. 137–172. [Google Scholar]
- Lawler, D.M.; Grove, J.R.; Couperthwaite, J.S.; Leeks, G.J.L. Downstream change in river bank erosion rates in the Swale-Ouse system, northern England. Hydrol. Process. 1999, 13, 977–992. [Google Scholar] [CrossRef]
- Watson, A.J.; Basher, L.R. Stream bank erosion: A review of processes of bank failure, measurement and assessment techniques, and modelling approaches. In Landcare ICM Report No. 2005-2006/01 Motueka Integrated Catchment Management Programme Report Series: Bank Erosion Review; Landcare Research: Nelson, New Zeland, 2006; pp. 1–32. [Google Scholar]
- Neill, C.R.; Yaremko, E.K. Identifying causes and predicting effects of bank erosion. In Proceedings of the National Conference on Hydraulic Engineering, American Society of Civil Engineers, New Orleans, LA, USA, 14–18 August 1989. [Google Scholar]
- Przedwojski, B. Morfologia rzek i prognozowanie procesów rzecznych. In Wyd. Akademii Rolniczej im; Augusta Cieszkowskiego w Poznaniu: Poznań, Poland, 1998; p. 293. [Google Scholar]
- Banach, M.; Grobelska, H. Stan dynamiki brzegów zbiornika Jeziorsko. Słupskie Pr. Geogr. 2003, 1, 91–106. [Google Scholar]
- Coffman, D. Streambank Erosion Assessment in Non-Cohesive Channels Using Erosion Pins and Submerged Jet Testing. Ph.D. Thesis, Baylor University, Dallas/Fort Worth, TX, USA, 2009. Available online: http://beardocs.baylor.edu/xmlui/bitstream/handle/2104/5318/David_Coffman_Masters.pdf?sequence=1 (accessed on 12 April 2012).
- Couper, P.R.; Maddock, I.P. Subaerial river bank erosion processes and their interaction with other bank erosion mechanisms on the River Arrow, Warwickshire, UK. Earth Surf. Process. Landf. 2001, 26, 631–646. [Google Scholar] [CrossRef]
- Hooke, J.M. An analysis of the processes of river bank erosion. J. Hydrol. 1979, 42, 39–62. [Google Scholar] [CrossRef]
- Lawler, D.M. Process dominance in bank erosion systems. In Lowland Floodplain Rivers; Carling, P., Petts, G.E., Eds.; John Wiley and Sons: New York, NY, USA, 1992; pp. 117–143. [Google Scholar]
- Lawler, D.M. The impact of scale on the processes of channelside sediment supply: A conceptual model. In Effects of Scale on Interpretation and Management of Sediment and Water Quality. IAHS Pub.; Osterkamp, W.T., Ed.; IAHS Press: Wallingford, UK, 1995; Volume 226, pp. 175–184. [Google Scholar]
- Mengoni, B.; Mosselman, E. Analysis of riverbank erosion processes: Cecina river, Italy. In River, Coastal and Estuarine Morphodynamics: RCEM; Parker, García, Eds.; Taylor and Francis Group: London, UK, 2006; pp. 943–951. [Google Scholar]
- Thorne, C.R. Processes and mechanisms of river bank erosion. In Gravel-Bed Rivers; Hey, R.D., Bathurst, J.C., Thorne, C.R., Eds.; Wiley: Chichester, UK, 1982; pp. 227–272. [Google Scholar]
- Wynn, T.M.; Mostaghimi, S. The effects of vegetation and soil type on streambank erosion, Southwestern Virginia, USA. J. Am. Water Resour. Assoc. 2006, 42, 69–82. [Google Scholar] [CrossRef]
- Bertrand, F. Fluvial Erosion Measurements of Streambank Using Photo-Electronic Erosion Pins (PEEP). Ph.D. Thesis, University of Iowa, 2010. Available online: http://ir.uiowa.edu/cgi/viewcontent.cgi?article=1827&context=etd (accessed on 10 February 2013).
- Couper, P. Effects of silt-clay content on the susceptibility of river banks to subaerial erosion. Geomorphology 2003, 56, 95–108. [Google Scholar] [CrossRef]
- Green, T.R.; Beavis, S.G.; Dietrich, C.R.; Jakeman, A.J. Relating stream-bank erosion to in-stream transport of suspended sediment. Hydrol. Process. 1999, 13, 777–787. [Google Scholar] [CrossRef]
- Thorne, C.R. Effects of vegetation on river bank erosion and stability. In Vegetation and Erosion; Thornes, J.B., Ed.; Wiley: Chichester, UK, 1990; pp. 125–144. [Google Scholar]
- Van Klaveren, R.W.; McCool, D.K. Erodibility and critical shear of a previously frozen soil. Trans. Asae 1998, 41, 1315–1321. [Google Scholar] [CrossRef]
- Wolman, M.G. Factors influencing erosion of a cohesive river bank. Am. J. Sci. 1959, 257, 204–216. [Google Scholar] [CrossRef]
- Wynn, T.M.; Henderson, M.B.; Vaughan, D.H. Changes in streambank erodibility and critical shear stress due to subaerial processes along a headwater stream, southwestern Virginia, USA. Geomorphology 2008, 97, 260–273. [Google Scholar] [CrossRef]
- Hupp, C.R.; Schenk, E.R.; Richter, J.M.; Peet, R.K.; Townsend, P.A. Bank erosion along the dam-regulated lower Roanoke River, North Carolina. Geol. Soc. Am. Spec. Pap. 2009, 451, 97–108. [Google Scholar]
- Merritt, D.M.; Cooper, D.J. Riparian vegetation and channel change in response to river regulation: A comparative study of regulated and unregulated streams in the Green River Basin, USA. Regul. Rivers Res. Manag. 2000, 16, 543–564. [Google Scholar] [CrossRef]
- Simon, A.; Hupp, C.R. Geomorphic and Vegetative Recovery Processes along Modified Stream Channels of West Tennessee. In U.S. Geological Survey Open-File Report 91-502; U.S. Geological Survey; Books and Open-File Reports Section: Reston, VA, USA, 1992; p. 142. [Google Scholar]
- Simon, A.; Rinaldi, M. Channel instability in the loess area of the Midwestern United States. J. Am. Water Resour. Assoc. 2000, 36, 133–150. [Google Scholar] [CrossRef]
- Bartley, R.; Keen, R.J.; Hawdon, A.A.; Disher, M.G.; Kinsey-Henderson, A.E.; Hairsine, P.B. Measuring Rates of Bank Erosion and Channel Change in Northern Australia: A Case Study from the Daintree River Catchment. Reef Rainfor. CRC Final. Rep. CSIRO Land Water Sci. Rep. 2006, 43, 6–51. Available online: http://www.clw.csiro.au/publications/science/2006/sr43-06.pdf (accessed on 10 February 2013).
- Bartley, R.; Henderson, A.; Wilkinson, S.; Whitten, S.; Rutherfurd, I. Stream Bank Management in the Great Barrier Reef Catchments: A Handbook. Report to the Department of Environment. CSIRO Land Water Aust. 2015, 80. Available online: https://publications.csiro.au/rpr/download?pid=csiro:EP15849&dsid=DS1 (accessed on 7 January 2013).
- Abernethy, B.; Rutherfurd, I.D. Where along a river’s length will vegetation most effectively stabilise stream banks? Geomorphology 1998, 23, 55–75. [Google Scholar] [CrossRef]
- Pilarczyk, K.W.; Havinga, H.; Klaasen, G.J.; Verhey, H.J.; Mosselman, E.; Leemans, J.A. Control of bank erosion in the Netherlands. State-of-the-art. Conf. Hydr. Eng. ASCE New Orleans 1989, 442, 1–32. [Google Scholar]
- Duong Thi, T.; Do Minh, D. Riverbank Stability Assessment under River Water Level Changes and Hydraulic Erosion. Water 2019, 11, 2598. [Google Scholar] [CrossRef][Green Version]
- Yumoto, M.; Ogata, T.; Matsuoka, N.; Matsumoto, E. Riverbank freeze-thaw erosion along a small mountain stream, Nikko Volcanic Area, Central Japan. Permafr. Periglac. Process. 2006, 17, 325–339. [Google Scholar] [CrossRef]
- Augustowski, K. The role of multigelation in the development of river banks. Georeview 2013, 22, 56–66. [Google Scholar] [CrossRef][Green Version]
- Vallejo, L.E. Mechanics of the Stability and Development of the Great Lakes Coastal Bluffs. Ph.D. Dissertation, University of Wisconsin-Madison, Madison, WI, USA, 1977. [Google Scholar]
- Vallejo, L.E. Bluff retreat by frost action in the Great Lakes. In Proceedings of the 33rd Annual Meeting Technical Program Abstracts, Association of Engineering Geologists, Pittsburgh, PA, USA, 1–5 October 1990; pp. 50–51. [Google Scholar]
- Teisseyre, A.K. Procesy fluwialne i rozwój koryta górnego Bobru na odcinku badawczym w Błażkowej (1967–1982). Geol. Sudetica 1984, 19, 7–71. [Google Scholar]
- Lawler, D.M. Needle ice processes and sediment mobilisation on river bends; the River Ilston, West Glamorgan, UK. J. Hydrol. 1993, 150, 81–114. [Google Scholar] [CrossRef]
- Jahn, A. Quantitative Analysis of some Periglacial Processess In Spitsbergen. Zesz. Nauk. Uniw. Wrocławskiego Ser. B 1961, 5, 3–34. [Google Scholar]
- Dutkiewicz, L. The distribution of periglacial phenomena In NW-Sörkapp, Spitsbergen. Biul. Peryglac. 1967, 16, 37–83. [Google Scholar]
- Reid, J.R. Bank-erosion processes in a cool-temperate environment, Orwell Lake, Minnesota. Geol. Soc. Am. Bull. 1985, 96, 781–792. [Google Scholar] [CrossRef]
- Reid, J.R. Bank recession causes, measurement techniques, rates and predictions, Lake Sakakawea, North Dakota. In Missouri River Division Sediment Series 38; University of North Dakota: Omaha, NE, USA, 1992. [Google Scholar]
- Reid, J.R.; Sandberg, B.S.; Millsop, M.D. Bank recession processes, rates and prediction, Lake Sakakawea, North Dakota, U.S.A. Geomorphology 1988, 1, 161–189. [Google Scholar] [CrossRef]
- Hill, A.R. Erosion of river banks composed of glacial till near Belfast, Northern Ireland. Z. Geomorphol. 1973, 17, 428–442. [Google Scholar]
- Thorne, C.R.; Lewin, J. Bank processes, bed material movement and planform development in a meandering river. In Adjustments of the Fluvial System; Rhodes, D.D., Williams, G.P., Eds.; Allen and Unwin: London, UK, 1979; pp. 117–137. [Google Scholar]
- Michalczewski, J. Długotrwale zastoiska mrozowe Kotliny Podhalańskiej. Acta Geogr. Lodziendzia 1962, 13, 27–70. (In Polish) [Google Scholar]
- Klimaszewski, M. Views on the geomorphological development of the Polish West Carpathians in tertiary times. Geomorphol. Probl. Carpathians Bratisl. 1965, 1, 91–126. [Google Scholar]
- Kozak, P. Rocznik hydrologiczny; Wyd. Komunikacji I Łączności: Warszawa, Poland, 2014. [Google Scholar]
- Prosser, I.P.; Hughes, A.O.; Rutherfurd, I.D. Bank erosion of an incised upland channel by subaerial processes: Tasmania, Australia. Earth Surf. Process. Landf. 2000, 25, 1085–1101. [Google Scholar] [CrossRef]
- Saynor, M.J.; Erskine, W.D.; Evans, K.G. Bank erosion in the Ngarradj catchment: Results of erosion pin measurements between 1998 and 2001. In Supervising Scientist Report 176; Supervising Scientist: Darwin, NT, Australia, 2003; p. 40. [Google Scholar]
- Howard, A.; Raine, S.R.; Titmarsh, G. The Contribution of Stream Bank Erosion to Sediment Loads in Gowrie Creek, Toowoomba; University of Southern Quennsland: Toowoombie, Australia, 1998; Available online: http://www.usq.edu.au/users/raine/index_files/ASSSI98_Howard_etal.pdf (accessed on 10 April 2012).
- Luppi, L.; Rinaldi, M.; Teruggi, L.B.; Darby, S.E.; Nardi, L. Monitoring and numerical modelling of riverbank erosion processes: A case study along the Cecina River (central Italy). Earth Surf. Process. Landf. 2008, 34, 530–546. [Google Scholar] [CrossRef]
- Kronvang, B.; Audet, J.; Baattrup-Pedersen, A.; Jensen, H.S.; Larsen, S.E. Phosphorus Load to Surface Water from Bank Erosion in a Danish Lowland River Basin. J. Environ. Qual. 2012, 41, 304–313. [Google Scholar] [CrossRef][Green Version]
- Sirvent, J.; Desir, G.; Gutierrez, M.; Sancho, C.; Benito, G. Erosion rates in badland areas recorded by collectors, erosion pins and profilometer techniques (Ebro Basin, NE-Spain). Geomorphology 1997, 18, 61–75. [Google Scholar] [CrossRef]
- Shi, Z.; Wen, A.; Zhang, X.; Yan, D. Comparison of the soil losses from 7Be measurements and the monitoring data by erosion pins and runoff plots in the Three Gorges Reservoir region, China. Appl. Radiat. Isot. 2011, 69, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Arens, S.M.; Slings, Q.; de Vries, C.N. Mobility of a remobilised parabolic dune in Kennemerland, The Netherlands. Geomorphology 2004, 59, 175–188. [Google Scholar] [CrossRef]
- Lawler, D.M.; West, J.R.; Couperthwaite, J.S.; Mitchell, S.B. Application of a novel automatic erosion and deposition monitoring system at a channel bank site on the tidal River Trent, UK, Estuarine, Coastal and Shelf. Science 2001, 53, 237–247. [Google Scholar]
- Stott, T. Stream bank and forest ditch erosion: Preliminary responses to timber harvesting in mid-Wales. In Fluvial Processes and Environmental Change; Brown, A.G., Quine, T.A., Eds.; Wiley: New York, NY, USA, 1999; pp. 47–70. [Google Scholar]
- Couper, P.; Scott, T.; Maddock, I. Insights into river bank erosion processes derived from anaylsis of negative erosion-pin recordings: Observations from three recent UK studies. Earth Surf. Process. Landf. 2002, 27, 59–79. [Google Scholar] [CrossRef]
- O’Neil, M.A.; Pizzuto, J.E. The rates and spatial patterns of annual riverbank erosion revealed through terrestrial laser-scanner surveys of the South River, Virginia. Earth Surf. Process. Landf. 2011, 36, 695–701. [Google Scholar]
- Jahn, A. Some problems concerning slope development in the Sudetes. Biul. Peryglac. 1969, 18, 331–348. [Google Scholar]
- Augustowski, K.; Kukulak, J. Przekształcenia powierzchni brzegów rzecznych przez procesy mrozowe (Transformations of the surface of riverbanks by frostprocesses). Landf. Anal. 2013, 24, 3–10. [Google Scholar] [CrossRef]
- Kaplar, C.W. A Laboratory Freezing Test to Determine the Relative Frost Susceptibility of Soils. CRREL Tech. Rept. TR-250 1965, 17, 40. [Google Scholar]
- Berg, R.L.; Johnson, T. Revised procedures for pavement design under seasonal frost conditions. In USA Cold Regions Research and Engineering Laboratory, Special Report 83–27; US Army Corps and Engineers: Hanover, NH, USA, 1983; p. 129. [Google Scholar]
- Piłat, J.; Radziszewski, P. Nawierzchnie Asfaltowe; Wyd. Komunikacji i Łączności: Warszawa, Poland, 2004; p. 517. (In Polish) [Google Scholar]
- Grabowska-Olszewska, B.; Siergiejew, J. (Eds.) Soil Science; Wyd. Geol.: Warszawa, Poland, 1977; pp. 81–85. (In Polish) [Google Scholar]
- Klementowski, J. Współczesne procesy mrozowe na Dolnym Śląsku. In Geograficzne Uwarunkowania Rozwoju Małopolski; Górka, Z., Jelonek, A., Eds.; IGiGP UJ: Kraków, Poland, 2002; pp. 191–198. (In Polish) [Google Scholar]
Timing of Measurements During | |
---|---|
Fall–Winter | Spring–Fall |
15 December 2013 | 24 May 2014 (after the water-level rise on 14–21 May) |
10 January 2014 | 25 July 2014 (after water-level rise on 2–24 July) |
25 January 2014 | 3 September 2014 |
3 March 2014 | 29 October 2014 |
26 March 2014 | |
10 May 2014 |
Site | Plot | Number of Erosion Pins | Parameters of Studied Bank Sections | |||
---|---|---|---|---|---|---|
Length (m) | Elevation above Water Level (m) | Surface Area (m2) | Alluvium Type | |||
1 | A | 42 | 11.5 | 1.8 | 20.7 | Clayey gravel |
B | 36 | 10 | 2 | 20 | Clayey gravel | |
2 | A | 36 | 5.2 | 3 | 15.6 | Gravel |
B | 56 | 6.5 | 3 | 19.5 | Gravel | |
C | 21 | 4 | 3 | 12 | Gravel | |
3 | A | 30 | 10 | 3 | 30 | Clayey gravel |
4 | A | 87 | 22 | 2.5 | 55 | Clayey |
5 | A | 68 | 18.5 | 2 | 37 | Clayey gravel |
Site | Plot | Erosion due to (cm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Frost Phenomena | Fluvial Processes | ||||||||||
Row 1 (Situated Closest to Terrace Surface) | Row 2 | Row 3 | Row 4 | Mean | Row 1 | Row 2 | Row 3 | Row 4 | Mean | ||
1 | A | 39.3 | 37.9 | 25.9 | 34.4 | 80 * | 80 * | 80 * | 80 * | ||
B | 16.7 | 11.2 | 13.1 | 13.7 | 33.6 | 50.7 | 56.1 | 46.8 | |||
2 | A | 15.5 | 5 | 7.1 | 12.5 | 10.6 | 80 * | 80 * | 80 * | 80 * | 80 * |
B | 28.3 | 29.9 | 40.4 | 62 | 40.4 | 80 * | 80 * | 80 * | 80 * | 80 * | |
C | 9.9 | 10.7 | 8 | 9.5 | 56.7 | 62 | 72.7 | 63.8 | |||
3 | A | 31.3 | −13.7 | 6.9 | 8.2 | 9.6 | 8.4 | 6 | 8 | ||
4 | A | 3.8 | 7.8 | −5.3 | −13.9 | −2.2 | 80 * | 80 * | 80 * | 80 * | 80 * |
5 | A | 8.6 | 11.9 | 2.9 | 7.7 | 22 | 15 | 12.8 | 16.5 |
Site | Plot | Share of Frost Phenomena in Bank Erosion (%) | ||||
---|---|---|---|---|---|---|
Row 1 | Row 2 | Row 3 | Row 4 | Mean | ||
1 | A | 32.9 | 32.1 | 24.5 | 30.1 | |
B | 33.2 | 18.1 | 18.9 | 22.6 | ||
2 | A | 16.2 | 5.9 | 8.2 | 13.5 | 11.7 |
B | 26.1 | 27.2 | 25.4 | 14.5 | 23.6 | |
C | 14.9 | 14.7 | 9.9 | 13.0 | ||
3 | A | 76.5 | ** | 53.5 | 50.6 | |
4 | A | 4.5 | 8.9 | −7.1 | −21.0 | −2.8 |
5 | A | 28.1 | 44.2 | 18.5 | 31.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustowski, K.; Kukulak, J. The Role of Frost Processes in the Retreat of River Banks. Water 2021, 13, 1812. https://doi.org/10.3390/w13131812
Augustowski K, Kukulak J. The Role of Frost Processes in the Retreat of River Banks. Water. 2021; 13(13):1812. https://doi.org/10.3390/w13131812
Chicago/Turabian StyleAugustowski, Karol, and Józef Kukulak. 2021. "The Role of Frost Processes in the Retreat of River Banks" Water 13, no. 13: 1812. https://doi.org/10.3390/w13131812