The Importance of Including Water Temperature Simulations in a 2D Fish Habitat Model for the St. Lawrence River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Hydrodynamic Simulations as Input for a Habitat Model
2.3. Habitat Variables
2.4. Habitat Modeling Using Fuzzy Logic
2.5. Water Temperature Scenarios, Habitat Suitability and Habitat Availability
2.6. Simulation Periods
3. Results
3.1. Hydrodynamic Simulation of the 2001 Study Period
3.2. Usable Habitat Area
3.3. Habitat Suitability
4. Discussion
4.1. Habitat Suitability and Availability
4.2. Access to Thermal Refuges
4.3. Limitations and Improvements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Institutional Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comte, L.; Grenouillet, G. Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 2013, 36, 1236–1246. [Google Scholar] [CrossRef]
- Pont, D.; Logez, M.; Carrel, G.; Rogers, C.; Haidvogl, G. Historical change in fish species distribution: Shifting reference conditions and global warming effects. Aquat. Sci. 2015, 77, 441–453. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Justice, C.; White, S.M.; McCullough, D.A.; Graves, D.S.; Blanchard, M.R. Can stream and riparian restoration offset climate change impacts to salmon populations? J. Environ. Manag. 2017, 188, 212–227. [Google Scholar] [CrossRef] [PubMed]
- Haro, A.; Chelminski, M.; Dudley, R.W. Computational Fluid Dynamics-Habitat Suitability Index (CFD-HSI) Modelling as an Exploratory Tool for Assessing Passability of Riverine Migratory Challenge Zones for Fish. River Res. Appl. 2015, 31, 526–537. [Google Scholar] [CrossRef]
- Dunn, C.G.; Angermeier, P.L. Development of Habitat Suitability Indices for the Candy Darter, with Cross-Scale Validation across Representative Populations. Trans. Am. Fish. Soc. 2016, 145, 1266–1281. [Google Scholar] [CrossRef]
- Roy, M.L.; Le Pichon, C. Modelling functional fish habitat connectivity in rivers: A case study for prioritizing restoration actions targeting brown trout. Aquat. Conserv. Mar. Freshw. Ecosyst. 2017, 27, 927–937. [Google Scholar] [CrossRef]
- Bain, M.B.; Jia, H. A habitat model for fish communities in large streams and small rivers. Int. J. Ecol. 2012, 2012. [Google Scholar] [CrossRef][Green Version]
- Lamouroux, N.; Capra, H. Simple predictions of instream habitat model ouputs for target fish populations. Freshw. Biol. 2002, 47, 1543–1556. [Google Scholar] [CrossRef]
- Mingelbier, M.; Brodeur, P.; Morin, J. Spatially explicit model predicting the spawning habitat and early stage mortality of Northern pike (Esox lucius) in a large system: The St. Lawrence River between 1960 and 2000. Hydrobiology 2008, 601, 55–69. [Google Scholar] [CrossRef]
- Deweber, J.T.; Wagner, T. Predicting Brook Trout Occurrence in Stream Reaches throughout their Native Range in the Eastern United States. Trans. Am. Fish. Soc. 2014, 144, 11–24. [Google Scholar] [CrossRef]
- Kolden, E.; Fox, B.D.; Bledsoe, B.P.; Kondratieff, M.C. Modelling Whitewater Park Hydraulics and Fish Habitat in Colorado. River Res. Appl. 2016, 32, 1116–1127. [Google Scholar] [CrossRef]
- Robinson, J.M.; Josephson, D.C.; Weidel, B.C.; Kraft, C.E. Influence of Variable Interannual Summer Water Temperatures on Brook Trout Growth, Consumption, Reproduction, and Mortality in an Unstratified Adirondack Lake. Trans. Am. Fish. Soc. 2010, 139, 685–699. [Google Scholar] [CrossRef]
- Isaak, D.J.; Wollrab, S.; Horan, D.; Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Change 2012, 113, 499–524. [Google Scholar] [CrossRef][Green Version]
- Dugdale, S.J.; Bergeron, N.E.; St-Hilaire, A.A.A. Temporal variability of thermal refuges and water temperature patterns in an Atlantic salmon river. Remote Sens. Environ. 2013, 136, 358–373. [Google Scholar] [CrossRef]
- Corey, E.; Linnansaari, T.; Cunjak, R.A.; Currie, S. Physiological effects of environmentally relevant, multi-day thermal stress on wild juvenile Atlantic salmon (Salmo salar). Conserv. Physiol. 2017, 5, 1–13. [Google Scholar] [CrossRef]
- Durham, B.W.; Wilde, G.R.; Pope, K.L. Temperature-caused fish kill in a flowing great plains river. Southwest. Nat. 2006, 51, 397–401. [Google Scholar] [CrossRef][Green Version]
- Chen, Y.J.; Nicholson, E.; Cheng, S.T. Using machine learning to understand the implications of meteorological conditions for fish kills. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Schakau, V.; Hilker, F.M.; Lewis, M.A. Fish disease dynamics in changing rivers: Salmonid Ceratomyxosis in the Klamath River. Ecol. Complex. 2019, 40, 100776. [Google Scholar] [CrossRef]
- Mohseni, O.; Stefan, H.G. Stream temperature/air temperature relationship: A physical interpretation. J. Hydrol. 1999, 218, 128–141. [Google Scholar] [CrossRef]
- Van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Chang. 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Benjankar, R.; Tonina, D.; McKean, J.A.; Sohrabi, M.M.; Chen, Q.; Vidergar, D. Dam operations may improve aquatic habitat and offset negative effects of climate change. J. Environ. Manag. 2018, 213, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.W.; Hannah, D.M.; Moore, R.D.; Brown, L.E.; Nobilis, F. Recent advances in stream and river temperature research. Hydrol. Process. 2008, 22, 902–918. [Google Scholar] [CrossRef]
- Wilby, R.L.; Orr, H.; Watts, G.; Battarbee, R.W.; Berry, P.M.; Chadd, R.; Dugdale, S.J.; Dunbar, M.J.; Elliott, J.A.; Extence, C.; et al. Evidence needed to manage freshwater ecosystems in a changing climate: Turning adaptation principles into practice. Sci. Total Environ. 2010, 408, 4150–4164. [Google Scholar] [CrossRef]
- Ouellet, V.; St-Hilaire, A.; Dugdale, S.J.; Hannah, D.M.; Krause, S.; Ouellet-P, S.; Proulx-Ouellet, S. River temperature research and practice: Recent challenges and emerging opportunities for managing thermal habitat conditions in stream ecosystems. Sci. Total Environ. 2020, 736, 139679. [Google Scholar] [CrossRef]
- Monette, S.; Dallaire, A.D.; Mingelbier, M.; Groman, D.; Uhland, C.; Richard, J.-P.; Paillard, G.; Johannson, L.M.; Chivers, D.P.; Ferguson, H.W.; et al. Massive mortality of common carp (Cyprinus carpio carpio) in the St. Lawrence River in 2001: Diagnostic investigation and experimental induction of lymphocytic encephalitis. Vet. Pathol. 2006, 43, 302–310. [Google Scholar] [CrossRef]
- Ouellet, V.; Mingelbier, M.; Saint-Hilaire, A.; Morin, J. Frequency analysis as a tool for assessing adverse conditions during a massive Fish Kill in the St. Lawrence River, Canada. Water Qual. Res. J. Can. 2010, 45. [Google Scholar] [CrossRef][Green Version]
- Mingelbier, M.; Trencia, G.; Dumas, R.; Dumas, B.; Mailhot, Y.; Bouchard, C.; Manolesco, D.; Brodeur, P.; Hudon, C.; Ouellettte, G. Avis Scientifique Concernant la Mortalité Massive des Carpes dans le Saint Laurent Durant l’été 2001; Societe de la faune et des parcs du Quebec, Ministere de l’environnement: Quebec, Canada, 2001; Volume 26.
- Ouellet, V.; St-Hilaire, A.; Mingelbier, M.; Morin, J. Temperature duration frequency analysis on the St. Lawrence River (Canada)—A tool for quantifying adverse conditions during the 2001 massive fish kill. Water Qual. Res. J. Can. 2010, 45, 47–57. [Google Scholar] [CrossRef][Green Version]
- Ouellet, V.; Pierron, F.; Mingelbier, M.; Fournier, M.; Fournier, M.; Couture, P. Thermal Stress Effects on Gene Expression and Phagocytosis in the Common Carp (Cyprinus Carpio): A Better Understanding of the summer 2001 st. Lawrence River Fish Kill. Open Fish. Sci. J. 2013, 6, 99–106. [Google Scholar] [CrossRef][Green Version]
- Morin, J.; Bouchard, A. Les bases de la modélisation du tronçon Montréal/Trois-Rivières. Rapport scientifique SMC-Hydrométrie RS-100; Service meteorologique du Canada, Monitoring et Technologies, Section: Sainte-Foy, Canada, 2000. [Google Scholar]
- Frenette, J.; Arts, M.T.; Morin, J.; Gratton, D.; Martin, C. Hydrodynamic control of the underwater light climate in fluvial Lac Saint-Pierre. Limnol. Oceanogr. 2006, 51, 2632–2645. [Google Scholar] [CrossRef][Green Version]
- Côté, J.-P.; Morin, J. Modifications anthropiques sur 150 ans au lac Saint-Pierre: Une fenêtre sur les transformations de l’écosystème du Saint-Laurent. VertigO 2003, 4, 1–10. [Google Scholar] [CrossRef]
- Ouellet, V.; Secretan, Y.; St-Hilaire, A.; Morin, J. Daily averaged 2D water temperature model for the St. Lawrence River. River Res. Appl. 2013, 30, 733–744. [Google Scholar] [CrossRef]
- Secretan, Y.F. Contribution à la Résolution des Équations de Navier-Stokes Compressibles par la Méthode des Éléments Finis Adaptatifs. Ph.D. Thesis, ETH, Zurich, Switzerland, 1991. [Google Scholar]
- Morin, J.; Champoux, O.; Martin, S.; Turgeon, K. Modélisation Intégrée de la Réponse de L’écosystème dans le Fleuve Saint-Laurent: Rapport Final des Activités Entreprises dans le Cadre du Plan D’étude sur la Régularisation du Lac Ontario et du Fleuve Saint-Laurent; Environnement Canada: Quebec, Canada, 2005. [Google Scholar]
- Morin, J.; Mingelbier, M.; Bechara, J.A.; Champoux, O.; Secretan, Y.; Jean, M.; Frenette, J. Emergence of New Explanatory Variables for 2D Habitat Modelling in Large Rivers: The St. Lawrence Experience. Can. Water Resour. J. 2003, 28, 1–24. [Google Scholar] [CrossRef][Green Version]
- McCrimmon, H.R. Carp in Canada. Fish. Resour. Can. Board Bull. 1968, 165, 93–102. [Google Scholar]
- Cooper, E.L. Carp in North America; American Fisheries Society: Bethesda, MD, USA, 1987; ISBN 091323544X. [Google Scholar]
- Fernandez-Delgado, C. Life history patterns of the common carp, Cyprinus carpio, in the estuary of the Guadalquivir river in south-west Spain. Hydrobiologia 1990, 206, 19–28. [Google Scholar] [CrossRef]
- Jorde, K.; Schneider, M.; Peter, A.; Zoellner, F. Fuzzy based models for the evaluation of fish habitat quality and instream flow assessment. In Proceedings of the 3rd International Symposium on Environmental Hydraulics, Tempe, AZ, USA, 5–8 December 2001. [Google Scholar]
- Mocq, J.; St-Hilaire, A.; Cunjak, R.A. Assessment of Atlantic salmon (Salmo salar) habitat quality and its uncertainty using a multiple-expert fuzzy model applied to the Romaine River (Canada). Ecol. Modell. 2013, 265, 14–25. [Google Scholar] [CrossRef]
- Kerle, F.; Zöllner, F.; Schneider, M.; Böhmer, J.; Kappus, B.; Baptist, M.J. Modelling of long-term fish habitat changes in restored secondary floodplain channels of the river Rhine. In Proceedings of the fourth Ecohydraulics Symposium, Cape Town, SA, South Africa, 3–8 March 2002; p. 15. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef][Green Version]
- Bai, Y.; Wang, D. Fundamentals of fuzzy logic control—Fuzzy sets, fuzzy rules and defuzzifications. Adv. Ind. Control. 2006, 17–36. [Google Scholar] [CrossRef]
- Barton, B.A. Stress in Fishes: A Diversity of Responses with Particular Reference to Changes in Circulating Corticosteroids. Integr. Comp. Biol. 2002, 42, 517–525. [Google Scholar] [CrossRef]
- Vignet, C.; Larcher, T.; Davail, B.; Joassard, L.; Le Menach, K.; Guionnet, T.; Lyphout, L.; Ledevin, M.; Goubeau, M.; Budzinski, H.; et al. Fish Reproduction Is Disrupted upon Lifelong Exposure to Environmental PAHs Fractions Revealing Different Modes of Action. Toxics 2016, 4, 26. [Google Scholar] [CrossRef]
- Gaston, K.J.; Butlin, R.K.; Snook, R.R. Local adaptation of reproductive performance during thermal stress. J. Evol. Biol. 2017, 30, 422–429. [Google Scholar] [CrossRef]
- Pusey, B.J.; Douglas, M.; Olden, J.D.; Jackson, S.; Allsop, Q.; Kennard, M.J. Connectivity, habitat, and flow regime influence fish assemblage structure: Implications for environmental water management in a perennial river of the wet–dry tropics of northern Australia. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 1397–1411. [Google Scholar] [CrossRef]
- Carnie, R.; Tonina, D.; Mckean, J.A.; Isaak, D. Habitat connectivity as a metric for aquatic microhabitat quality: Application to Chinook salmon spawning habitat. Ecohydrology 2015, 9, 982–994. [Google Scholar] [CrossRef]
- Alexander, L.C.; Autrey, B.; DeMeester, J.; Fritz, K.M.; Goodrich, D.C.; Kepner, W.G.; Lane, C.R.; LeDuc, S.D.; Leibowitz, S.G.; McManus, M.; et al. Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence. JAWRA J. Am. Water Resour. Assoc. 2013, 54, 287–297. [Google Scholar] [CrossRef]
- Duarte, G.; Segurado, P.; Haidvogl, G.; Pont, D.; Ferreira, M.T.; Branco, P. Damn those damn dams: Fluvial longitudinal connectivity impairment for European diadromous fish throughout the 20th century. Sci. Total Environ. 2021, 761, 143293. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouellet, V.; St-Hilaire, A.; Secretan, Y.; Mingelbier, M.; Morin, J.; Dugdale, S.J. The Importance of Including Water Temperature Simulations in a 2D Fish Habitat Model for the St. Lawrence River. Water 2021, 13, 1736. https://doi.org/10.3390/w13131736
Ouellet V, St-Hilaire A, Secretan Y, Mingelbier M, Morin J, Dugdale SJ. The Importance of Including Water Temperature Simulations in a 2D Fish Habitat Model for the St. Lawrence River. Water. 2021; 13(13):1736. https://doi.org/10.3390/w13131736
Chicago/Turabian StyleOuellet, Valerie, André St-Hilaire, Yves Secretan, Marc Mingelbier, Jean Morin, and Stephen J. Dugdale. 2021. "The Importance of Including Water Temperature Simulations in a 2D Fish Habitat Model for the St. Lawrence River" Water 13, no. 13: 1736. https://doi.org/10.3390/w13131736