Sediment Balance Estimation of the ‘Cuvette Centrale’ of the Congo River Basin Using the SWAT Hydrological Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. General Characteristics
2.1.2. Hydro-Sedimentary Measurements in the Congo River Basin
2.2. Data and Methodology
2.3. Modeling Approach
SWAT Model Overview
2.4. SWAT Hydrological Model Setup
2.5. SWAT Sediment Model
2.6. SWAT Sediment Setup
2.7. Sediment Balance
2.8. Calibration and Validation of the Model
2.9. Statistical Analysis
3. Results
3.1. Hydrological Responses in the Main Tributaries
3.2. The Calibration Dataset for Sediment Transport and the Model’s Calibration Performance
3.2.1. Data Analysis
3.2.2. Calibration Performance
3.3. Additional Comparison of the Model Simulations with Historical Datasets
4. Discussion
4.1. Spatial Analysis of SWAT Outputs
4.1.1. Surface Runoff and Sediment Yield
4.1.2. Land Use/Land Cover and Sediment Yield
4.1.3. Sediment Source Areas
4.2. Key Factors Affecting Sediment Yield
4.3. Sediment Balance in the Cuvette Centrale
4.4. Comparison with the Amazon and the Orinoco
4.5. Uncertainties Related to Sediment Estimation
5. Conclusions
- Run the SWAT model on a daily timescale, calibrating the hydrology and sediment dynamics for the 2000 to 2012 period. Five principal catchments of the CRB were calibrated for hydrology based on previous work [50] (Datok et al., 2021). Due to lack of data, we were only able to calibrate one station in the upper part of the basin as well as the outlet of the basin for the sediments. We achieved acceptable results based on the performance of the evaluation criteria used in the study. For hydrology, the coefficients of efficiency were above 70% in 60% of the sub-basins calibrated, while other evaluation criteria also gave a good picture of the model performance.
- An assessment of the model outputs revealed that agriculture and pasture were the main land uses with the potential to contribute the most sediment yield. The absence of any major infrastructure like dams in most of the tributaries, to trap sediment even temporarily, makes this an important source of sediments. Generally, the steepest areas of the basin produced more sediment and runoff. Our map of degradation hotspots also revealed that the middle basin is least affected by erosion with degradation more pronounced in the outer rim of the Cuvette Centrale. At the same time, the Cuvette Centrale area showed the lowest values of soil erodibility mainly because of the soil properties. Thus, the erosion within this area is mainly local with corresponding sediment accumulation. The highest specific sediment yields by sub-basin were from the Kasai, aided by intense anthropogenic disturbances that lead to deforestation and degradation of uncovered land. The Ubangi subbasin, on the other hand, an old erosional surface, has the lowest specific sediment yields. In terms of load carried in stream channels, the heaviest loads were carried from the lakes at the southeastern parts of the basin and the confluence of the Kasai with the main Congo River.
- Principal component analysis revealed the main factors that aid in sediment transport. They include surface runoff, precipitation, the slope in the HRU and the erodibility of the soils. These factors are closely related to the climate and physiography of the catchment with high relief areas more prone to erosion and the high precipitation causing increased surface runoff in the central basin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hay, W.W. Detrital sediment fluxes from continents to oceans. Chem. Geol. 1998, 145, 287–323. [Google Scholar] [CrossRef]
- Walling, D. Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- Haddadchi, A.; Ryder, D.; Evrard, O.; Olley, J. Sediment fingerprinting in fluvial systems: Review of tracers, sediment sources and mixing models. Int. J. Sediment Res. 2013, 28, 560–578. [Google Scholar] [CrossRef] [Green Version]
- NKounkou, R.-R.; Probst, J.-L. Hydrology and geochemistry of the Congo river system. SCOPE/UNEP-Sonderband 1987, 64, 483–508. [Google Scholar]
- Walling, D.E. The Impact of Global Change on Erosion and Sediment Transport by Rivers: Side Publications Series The United Nations World Water Development Report 3; United Nations World Water Assessment Program: Paris, France, 2009; Volume 81, p. 26. [Google Scholar]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Gosselink, J.G.; Turner, R.E. The role of hydrology in freshwater wetland ecosystems. In Freshwater Wetlands: Ecologicalprocesses and Management Potential; Good, R.E., Whigham, D.F., Simpson, R.L., Eds.; Academic Press: New York, NY, USA, 1978; pp. 63–78. [Google Scholar]
- Novitzki, R.P. Hydrologic characteristics of Wisconsin’s wet-lands and their influence on floods, stream flow, and sediment. In Wet-Land Functions and Values: The State of Our Understanding; Greeson, P.E., Clark, J.R., Clark, J.E., Eds.; American Water Resources Association: Minneapolis, MN, USA, 1979; pp. 377–388. [Google Scholar]
- Laraque, A.; Bricquet, J.P.; Pandi, A.; Olivry, J.C. A review of material transport by the Congo River and its tributaries. Hydrol. Process. 2009, 23, 3216–3224. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E. Ecosystem services of wetlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Dargie, G.C.; Lewis, S.L.; Lawson, I.T.; Mitchard, E.T.A.; Page, S.E.; Bocko, Y.E.; Ifo, S.A. Age, extent and carbon storage of the central Congo Basin peatland complex. Nat. Cell Biol. 2017, 542, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Harenda, K.M.; Lamentowicz, M.; Samson, M.; Chojnicki, B.H. The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change. In Interdisciplinary Approaches for Sustainable Development Goals; Springer: Cham, Switzerland, 2018; pp. 169–187. [Google Scholar] [CrossRef]
- Moukolo, N.; Laraque, A.; Olivry, J.C.; Bricquet, J.P. Transport en solution et en suspension par le fleuve Congo (Zaïre) et ses principaux affluents de la rive droite. Hydrol. Sci. J. 1993, 38, 133–145. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Allègre, C.J. A global geochemical mass budget applied to the Congo basin rivers: Erosion rates and continental crust composition. Geochim. Cosmochim. Acta 1995, 59, 3469–3485. [Google Scholar] [CrossRef]
- Dupré, B.; Gaillardet, J.; Rousseau, D.; Allègre, C.J. Major and trace elements of river-borne material: The Congo Basin. Geochim. Cosmochim. Acta 1996, 60, 1301–1321. [Google Scholar] [CrossRef]
- Guyot, J.L.; Olivry, J.C.; Laraque, A.; Orange, D. Discharge and Suspended Sediment Fluxes in Large Tropical Rivers. In Proceedings of the IGBP Synthesis Workshop, Stockholm, Sweden, 1 February 2000; pp. 1992–1994. [Google Scholar]
- Mushi, C.; Ndomba, P.; Trigg, M.; Tshimanga, R.; Mtalo, F. Assessment of basin-scale soil erosion within the Congo River Basin: A review. Catena 2019, 178, 64–76. [Google Scholar] [CrossRef]
- Probst, J.L. Carbon River Flues and Weathering CO2 Consumption in the Congo and Amazon River Basins. Appl. Geochem. 1983, 9, 1–13. [Google Scholar] [CrossRef]
- Probst, J.-L.; Nkounkou, R.-R.; Krempp, G.; Bricquet, J.-P.; Thiébaux, J.-P.; Olivry, J.-C. Dissolved major elements exported by the Congo and the Ubangi rivers during the period 1987–1989. J. Hydrol. 1992, 135, 237–257. [Google Scholar] [CrossRef]
- Seyler, P.; Coynel, A.; Moreira-Turcq, P.; Etcheber, H.; Colas, C.; Orange, D.; Bricquet, J.-P.; Laraque, A.; Guyot, J.L.; Olivry, J.-C.; et al. Organic Carbon Transported by the Equatorial Rivers: Example of Congo-Zaire and Amazon Basins. Soil Eros. Carbon Dyn. 2005, 255–274. [Google Scholar] [CrossRef]
- Gumbricht, T.; Roman-Cuesta, R.M.; Verchot, L.; Herold, M.; Wittmann, F.; Householder, E.; Herold, N.; Murdiyarso, D. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Chang. Biol. 2017, 23, 3581–3599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguimalet, C.-R.; Orange, D. Caractérisation de la baisse hydrologique actuelle de la rivière Oubangui à Bangui, République Centrafricaine. Houille Blanche 2019, 78–84. [Google Scholar] [CrossRef]
- Aagaard, T.; Hughes, M. 10.4 Sediment Transport; Elsevier BV: Amsterdam, The Netherlands, 2013; Volume 10, pp. 74–105. [Google Scholar]
- Oeurng, C.; Sauvage, S.; Coynel, A.; Maneux, E.; Etcheber, H.; Sánchez-Pérez, J.-M. Fluvial transport of suspended sediment and organic carbon during flood events in a large agricultural catchment in southwest France. Hydrol. Process. 2011, 25, 2365–2378. [Google Scholar] [CrossRef] [Green Version]
- Guan, Z.; Tang, X.-Y.; Yang, J.E.; Ok, Y.S.; Xu, Z.; Nishimura, T.; Reid, B.J. A review of source tracking techniques for fine sediment within a catchment. Environ. Geochem. Health 2017, 39, 1221–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laraque, A.; N’Kaya, G.D.M.; Orange, D.; Tshimanga, R.; Tshitenge, J.-M.; Mahé, G.; Nguimalet, C.R.; Trigg, M.A.; Yepez, S.; Gulemvuga, G. Recent Budget of Hydroclimatology and Hydrosedimentology of the Congo River in Central Africa. Water 2020, 12, 2613. [Google Scholar] [CrossRef]
- Moukandi, G.D.N.; Orange, D.; Murielle, S.; Padou, B.; Datok, P.; Laraque, A. Temporal Variability of Sediments, Dissolved Solids and Dissolved Organic Matter Fluxes in the Congo River at Brazzaville/Kinshasa. Geosciences 2020, 10, 341. [Google Scholar]
- Moukandi, G.D.N.; Laraque, A.; Paturel, J.; Gulemvuga, G.; Mahé, G. A New Look at Hydrology in the Congo Basin, Based on the Study of Multi-Decadal Chronicles. In Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future; Geophysical Monograph Series; Alsdorf, D., Moukandi, G., Tshimanga, R., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- BRLi. Développement et mise en place de l’outil de modélisation et d’allocation des ressources en eau du Bassin du Congo. In Rapport Technique de Construction et de Calage du Modèle; CICOS: Kinshasa, Republic of the Congo, 2016. [Google Scholar]
- Kadima, E.; Delvaux, D.; Sebagenzi, S.N.; Tack, L.; Kabeya, S.M. Structure and geological history of the Congo Basin: An integrated interpretation of gravity, magnetic and reflection seismic data. Basin Res. 2011, 23, 499–527. [Google Scholar] [CrossRef]
- Daly, M.C.; Lawrence, S.R.; Diemu-Tshiband, K.; Matouana, B. Tectonic evolution of the Cuvette Centrale, Zaire. J. Geol. Soc. 1992, 149, 539–546. [Google Scholar] [CrossRef]
- Laraque, A.; Mietton, M.; Olivry, J.C.; Pandi, A. Influence Des Couvertures Lithologiques et Végétales Sur Les Régimes et La Qualité Des Eaux. J. Water Sci. 1998, 11, 209–224. [Google Scholar]
- Alsdorf, D.; Beighley, E.; Laraque, A.; Lee, H.; Tshimanga, R.; O’Loughlin, F.; Mahé, G.; Dinga, B.; Moukandi, G.; Spencer, R.G.M. Opportunities for hydrologic research in the Congo Basin. Rev. Geophys. 2016, 54, 378–409. [Google Scholar] [CrossRef] [Green Version]
- Bwangoy, J.-R.B.; Hansen, M.C.; Roy, D.P.; De Grandi, G.; Justice, C.O. Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens. Environ. 2010, 114, 73–86. [Google Scholar] [CrossRef]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Crosby, A.G.; Fishwick, S.; White, N. Structure and evolution of the intracratonic Congo Basin. Geochem. Geophys. Geosystems 2010, 11, 1–20. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. Resources of the World and Their Use. 2004. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000134433 (accessed on 4 February 2021).
- Le Heron, D.P. Schlüter, T. Geological Atlas of Africa, with Notes on Stratigraphy, Economic Geology, Geohazards and Geosites of Each Country; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Kabuya, P.M.; Hughes, D.A.; Tshimanga, R.M.; Trigg, M.A.; Bates, P. Establishing uncertainty ranges of hydrologic indices across climate and physiographic regions of the Congo River Basin. J. Hydrol. Reg. Stud. 2020, 30, 100710. [Google Scholar] [CrossRef]
- Olivry, J.-C.; Bricquet, J.-P.; Thiébaux, J.-P.; Sigha-Nkamdjou, L. Transport de matière sur les grands fleuves des régions intertropicales: Les premiers résultats des mesures de flux particulaires sur le bassin du fleuve Congo. In Sediment Budgets; AISH: Porto-Alegre, Brazil, 1988; pp. 509–521. [Google Scholar]
- Olivry, J.C.; Bricquet, J.P.; Laraque, A.; Guyot, J.L. Flux Liquides, Dissous et Particulaires de Deux Grands Bassins Intertropicaux: Le Congo à Brazzaville et Le Rio Madeira à Villabella. In Grands Bassins Fluviaux Périatlantiques: Congo, Niger, Amazone; Olivry, J.C., Boulegue, J., Eds.; IRD: Marseille, France, 1995; pp. 345–355. [Google Scholar]
- Coynel, A.; Seyler, P.; Etcheber, H.; Meybeck, M.; Orange, D. Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River. Glob. Biogeochem. Cycles 2005, 19, 1–17. [Google Scholar] [CrossRef]
- Laraque, A.; Castellanos, B.; Steiger, J.; Lòpez, J.L.; Pandi, A.; Rodriguez, M.; Rosales, J.; Adèle, G.; Perez, J.; Lagane, C. A comparison of the suspended and dissolved matter dynamics of two large inter-tropical rivers draining into the Atlantic Ocean: The Congo and the Orinoco. Hydrol. Process. 2013, 27, 2153–2170. [Google Scholar] [CrossRef]
- Wechsler, S.P. Uncertainties associated with digital elevation models for hydrologic applications: A review. Hydrol. Earth Syst. Sci. 2007, 11, 1481–1500. [Google Scholar] [CrossRef] [Green Version]
- Nachtergaele, F.A.; van Velthuizen, H.B.; Batjes, N.C.; Dijkshoorn, K.C.; van Engelen, V.C.; Fischer, G.B.; Jones, A.D.; Montanarella, L.D.; Petri, M.A.; Prieler, S.B.; et al. The Harmonized World Soil Database Food and Agriculture Organization of the United Nations. In Proceedings of the World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; Published on DVD. pp. 34–37. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hartmann, J.; Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem. Geophys. Geosystems 2012, 13, 1–37. [Google Scholar] [CrossRef]
- Shekhar, S.; Xiong, H. Soil and Water Assessment Tool “SWAT”. Texas Water Resour. Inst. 2008, 1068. [Google Scholar] [CrossRef]
- Zhou, P.; Huang, J.; Pontius, R.G.; Hong, H. New insight into the correlations between land use and water quality in a coastal watershed of China: Does point source pollution weaken it? Sci. Total Environ. 2016, 543, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Datok, P.; Fabre, C.; Sauvage, S.; N’kaya, G.M.; Paris, A.; Dos Santos, V.; Laraque, A.; Sánchez Pérez, J.-M. Investigating the role of the Cuvette Centrale in the hydrology of the Congo River Basin. In Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future; Geophysical Monograph Series; Alsdorf, D., Moukandi, G., Tshimanga, R., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.R. Sediment yield prediction with universal equation using runoff energy factor. In Present and Prospective Technology for Predicting Sediment Yields and Sources, Proceedings of the Sediment-Yield Workshop, USDA Sedimentation Laboratory, Oxford, MI, USA, 17–18 January 1973; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1975; pp. 244–252. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses: A Guide to Conservation Planning; USDA Agriculture Handbook; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978; p. 537.
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Croplands East of the Rocky Mountains; USDA Agriculture Handbook; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1965; Volume 282, p. 47.
- Vigiak, O.; Malagó, A.; Bouraoui, F.; Vanmaercke, M.; Poesen, J. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Sci. Total Environ. 2015, 538, 855–875. [Google Scholar] [CrossRef]
- Jha, M.; Gassman, P.W.; Secchi, S.; Gu, R.; Arnold, J. Effect of watershed subdivision on swat flow, sediment, and nutrient predictions. JAWRA 2004, 40, 811–825. [Google Scholar] [CrossRef] [Green Version]
- Borselli, L.; Cassi, P.; Sanchis, P. Soil Erodibility Assessment for Applications at Watershed Scale. In Manual of Methods for Soil and Land Evaluation; Science Publishers: Enfield, NH, USA, 2009. [Google Scholar] [CrossRef]
- Borselli, L.; Torri, D.; Poesen, J.; Iaquinta, P. A robust algorithm for estimating soil erodibility in different climates. Catena 2012, 97, 85–94. [Google Scholar] [CrossRef]
- Torri, D.; Poesen, J. Erodibilità. In Metodi di Analisi Fisica del Suolo; Pagliai, M., Ed.; Sezione VII; Ministero Delle Politiche Agricole e Forestali-Societa Italiana di Scienza del Suolo: Rome, Italy, 1997. [Google Scholar]
- Torri, D.; Poesen, J.; Borselli, L. Corrigendum to “Predictability and uncertainty of the soil erodibility factor using a global dataset” [Catena 31 (1997) 1–22] and to “Erratum to Predictability and uncertainty of the soil erodibility factor using a global dataset” [Catena 32 (1998) 307–308]. Catena 2002, 46, 309–310. [Google Scholar] [CrossRef]
- Shirazi, M.A.; Boersma, L.; Hart, J.W. A Unifying Quantitative Analysis of Soil Texture: Improvement of Precision and Extension of Scale. Soil Sci. Soc. Am. J. 1988, 52, 181–190. [Google Scholar] [CrossRef]
- Sanchis, M.P.S.; Torri, D.; Borselli, L.; Poesen, J. Climate effects on soil erodibility. Earth Surf. Process. Landf. 2007, 33, 1082–1097. [Google Scholar] [CrossRef]
- Engelen, V.; Verdoodt, A.; Dijkshoorn, J.A.; Van Ranst, E. Soil and Terrain Database of Central Africa (DR of Congo, Burundi and Rwanda); Report 2006/07; ISRIC—World Soil Information: Wageningen, The Netherlands, 2006; Available online: http://www.isric.org (accessed on 13 May 2021).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Bouillon, S.; Yambélé, A.; Spencer, R.G.M.; Gillikin, D.P.; Hernes, P.J.; Six, J.; Merckx, R.; Borges, A. Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin). Biogeosciences 2012, 9, 2045–2062. [Google Scholar] [CrossRef] [Green Version]
- Bouillon, S.; Yambélé, A.; Gillikin, D.P.; Teodoru, C.; Darchambeau, F.; Lambert, T.; Borges, A.V. Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin). Sci. Rep. 2014, 4, 5402. [Google Scholar] [CrossRef] [PubMed]
- Laraque, A.; Mahé, G.; Orange, D.; Marieu, B. Spatiotemporal variations in hydrological regimes within Central Africa during the XXth century. J. Hydrol. 2001, 245, 104–117. [Google Scholar] [CrossRef]
- Laraque, A.; Bellanger, M.; Adele, G.; Guebanda, S.; Gulemvuga, G.; Pandi, A.; Paturel, J.E.; Robert, A.; Tathy, J.P.; Yambele, A. Evolutions Récentes Des Débits Du Congo, de l’Oubangui et de La Sangha. Geo. Eco. Trop. 2013, 37, 93–100. [Google Scholar]
- Vanmaercke, M.; Poesen, J.; Broeckx, J.; Nyssen, J. Sediment yield in Africa. Earth Sci. Rev. 2014, 136, 350–368. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Adla, S.; Tripathi, S.; Disse, M. Can We Calibrate a Daily Time-Step Hydrological Model Using Monthly Time-Step Discharge Data? Water 2019, 11, 1750. [Google Scholar] [CrossRef] [Green Version]
- Chishugi, J.B.; Alemaw, B.F. The Hydrology of the Congo River Basin: A GIS-Based Hydrological Water Balance Model. In Proceedings of the World Environmental and Water Resources Congress; Starett, S., Ed.; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2009; pp. 1–16. [Google Scholar]
- Tshimanga, R.M. Hydrological Uncertainty Analysis and Scenario-Based Streamflow Modelling for the Congo River Basin. Ph.D. Thesis, Rhodes University, Makhanda, South Africa, February 2012. [Google Scholar]
- Tshimanga, R.M.; Hughes, D.A. Basin-scale performance of a semidistributed rainfall-runoff model for hydrological predictions and water resources assessment of large rivers: The Congo River. Water Resour. Res. 2014, 50, 1174–1188. [Google Scholar] [CrossRef]
- Munzimi, Y.A.; Hansen, M.C.; Asante, K.O. Estimating daily streamflow in the Congo Basin using satellite-derived data and a semi-distributed hydrological model. Hydrol. Sci. J. 2019, 64, 1472–1487. [Google Scholar] [CrossRef]
- Megnounif, A.; Terfous, A.; Ouillon, S. A graphical method to study suspended sediment dynamics during flood events in the Wadi Sebdou, NW Algeria (1973–2004). J. Hydrol. 2013, 497, 24–36. [Google Scholar] [CrossRef]
- Laraque, A.; Olivry, J.C. Evolution de l’hydrologie Du Congo-Zaïre et de Ses Affluents Rive Droite et Dynamique Des Transports Solides et Dissous. IAHS Publ. 1996, 238, 271–288. [Google Scholar]
- Laraque, A.; Maziezoltla, B. Banque de Données Hydrologiques Des Affluents Congolais Du Fleuve Congo-Zaïre et Informations Physiographiques; Programme PEGI/GBF, Volet Congo-UR22/DEC; ORSTOM—Laboratorie D’hydrologie: Montpellier, France, 1995; p. 250. [Google Scholar]
- Aich, V.; Zimmermann, A.; Elsenbeer, H. Quantification and interpretation of suspended-sediment discharge hysteresis patterns: How much data do we need? Catena 2014, 122, 120–129. [Google Scholar] [CrossRef]
- Malutta, S.; Kobiyama, M.; Chaffe, P.L.B.; Bonumá, N.B. Hysteresis analysis to quantify and qualify the sediment dynamics: State of the art. Water Sci. Technol. 2020, 81, 2471–2487. [Google Scholar] [CrossRef]
- Nguimalet, C.-R.; Orange, D. Recent Hydrological Dynamics of Oubangui at Bangui (Central African Republic): Anthropogenic or Climatic Impacts? Geo. Eco. Trop. 2013, 37, 101–112. [Google Scholar]
- Runge, J. The Congo River, Central Africa. Large Rivers 2008, 293–309. [Google Scholar] [CrossRef]
- Carr, A.B.; Trigg, M.A.; Tshimanga, R.M.; Borman, D.J.; Smith, M.W. Greater Water Surface Variability Revealed by New Congo River Field Data: Implications for Satellite Altimetry Measurements of Large Rivers. Geophys. Res. Lett. 2019, 46, 8093–8101. [Google Scholar] [CrossRef] [Green Version]
- Marco, P.; Van Griensven, A. Suitability of SWAT Model for Sediment Yields Modelling in the Eastern Africa; Technical Paper; University of Dares Salam: Dares Salaam, Tanzania, 2011. [Google Scholar] [CrossRef]
- Mayaux, P.; Bartholomé, E.; Massart, M.; Van Cutsem, C.; Cabral, A.; Nonguierma, A.; Diallo, O.; Pretorius, C.; Thompson, M.; Cherlet, M.; et al. A Land Cover Map of Africa. Carte de l’occupation Du Sol de l’Afrique. EUR 2003, 20665. [Google Scholar]
- Ngongo, M.; Kasongo, E.; Muzinya, B.; Baert, G.; Van Ranst, E. Soil Resources in the Congo Basin: Their Properties and Constraints for Food Production. Nutr. Food Prod. Congo Basin 2014, c, 214. [Google Scholar]
- O’Loughlin, F.; Neal, J.; Schumann, G.; Beighley, E.; Bates, P. A LISFLOOD-FP hydraulic model of the middle reach of the Congo. J. Hydrol. 2020, 580, 124203. [Google Scholar] [CrossRef]
- O’Loughlin, F.; Trigg, M.A.; Schumann, G.J.-P.; Bates, P.D. Hydraulic characterization of the middle reach of the Congo River. Water Resour. Res. 2013, 49, 5059–5070. [Google Scholar] [CrossRef]
- Molliex, S.; Kettner, A.J.; Laurent, D.; Droz, L.; Marsset, T.; Laraque, A.; Rabineau, M.; N’Kaya, G.D.M. Simulating sediment supply from the Congo watershed over the last 155 ka. Quat. Sci. Rev. 2019, 203, 38–55. [Google Scholar] [CrossRef]
- Garzanti, E.; Vermeesch, P.; Vezzoli, G.; Andò, S.; Botti, E.; Limonta, M.; Dinis, P.; Hahn, A.; Baudet, D.; De Grave, J.; et al. Congo River sand and the equatorial quartz factory. Earth Sci. Rev. 2019, 197, 102918. [Google Scholar] [CrossRef] [Green Version]
- Laraque, A.; Pouyaud, B.; Rocchia, R.; Robin, R.; Chaffaut, I.; Moutsambote, J.M.; Maziezoula, B.; Censier, C.; Albouy, Y.; Elenga, H.; et al. Origin and function of a closed depression in equatorial humid zones: The lakeTele in north Congo. J. Hydrol. 1998, 207, 236–253. [Google Scholar] [CrossRef]
- Haensler, A.; Jacob, D.; Kabat, P.; Ludwig, F. Climate Change Scenarios for the Congo Basin; Climate Service Centre Report No. 11; Climate Service Center: Hamburg, Germany, 2013; ISBN 2192–4058. [Google Scholar]
- Filizola, N.; Guyot, J.L. Suspended sediment yields in the Amazon basin: An assessment using the Brazilian national data set. Hydrol. Process. 2009, 23, 3207–3215. [Google Scholar] [CrossRef]
- Meade, R.H.; Dunne, T.; Richey, J.E.; Santos, U.D.M.; Salati, E. Storage and Remobilization of Suspended Sediment in the Lower Amazon River of Brazil. Science 1985, 228, 488–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richey, J.E.; Meade, R.H.; Salati, E.; Devol, A.H.; Nordin, C.F.; Dos Santos, U. Water Discharge and Suspended Sediment Concentrations in the Amazon River: 1982–1984. Water Resour. Res. 1986, 22, 756–764. [Google Scholar] [CrossRef]
- Wei, X.; Sauvage, S.; Ouillon, S.; Le, T.P.Q.; Orange, D.; Herrmann, M.; Sanchez-Perez, J.-M. A modelling-based assessment of suspended sediment transport related to new damming in the Red River basin from 2000 to 2013. Catena 2021, 197, 104958. [Google Scholar] [CrossRef]
- Hughes, D.A.; Tshimanga, R.M.; Tirivarombo, S.; Tanner, J. Simulating wetland impacts on stream flow in southern Africa using a monthly hydrological model. Hydrol. Process. 2013, 28, 1775–1786. [Google Scholar] [CrossRef]
- Sun, X.; Bernard-Jannin, L.; Garneau, C.; Volk, M.; Arnold, J.G.; Srinivasan, R.; Sauvage, S.; Sánchez-Pérez, J.M. Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model. Hydrol. Process. 2016, 30, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Bernard-Jannin, L.; Grusson, Y.; Sauvage, S.; Arnold, J.; Srinivasan, R.; Pérez, J.M.S. Using SWAT-LUD Model to Estimate the Influence of Water Exchange and Shallow Aquifer Denitrification on Water and Nitrate Flux. Water 2018, 10, 528. [Google Scholar] [CrossRef] [Green Version]
- Sok, T.; Oeurng, C.; Ich, I.; Sauvage, S.; Sánchez-Pérez, J.M. Assessment of Hydrology and Sediment Yield in the Mekong River Basin Using SWAT Model. Water 2020, 12, 3503. [Google Scholar] [CrossRef]
Data Type | Period | Resolution | Source |
---|---|---|---|
Land elevation | 90 m | Digital Elevation Model. Consortium for spatial information (https://cgiarcsi.community/data/srtm-90m-digital-elevation-database) (accesed on the 6 June 2018) | |
Soil | 1 km | Harmonized World Soil Database v 1.1 (http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html?sb=1) (accesed on the 6 June 2018) | |
Land use | 1 km | Global Land Cover 2000 database (http://forobs.jrc.ec.europa.eu/products/glc2000/products.php) (accesed on the 6 June 2018) | |
Rainfall | 1998–2015 | 0.25° | TRMM (TMPA) 3B42 V.7 Daily product. Multi-satellite precipitation analysis (https://pmm.nasa.gov/data-access/downloads/trmm#) (accesed on the 6 June 2018), [46] Huffman et al. (2007) |
Meteorological data | 1979–2014 | ~38 km | Climate Forecast System Reanalysis (CFSR) Model (http://rda.ucar.edu/pub/cfsr.html&http://globalweather.tamu.edu/) (accesed on the 6 June 2018) |
River discharge | 2000–2012 | Daily | SO-HYBAM (http://www.so-hybam.org/) (accesed on the 6 June 2018); [30] BRLi (2016) |
Suspended sediments | 2006–2017 | Monthly | SO-HYBAM (http://www.so-hybam.org/) (accesed on the 6 June 2018) |
Supporting data | |||
Water productivity | 2009–2018 | 250 m | FAO (https://wapor.apps.fao.org/catalog/WAPOR_2/1) (accesed on the 6 June 2018) |
Wetland extent | 1992–2000 | 30 × 30 s | Global Wetlands database, [36] Lehner and Döll (2004) (https://www.worldwildlife.org/publications) (accesed on the 6 June 2018) |
Geology | 2012 | 0.5° | Global lithological database [47] (Hartmann and Moosdorf, 2012). |
Sand% | Loam% | Clay% | Organic Matter% | |
---|---|---|---|---|
MIN | 17.7 | 17.9 | 0.8 | 0.52 |
MAX | 49.9 | 69.4 | 36.6 | 11.1 |
MEAN | 31.20 | 42.79 | 22.79 | 2.35 |
Std ± (standard deviation) | 11.36 | 18.48 | 12.07 | 3.64 |
SOIL | Percentage of Watershed Area | Sand% | Loam% | Clay% | Organic Matter% |
---|---|---|---|---|---|
Acrisols | 7.0 | 60 | 20 | 20 | 0.4 |
Arenosols | 17.41 | 70 | 20 | 10 | 0.7 |
Cambisols | 6.98 | 47.9 | 31.5 | 20.6 | 0.46 |
Gleysols | 3.74 | 10 | 20 | 70 | 7.2 |
Lixisols | 1.21 | 8.2 | 44.5 | 47.3 | 1.2 |
Luvisols | 0.80 | 73.8 | 20.7 | 5.5 | 0.18 |
Nitisols | 0.65 | 10 | 30 | 60 | 2.17 |
Plinthosols | 2.65 | 52 | 28 | 20 | 0.25 |
Parameters | Description of Parameter | Default | Applied Range |
---|---|---|---|
SPEXP | Exponential re-entrainment parameter for channel sediment routing | 1 | 0.5 |
SPCON (Csp) | Linear re-entrainment parameter for channel sediment routing | 0.0001 | 0.0001 |
PRF | peak rate adjustment factor for sediment routing in main channel | 1 | 1 |
CH_COV1 (cm3/N-s) | Channel erodibility factor | 0 | 0–0.02 |
CH_COV2 | Channel cover factor | 0 | 0.65–1 |
CH_EQN | Simplified Bagnold Equation | 0 | 1 |
Filter_W (m) | Edge of width filter strip (sub-basin 168) | 0 | 28 |
LATSED (mg L−1) | Concentration of sediment in lateral and groundwater flow | 0 | 50–60 |
KUSLE (t.ha.h./(ha.MJ.mm)) | USLE soil erodibility factor | Relative | 0–0.04 |
PUSLE | USLE support practice factor | 1 | 1 |
CUSLE | USLE crop cover factor | Relative | 0–0.2 |
Bangui | Brazzaville | |||
---|---|---|---|---|
Performance Metrics | Calibration (2010–2011) | Validation (2011–2012) | Calibration (2006–2009) | Validation (2010–2012) |
NSE | 0.35 | 0.65 | −2.95 | −0.16 |
R2 | 0.69 | 0.71 | 0.02 | 0.13 |
PBIAS | 49.10 | 24.20 | −29.42 | −9.53 |
PEGI/GBF (1987–1993) | SWAT (2000–2012) | Difference between SWAT and PEGI Means (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
River | Station | # | Parameters | n | Mean ± Std | Max | Min | Max/Min | Mean ± Std | Max | Min | Max/Min | |
Alima | Tchikapika | 1 | SSC | 28 | 7.3 ± 2.63 | 12.1 | 3.7 | 3.27 | 15.33 ± 1.06 | 17.06 | 10.91 | 1.56 | 110 |
Q | 33 | 553 ± 66.81 | 660 | 420 | 1.57 | 390 ± 103.91 | 401 | 275.8 | 2.85 | 29.5 | |||
Likouala Mossaka | Makoua | 3 | SSC | 29 | 13.6 ± 5.77 | 30.9 | 3.9 | 2.95 | 14.55 ± 2.32 | 18.51 | 6.04 | 3.06 | 7.0 |
Q | 33 | 177 ± 79.73 | 307 | 62 | 3.15 | 91.55 ± 61.40 | 543 | 23.58 | 23 | 48.3 | |||
Sangha | Ouesso | 4 | SSC | 7 | 18.5 ± 12.11 | 38.2 | 6.6 | 5.78 | 24.94 ± 6.57 | 58.83 | 15.19 | 3.87 | 34.8 |
Q | 14 | 1 155 ± 691.77 | 2920 | 514 | 5.68 | 1106 ± 374.18 | 4088 | 630 | 6.48 | 4.24 | |||
Likouala aux Herbes | Botouali | 5 | SSC | 6 | 7.71 ± 2.59 | 11.00 | 4.60 | 2.39 | 7.45 ± 0.94 | 14.25 | 4.48 | 3.18 | 3.4 |
Q | 5 | 412.60 ± 185.18 | 546.00 | 134.00 | 4.07 | 327 ± 105.2 | 774 | 142 | 5.4 | 20.7 | |||
Congo | BRZ/KIN | 11 | SSC | 99 | 23.99 ± 5.4 | 41.2 | 9.4 | 4.38 | 31.48 ± 7.44 | 78.11 | 18.66 | 4.18 | 31.2 |
Q | 99 | 38 515 ± 9642 | 45,000 | 37,100 | 1.21 | 36,156 ± 8221 | 64,690 | 18,430 | 3.51 | 6.1 |
PC1 | PC2 | PC3 | PC4 | PC5 | PC1 | PC2 | |
---|---|---|---|---|---|---|---|
Proportion of variance (%) | 33.7 | 22.4 | 19.9 | 16 | 8 | Pearson coefficient | |
Cumulative proportion of variance (%) | 33.7 | 56.1 | 76 | 92 | 100 | ||
Eigenvalues | |||||||
HRU_SLP | 0.35 | −0.59 | −0.30 | −0.58 | −0.31 | 0.46 | −0.62 |
PCP | 0.58 | 0.41 | 0.27 | 0.14 | −0.64 | 0.75 | 0.43 |
_KUSLE | 0.29 | −0.62 | 0.11 | 0.71 | 0.07 | 0.38 | −0.66 |
CH_COV2 | −0.15 | −0.26 | 0.90 | −0.30 | 0.01 | −0.20 | −0.27 |
SUR_Q | 0.66 | 0.17 | 0.09 | −0.19 | 0.70 | 0.86 | 0.18 |
Rivers | Contributing Area (km2) | Station/Town | # | *Annual Load (ton) | % of Total Load Supplied to the Cuvette Centrale | Specific Yield (t km−2 yr−1) |
---|---|---|---|---|---|---|
Congo | 1,306,000 | Mbandaka | 7 | 26,981,769 | 85.85 | 20.66 |
Ruki | 163,700 | Bokuma | 8 | 1,602,153 | 5.10 | 9.79 |
Ubangi | 491,800 | Mongoumba | 6 | 1,502,746 | 4.78 | 3.06 |
Sangha | 138,600 | Ouesso | 4 | 942,815 | 3.0 | 6.80 |
Alima | 18,240 | Tchikapika | 1 | 187,469 | 0.60 | 10.28 |
Kouyou | 9631 | Linnegue | 2 | 96,124 | 0.30 | 9.98 |
Likouala aux Herbes | 24,570 | Botouali | 5 | 76,227 | 0.24 | 3.10 |
Likouala Mossaka | 12,240 | Makoua | 3 | 40,495 | 0.13 | 3.31 |
Congo | 2,343,000 | Bolobo | 9 | 7,624,230 | 3.25 | |
Kasaï | 778,900 | Kwamouth | 10 | 10,503,792 | 13.49 | |
Congo | 3,164,000 | Brazzaville | 11 | 37,094,615 | 11.72 |
Congo at BRZ/KIN (This Study) | Orinoco at Ciudad Bolivar (Laraque et al., 2013a [43]) | Amazon at Obidos (Filizola & Guyot, 2009 [93]) | |
---|---|---|---|
Q (m3 s−1) | 36,150 | 31,400 | 169,000 |
SSC (mg L−1) | 31.48 | 73.9 | - |
SS load (106 t yr−1) | 37.0 | 74.0 | 555 |
SS yield (t km−2 yr−1) | 11.72 | 88.5 | 120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Datok, P.; Sauvage, S.; Fabre, C.; Laraque, A.; Ouillon, S.; Moukandi N’kaya, G.; Sanchez-Perez, J.-M. Sediment Balance Estimation of the ‘Cuvette Centrale’ of the Congo River Basin Using the SWAT Hydrological Model. Water 2021, 13, 1388. https://doi.org/10.3390/w13101388
Datok P, Sauvage S, Fabre C, Laraque A, Ouillon S, Moukandi N’kaya G, Sanchez-Perez J-M. Sediment Balance Estimation of the ‘Cuvette Centrale’ of the Congo River Basin Using the SWAT Hydrological Model. Water. 2021; 13(10):1388. https://doi.org/10.3390/w13101388
Chicago/Turabian StyleDatok, Pankyes, Sabine Sauvage, Clément Fabre, Alain Laraque, Sylvain Ouillon, Guy Moukandi N’kaya, and José-Miguel Sanchez-Perez. 2021. "Sediment Balance Estimation of the ‘Cuvette Centrale’ of the Congo River Basin Using the SWAT Hydrological Model" Water 13, no. 10: 1388. https://doi.org/10.3390/w13101388
APA StyleDatok, P., Sauvage, S., Fabre, C., Laraque, A., Ouillon, S., Moukandi N’kaya, G., & Sanchez-Perez, J.-M. (2021). Sediment Balance Estimation of the ‘Cuvette Centrale’ of the Congo River Basin Using the SWAT Hydrological Model. Water, 13(10), 1388. https://doi.org/10.3390/w13101388