# Numerical Analysis of Flow Behavior in a Rectangular Channel with Submerged Weirs

## Abstract

**:**

## 1. Introduction

#### Submerged Weirs and Flow Behavior

## 2. Materials and Methods

#### 2.1. Experimental Works

#### 2.2. Numerical Modelling—RANS

#### 2.3. Turbulence Closures—RANS

#### 2.4. Large Eddy Simulation

#### 2.5. Numerical Mesh and Boundary Conditions

#### 2.6. Calibration and Validation of the Model

## 3. Results

#### 3.1. Turbulence Bursting

#### 3.2. RANS Modelling

#### 3.3. Large Eddy Simulation

## 4. Discussion

## 5. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

ADV | Acoustic Doppler Velocimetry |

LES | Large Eddy Simulation |

RANS | Reynolds Averaged Navier–Stokes |

CFD | Computational Fluid Dynamics |

RNG | Renormalization Group |

EZ | Experimental Zone |

TKE | Turbulent Kinetic Energy |

SGS | Sub-Grid Scale component |

FNES | Filtered Navier–Stokes Equation |

DES | Detached Eddy Simulation |

FES | Free Surface Elevation |

## References

- Sankar, S.T. Measurement of turbulent flow in a narrow open channel. J. Hydrol. Hydromech.
**2016**, 64, 273–280. [Google Scholar] [CrossRef][Green Version] - Tu, J.; Yong, G.H.; Liu, C. Computational Fluid Dynamics. A Practical Approach, 2nd ed.; Butterworth-Heinemann: Burlington, UT, USA, 2008. [Google Scholar]
- Herrera-Granados, O. Computational Fluid Dynamics in River Engineering: A General Overview. In InterTech 2009; Poznan University of Technology: Poznan, Poland, 2009; pp. 259–263. [Google Scholar]
- Kirkgoz, M.; Akoz, M.; Oner, A.T. Numerical modeling of flow over a chute spillway. J. Hydraul. Res.
**2009**, 47, 790–797. [Google Scholar] [CrossRef] - Andersson, A.; Andreasson, P.; Lundström, T. CFD-modelling and validation of free surface flow during spilling of a reservoir in down-scale model. Comput. Eng. Appl. Comput. Fluid Mech.
**2013**, 7, 159–167. [Google Scholar] [CrossRef][Green Version] - Ouillon, S.; Dartus, D. Three-Dimensional computation of flow around groyne. J. Hydraul. Eng.
**1997**, 123, 962–970. [Google Scholar] [CrossRef] - Kuwata, Y.; Suga, K.; Sakurai, Y. Development and application of a multi-scale k-e model for turbulent porous medium flows. Int. J. Heat Fluid Flow
**2014**, 49, 135–150. [Google Scholar] [CrossRef] - Herrera-Granados, O.; Kostecki, S. Numerical and physical modeling of water flow over the ogee weir of the new Niedów barrage. J. Hydrol. Hydromech.
**2016**, 64, 67–74. [Google Scholar] [CrossRef][Green Version] - Rodi, W. Large eddy simulation of river flows. In River Flow 2010. Proceedings of the International Conference on Fluvial Hydraulics; Dittrich, A., Koll, K., Aberle, J., Geisenhainer, P., Eds.; Bundesanstalt fur Wasserbau: Karlsruhe, Germany, 2010; pp. 23–32. [Google Scholar]
- Herrera-Granados, O. Seepage Influence on River Dynamics. Ph.D. Thesis, Wrocław University of Science and Technology, Wrocław, Poland, 2012. [Google Scholar]
- Bradbrook, K.F.; Lane, S.N.; Richards, K.S.; Biron, P.M.; Roy, A.G. Large Eddy Simulation of periodic flow characteristics at river channel confluences. J. Hydraul. Res.
**2000**, 38, 207–215. [Google Scholar] [CrossRef] - Koken, M.; Constantinescu, G. An investigation of the dynamics of coherent structures in a turbulent channel flow with a vertical sidewall obstruction. Phys. Fluids
**2009**, 21, 085104. [Google Scholar] [CrossRef] - Herrera-Granados, O. Turbulence Flow Modeling of One-Sharp-Groyne Field. In Free Surface Flows and Transport Processes; Kalinowska, M., Mrokowska, M., Rowinski, P., Eds.; GeoPlanet: Earth and Planetary Sciences; Springer: Cham, Switzerland, 2018; pp. 207–218. [Google Scholar]
- Wang, L.; Melville, B.W.; Shamseldin, A.Y.; Nie, R. Impacts of bridge piers on scour at downstream river training structures: Submerged weir as an example. Water Resour. Res.
**2020**, 56. [Google Scholar] [CrossRef] - Jia, Y.; Scott, S.; Xu, Y.; Huang, S.; Wang, S. Three-Dimensional Numerical Simulation and Analysis of Flows around a Submerged Weir in a Channel Bendway. Water Resour. Res.
**2005**, 131, 682–693. [Google Scholar] [CrossRef] - Huang, S.L.; Ng, C.O. Hydraulics of a submerged weir and applicability in navigational channels: Basic flow structures. Int. J. Numer. Methods Eng.
**2007**, 69, 2264–2278. [Google Scholar] [CrossRef] - Maghsoodi, R.; Roozgar, M.S.; Sarkardeh, H.; Azamathulla, H.M. 3D-simulation of flow over submerged weirs. Int. J. Model. Simul.
**2007**, 32, 237–243. [Google Scholar] [CrossRef] - Ban, C.; Choi, S.U. Turbulence structures in flows over a submerged weir. In River Flow 2020. Proceedings of the International Conference on Fluvial Hydraulics; Wim, U.W., Franca, M.J., Valero, D., Chavarrias, V., Arbós, C.Y., Schielen, R., Crosato, A., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 178–184. [Google Scholar]
- Kostecki, S.W.; Redowicz, W. Effect of Vertical Contraction in Open-Channel Flow through a Trapezoidal Flume; Technical Report SPR; Wrocław University of Science and Technology: Wrocław, Poland, 2015. [Google Scholar]
- Poindexter, C.M.; Rusello, P.J.; Variano, E.A. Acoustic Doppler velocimeter-induced acoustic streaming and its implications for measurement. Exp. Fluids
**2011**, 50, 1429–1442. [Google Scholar] [CrossRef][Green Version] - Wu, W. Computational River Dynamics; Taylor & Francis: London, UK, 2007. [Google Scholar]
- Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather Rev.
**1963**, 91, 99–164. [Google Scholar] [CrossRef] - Dey, S.; Sankar, S.; Solari, L. Near-Bed Turbulence Characteristics at the Entrainment Threshold of Sediment Beds. J. Hydraul. Eng.
**2011**, 137, 945–958. [Google Scholar] [CrossRef] - Franca, M.J.; Santos, B.O.; Antico, F.; Ferreira, R.M.L. Quadrant Analysis of Coherent Structures in Open Channel Flows over Mobile and Immobile Hydraulically Rough Beds. ERCOFTAC Bull.
**2014**, 100, 29–36. [Google Scholar] - Hanmaiahgari, P.R.; Roussinova, V.; Balachandar, R. Turbulence characteristics of flow in an open channel with temporally varying mobile bedforms. J. Hydrol. Hydromech.
**2017**, 65, 35–48. [Google Scholar] [CrossRef][Green Version] - Jesson, M.; Sterling, M.; Bridgeman, J. Despiking velocity time-series—Optimisation through the combination of spike detection and replacement methods. Flow Meas. Instrum.
**2013**, 30, 45–51. [Google Scholar] [CrossRef] - Herrera-Granados, O. Statistical Analysis of Seepage’s Influence on Open-Channel Turbulence. In Experimental and Computational Methods in Hydraulic Research; Rowinski, P., Ed.; GeoPlanet: Earth and Planetary Sciences; Springer: Berlin/Heidelberg, Germany, 2013; pp. 147–158. [Google Scholar]

**Figure 7.**Quadrant analysis of the bursting events close to the weir (x = 2.50 m from origin of the flume).

**Figure 8.**Quadrant analysis of the bursting events close to the weir (x = 2.55 m from origin of the flume).

**Figure 9.**Streamwise velocity contours and vectors (m s${}^{-1}$ ) in the $XZ$ plane (dim in meters). Location of profiles (PF1 = 2.45; PF2 = 2.50 and PF3 = 2.55 m from origin) for (

**A**) RNG Model and (

**B**) k-epsilon model.

**Figure 10.**TKE (m${}^{2}$ s${}^{-2}$) in the $XZ$ plane of the EZ (dim in meters) for (

**A**) RNG Model and (

**B**) k-epsilon model.

**Figure 11.**Turbulent Intensities (%) in the XZplane of the EZ (dim in meters) for (

**A**) RNG Model and (

**B**) k-epsilon mode.

**Figure 12.**LES output in the XZ plane of the EZ (dim in meters) along the experimental zone of the (

**A**) streamwise time-averaged velocities (m s${}^{-1}$), (

**B**) Turbulent intensities (%) and (

**C**) TKE (m${}^{2}$ s${}^{-2}$).

**Figure 13.**LES output in the XZ plane of the EZ (dim in meters) along the experimental zone of the (

**A**) turbulent length scale (m) and (

**B**) upstream vorticity (m${}^{-1}$).

**Figure 14.**Comparison of measured and computed streamwise velocity profiles (m s${}^{-1}$) in the experimental zone for (

**A**) 2.45 m; (

**B**) 2.50 m and (

**C**) 2.55 m from origin.

**Figure 15.**Comparison of measured and computed vertical turbulent shear stress profiles in the experimental zone for (

**A**) 2.45 m; (

**B**) 2.50 m and (

**C**) 2.55 m distance from origin.

**Figure 16.**Comparison of measured and computed TKE (m${}^{2}$ s${}^{-2}$) profiles in the experimental zone (dim in meters) for (

**A**) 2.45 m; (

**B**) 2.50 m and (

**C**) 2.55 m from origin.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Herrera-Granados, O. Numerical Analysis of Flow Behavior in a Rectangular Channel with Submerged Weirs. *Water* **2021**, *13*, 1396.
https://doi.org/10.3390/w13101396

**AMA Style**

Herrera-Granados O. Numerical Analysis of Flow Behavior in a Rectangular Channel with Submerged Weirs. *Water*. 2021; 13(10):1396.
https://doi.org/10.3390/w13101396

**Chicago/Turabian Style**

Herrera-Granados, Oscar. 2021. "Numerical Analysis of Flow Behavior in a Rectangular Channel with Submerged Weirs" *Water* 13, no. 10: 1396.
https://doi.org/10.3390/w13101396