The Impact of Agricultural Irrigation on Landslide Triggering: A Review from Chinese, English, and Spanish Literature
Abstract
:1. Introduction
2. A Worldwide Review on Landslides Triggered by Agricultural Irrigation
3. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Sassa, K. The mechanism of debris flows. In Proceedings of the XI International Conference on Soil Mechanics and Foundation Engineering, San Francisco, CA, USA, 12–16 August 1985; pp. 1173–1176. [Google Scholar]
- Zhang, M.; Yin, Y. Dynamics, mobility-controlling factors and transport mechanisms of rapid long-runout rock avalanches in China. Eng. Geol. 2013, 167, 37–58. [Google Scholar] [CrossRef]
- Bordoni, M.; Meisina, C.; Valentino, R.; Lu, N.; Bittelli, M.; Chersich, S. Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis. Eng. Geol. 2015, 193, 19–37. [Google Scholar] [CrossRef]
- Cascini, L.; Cuomo, S.; Pastor, M.; Sorbinow, G. Modeling of Rainfall-Induced Shallow Landslides of the Flow-Type. J. Geotech. Geoenviron. Eng. 2010, 136, 85–98. [Google Scholar] [CrossRef]
- Cascini, L.; Cuomo, S.; Della Sala, M. Spatial and temporal occurrence of rainfall-induced shallow landslides of flow type: A case of Sarno-Quindici, Italy. Geomorphology 2011, 126, 148–158. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, S.; Park, S.; Sharma, J. Influence of rainfall-induced wetting on the stability of slopes in weathered soils. Eng. Geol. 2004, 75, 251–262. [Google Scholar] [CrossRef]
- Peng, J.; Fan, Z.; Wu, D.; Zhuang, J.; Dai, F.; Chen, W.; Zhao, C. Heavy rainfall triggered loess–mudstone landslide and subsequent debris flow in Tianshui, China. Eng. Geol. 2015, 186, 79–90. [Google Scholar] [CrossRef]
- Wang, F.W.; Sassa, K.; Wang, G. Mechanism of a long-runout landslide triggered by the August 1998 heavy rainfall in Fukushima Prefecture, Japan. Eng. Geol. 2002, 63, 169–185. [Google Scholar] [CrossRef]
- Zhuang, J.; Peng, J.-B. A coupled slope cutting—A prolonged rainfall-induced loess landslide: A 17 October 2011 case study. Bull. Int. Assoc. Eng. Geol. 2014, 73, 997–1011. [Google Scholar] [CrossRef]
- Lu, N.; Wayllace, A.; Oh, S. Infiltration-induced seasonally reactivated instability of a highway embankment near the Eisenhower Tunnel, Colorado, USA. Eng. Geol. 2013, 162, 22–32. [Google Scholar] [CrossRef]
- Pan, P.; Shang, Y.-Q.; Lü, Q.; Yu, Y. Periodic recurrence and scale-expansion mechanism of loess landslides caused by groundwater seepage and erosion. Bull. Int. Assoc. Eng. Geol. 2017, 78, 1143–1155. [Google Scholar] [CrossRef]
- Crosta, G.B.; Prisco, C.D. On slope instability induced by seepage erosion. Can. Geotech. J. 1999, 36, 1056–1073. [Google Scholar] [CrossRef]
- Peng, J.; Sun, P.; Igwe, O.; Li, X. Loess caves, a special kind of geo-hazard on loess plateau, northwestern China. Eng. Geol. 2018, 236, 79–88. [Google Scholar] [CrossRef]
- Xu, L.; Dai, F.C.; Tham, L.G.; Zhou, Y.F.; Wu, C.X. Investigating landslide-related cracks along the edge of two loess platforms in northwest China. Earth Surf. Process. Landforms 2012, 37, 1023–1033. [Google Scholar] [CrossRef]
- Wu, C.X.; Xu, L.; Dai, F.C.; Min, H.; Tham, L.G.; Kwong, A.K.L.; Zhou, Y.F. Topographic features and initiation of earth flows on Heifangtai loess plateau. Rock Soil Mech. 2011, 32, 1767–1773. (In Chinese) [Google Scholar]
- Corominas, J. The angle of reach as a mobility index for small and large landslides. Can. Geotech. J. 1996, 33, 261–271. [Google Scholar] [CrossRef]
- Cubrinovski, M.; Bray, J.D.; Taylor, M.; Giorgini, S.; Bradley, B.; Wotherspoon, L.; Zupan, J. Soil Liquefaction Effects in the Central Business District during the February 2011 Christchurch Earthquake. Seism. Res. Lett. 2011, 82, 893–904. [Google Scholar] [CrossRef]
- Havevith, H.-B.; Jongmans, D.; Abdrakhmatov, A.; Trefois, P.; Delvaux, D.; Torgoev, I. Geophysical Investigations of Seismically Induced Surface Effects: Case Study of A Landslide In The Suusamyr Valley, Kyrgyzstan. Surv. Geophys. 2000, 21, 349–369. [Google Scholar] [CrossRef]
- Quigley, M.C.; Bastin, S.; Bradley, B.A. Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence. Geology 2013, 41, 419–422. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Furuya, G.; Yang, J. Pore-pressure generation and fluidization in a loess landslide triggered by the 1920 Haiyuan earthquake, China: A case study. Eng. Geol. 2014, 174, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Wang, F.-W.; Sun, P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 2009, 6, 139–152. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, G. Study of the 1920 Haiyuan earthquake-induced landslides in loess (China). Eng. Geol. 2007, 94, 76–88. [Google Scholar] [CrossRef]
- Clague, J.J.; Stead, D. Landslides: Types, Mechanisms and Modeling; Cambridge University Press: Cambridge, UK, 2012; 436p. [Google Scholar]
- Yamagishi, H.; Ito, Y. Relationship of the landslide distribution to geology in Hokkaido, Japan. Eng. Geol. 1994, 38, 189–203. [Google Scholar] [CrossRef]
- Peng, J.; Ma, P.; Wang, Q.; Zhu, X.; Zhang, F.; Tong, X.; Huang, W. Interaction between landsliding materials and the underlying erodible bed in a loess flowslide. Eng. Geol. 2018, 234, 38–49. [Google Scholar] [CrossRef]
- Chu, J.; Leroueil, S.; Leong, W.K. Unstable behavior of sand and its implication for slope instability. Can. Geotech. J. 2003, 40, 873–885. [Google Scholar] [CrossRef]
- Wang, G.H. An Experimental Study on the Mechanism of Fluidized Landslide, with Particular Reference to the Effect of Grain Size and Fine-Particle Content on the Fluidization Behavior of Sands. Ph.D. Thesis, Kyoto University, Kyoto, Japan, 2000; 128p. [Google Scholar]
- Dai, C.F.; Lee, C.F.; Wang, S.J.; Feng, Y.Y. Stress-strain behavior of a loosely compacted volcanic-derived soil and its significance to rainfall-induced fill slope failures. Eng. Geol. 1999, 53, 359–370. [Google Scholar] [CrossRef]
- Legros, F. The mobility of long-runout landslides. Eng. Geol. 2002, 63, 301–331. [Google Scholar] [CrossRef]
- Wang, G.X. Relationship between the origin of loess landslides and the human activities in China. In Proceedings of the Sixth International Symposium on Landslides, Christchurch, New Zealand, 10–14 February 1992; pp. 263–268. [Google Scholar]
- Wang, J.-J.; Liang, Y.; Zhang, H.-P.; Wu, Y.; Lin, X. A loess landslide induced by excavation and rainfall. Landslides 2013, 11, 141–152. [Google Scholar] [CrossRef]
- Gattinoni, P.; Francani, V. A tool for modeling slope instability triggered by piping. World Acad. Sci. Eng. Technol. 2009, 3, 238–244. [Google Scholar]
- Crosta, G.B.; Negro, P.D.; Frattini, P. Soil slips and debris flows on terraced slopes. Nat. Hazards Earth Syst. Sci. 2003, 3, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Andrea, C.; Pierluigi, B.; Claudia, S.; Ivano, R. Relationships between geo-hydrological processes induced by heavy rainfall and land-use: The case of 25 October 2011 in the Vernazza catchment (Cinque Terre, NW Italy). J. Maps 2013, 9, 289–298. [Google Scholar] [CrossRef]
- Gonzalez-Ollauri, A.; Mickovski, S.B. Hydrological effect of vegetation against rainfall-induced landslides. J. Hydrol. 2017, 549, 374–387. [Google Scholar] [CrossRef] [Green Version]
- DeGraff, J.V.; Canuti, P. Using isopleth mapping to evaluate landslide activity in relation to agricultural practices. Bull. Int. Assoc. Eng. Geol. 1988, 38, 61–71. [Google Scholar] [CrossRef]
- Xu, S.Y.; Ma, L.; Du, Y.J.; Shen, S.L. Analysis on urbanization induced land subsidence in Shanghai. Nat. Hazards 2012, 63, 1255–1267. [Google Scholar] [CrossRef]
- Jin, L.Y.; Dai, F.C. The mechanism of irrigation-induced landslides of loess. Chin. J. Geotech. Eng. 2007, 29, 1493–1499. (In Chinese) [Google Scholar]
- Harvey, F.; Sibray, S.S. Delineating Ground Water Recharge from Leaking Irrigation Canals Using Water Chemistry and Isotopes. Ground Water 2001, 39, 408–421. [Google Scholar] [CrossRef]
- Niswonger, R.; Morway, E.D.; Triana, E.; Huntington, J.L. Managed aquifer recharge through off-season irrigation in agricultural regions. Water Resour. Res. 2017, 53, 6970–6992. [Google Scholar] [CrossRef]
- Alvioli, M.; Melillo, M.; Guzzetti, F.; Rossi, M.; Palazzi, E.; Von Hardenberg, J.; Brunetti, M.T.; Peruccacci, S. Implications of climate change on landslide hazard in Central Italy. Sci. Total. Environ. 2018, 630, 1528–1543. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Peres, D.J.; Cancelliere, A. Modeling impacts of climate change on return period of landslide triggering. J. Hydrol. 2018, 567, 420–434. [Google Scholar] [CrossRef]
- Mandemaker, M.; Bakker, M.; Stoorvogel, J.J. The Role of Governance in Agricultural Expansion and Intensification: A Global Study of Arable Agriculture. Ecol. Soc. 2011, 16, 8. [Google Scholar] [CrossRef]
- Łabędzki, L. Actions and measures for mitigation drought and water scarcity in agriculture. J. Water Land Dev. 2016, 29, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Vorosmarty, C.J.; Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. BioScience 2000, 50, 753–765. [Google Scholar] [CrossRef] [Green Version]
- Andĕl, J.; Bičík, I.; Bláha, J.D. Macro-regional differentiation of the world: Authors’ concept and its application. Misc. Geogr. Reg. Stud. Dev. 2018, 22, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wang, W.; Feng, X.; Wang, N. Prevention countermeasures of geological hazards caused by agricultural irrigation in semi-arid area. Chin. J. Geol. Hazard. Control. 1999, 10, 61–66. (In Chinese) [Google Scholar]
- Lee, Y.S.; Cheuk, C.Y.; Bolton, M.D. Instability caused by a seepage impediment in layered fill slopes. Can. Geotech. J. 2008, 45, 1410–1425. [Google Scholar] [CrossRef]
- Guo, P.; Meng, X.; Li, Y.; Chen, G.; Zeng, R.; Qiao, L. Effect of large dams and irrigation in the upper reaches of the Yellow River of China, and the geohazards burden. Proc. Geol. Assoc. 2015, 126, 367–376. [Google Scholar] [CrossRef]
- Xu, L.; Dai, F.C.; Gong, Q.M.; Tham, L.G.; Min, H. Irrigation-induced loess flow failure in Heifangtai Platform, North-West China. Environ. Earth Sci. 2011, 66, 1707–1713. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, F.; Chen, X. Types and spatio-temporal distribution of loess landslides in loess plateau region: A case study in Wuqi County. J. Catastrophol. 2011, 26, 52–56. (In Chinese) [Google Scholar]
- Meng, X.M.; Derbyshire, E. Landslides and their control in the Chinese Loess Plateau: Models and case studies from Gansu Province, China. In Geohazards in Engineering Geology; Maund, I.G., Eddleston, M., Eds.; Geological Society of London: London, UK, 1998; pp. 141–153. [Google Scholar]
- Wu, W.J.; He, Q.; Cheng, J.X.; Wang, X.L.; Li, S.Y. Development law of landslide in east part of Gansu Province. China Acad. J. Electron. Publ. House 1993, 4, 91–97. (In Chinese) [Google Scholar]
- Pan, P. Study on Mechanism and Treatment of Landslide in Heifangtai. Ph.D. Thesis, College of Civil Engineering and Architecture, ZheJiang University, ZheJiang, China, 2017; 129p. (In Chinese). [Google Scholar]
- Yan, R.; Peng, J.; Huang, Q.-B.; Chen, L.-J.; Kang, C.-Y.; Shen, Y. Triggering Influence of Seasonal Agricultural Irrigation on Shallow Loess Landslides on the South Jingyang Plateau, China. Water 2019, 11, 1474. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Xu, Q.; Li, B.; Peng, L.D.; Zhou, F. Preliminary study on mechanism of surface water infiltration at Heifangtai loess landslides in Gansu. J. Eng. Geol. 2016, 24, 418–424. (In Chinese) [Google Scholar]
- Cao, C.; Xu, Q.; Peng, D.; Qi, X.; Dong, X. Research on the failure mechanism of the Heifangtai loess landslides based on the physical simulation experiments. Hydrolgeol. Eng. Geol. 2016, 42, 71–77. (In Chinese) [Google Scholar]
- Wen, B.P.; Yu, Z.S.; Li, Z.H.; Feng, C.H.; Xu, X.J. Collapsibility of the loess soils on Heifangtai tableland due to wetting by flooding irrigation and its mechanism. J. Lanzhou Univ. 2015, 51, 777–785. (In Chinese) [Google Scholar]
- Hu, W.; Zhu, L.F.; Sun, P.P. An analysis of the time-dependent properties of loess in the formation of landslides at Heifangtai area, Yongjing County, Gansu Province. Geol. Bull. China 2013, 32, 910–918. (In Chinese) [Google Scholar]
- Xu, L.; Qiao, X.; Wu, C.; Iqbal, J.; Dai, F. Causes of landslide recurrence in a loess platform with respect to hydrological processes. Nat. Hazards 2012, 64, 1657–1670. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Wang, N.; Gu, T. Mechanisms of wetting-induced loess slope failures. Landslides 2019, 16, 937–953. [Google Scholar] [CrossRef]
- Derbyshire, E.; Dijkstra, T.A.; Smalley, I.J. Failure mechanisms in loess and the effects of moisture content changes on remolded strength. Quat. Int. 1994, 24, 5–15. [Google Scholar] [CrossRef]
- Guorui, G. Formation and development of the structure of collapsing loess in China. Eng. Geol. 1988, 25, 235–245. [Google Scholar] [CrossRef]
- Li, T.L.; Long, J.H.; Li, X.S. Types of loess landslides and methods for their movement forecast. J. Eng. Geol. 2007, 15, 500–506. (In Chinese) [Google Scholar]
- Wang, N.Q. Characteristics of landslides caused by irrigation on the margin of loess platform. J. Gansu Sci. 1997, 36, 103–108. (In Chinese) [Google Scholar]
- Peng, J.; Zhuang, J.; Wang, G.; Dai, F.; Zhang, F.; Huang, W.; Xu, Q. Liquefaction of loess landslides as a consequence of irrigation. Q. J. Eng. Geol. Hydrogeol. 2018, 51, 330–337. [Google Scholar] [CrossRef]
- Li, T.; Zhao, J.; Li, P.; Wang, F. Failure and motion mechanisms of a rapid loess flowslide triggered by irrigation in the Guanzhong irrigation area, Shaanxi, China. In Progress of Geo-Disaster Mitigation Technology in Asia. Environmental Science and Engineering (Environmental Engineering); Wang, F., Miyajima, M., Li, T., Shan, W., Fathani, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Lin, X.; Li, T.; Zhang, Z.; Zhao, J.; Wang, F.; Zhang, Z. Causes of Gaoloucun loess flowslide in Huaxian county, Shanxi province. J. Eng. Geol. 2013, 21, 282–288. (In Chinese) [Google Scholar]
- Leng, Q.Y.; Peng, J.B.; Wang, Q.Y.; Meng, Z.J.; Huang, W.L. A fluidized landslide occurred in the loess plateau: A study on loess landslide in south Jingyang tableland. Eng. Geol. 2018, 236, 129–136. [Google Scholar] [CrossRef]
- Yang, P.; Chang, W.; Wang, F.W.; Tonglu, L. Motion simulation of rapid long run-out loess landslide at Dongfeng Jingyang, Shaanxi. J. Eng. Geol. 2014, 22, 890–896. (In Chinese) [Google Scholar]
- Wang, D.J.; Wang, J.T.; Huang, H.G. A study on creeping or sliding liquefaction of saturated soil. Geoscience 1993, 1, 102–108. (In Chinese) [Google Scholar]
- Derbyshire, E. Geological hazards in loess terrain, with particular reference to the loess regions of China. Earth Sci. Rev. 2001, 54, 231–260. [Google Scholar] [CrossRef]
- Liang, Y.; Qiao, J.; Xie, C. The influence of the cracks on the landslide induced by irrigation: Take the southern Jingyang Plateau, Shaanxi Province as an example. Sci. Technol. Eng. 2019, 19, 305–314. (In Chinese) [Google Scholar]
- Zhu, L.W.; Hu, J.; Jia, J. Development features and mechanical mechanism of irrigation-induced landslides in Heifangtai, Gansu Province. Geol. Bull. China 2013, 32, 840–846. (In Chinese) [Google Scholar]
- Dong, J. Study on the Trigger Mechanism and Motion Characteristics of Loess Landslide of Jingyang Village at South Jingyang Plateau. Master’s Thesis, Department of Architecture and Civil Engineering, Chang’an University, Xi’an, China, 2017; 57p. (In Chinese). [Google Scholar]
- Xu, L.; Dai, F.C.; Kwong, A.K.L. Characteristics and forming mechanisms of the platform-edge cracks and their significance to loess landslide. Geol. Rev. 2009, 55, 55–59. (In Chinese) [Google Scholar]
- Wang, J.; Hui, Y. Systems analysis on Heifangtai loess landslide in crows induced by irrigated water. Bull. Soil Water Conserv. 2001, 21, 10–13. (In Chinese) [Google Scholar]
- Zheng, Y.; Dai, F. Effect of irrigation leaching on physical and mechanical properties of undisturbed loess. J. Earth Sci. Environ. 2017, 39, 575–584. (In Chinese) [Google Scholar]
- Xu, L.; Dai, F.C.; Tu, X.B.; Javed, I.; Woodard, M.J.; Jin, Y.L.; Tham, L.G. Occurrence of landsliding on slopes where flowsliding had previously occurred: An investigation in a loess platform, north-West China. Catena 2013, 104, 195–209. [Google Scholar] [CrossRef]
- Jia, J.; Zhu, L.F.; Hu, W. The formation mechanism and disaster mode of loess landslides induced by irrigation in Heifangtai, Gansu Province: A case study of the 13th landslide in Jiaojiayatou. Geol. Bull. China 2013, 32, 1968–1975. (In Chinese) [Google Scholar]
- Ma, J. Stability Analysis of Loess Landslide in Loess Tableland Edge of Heifangtai Irrigation Area. Ph.D. Thesis, Jilin University, Jilin, China, 2012; 123p. (In Chinese). [Google Scholar]
- Dong, Y.; Sun, P.P.; Zhang, M.S.; Cheng, X.J.; Bi, J.B. The response of regional groundwater system to irrigation at Heifangtai terrace, Gansu Province. Geol. Bull. China 2013, 32, 868–874. (In Chinese) [Google Scholar]
- Dong, Y.; Jia, J.; Zhang, M.S.; Sun, P.; Zhu, L.F.; Bi, J.B. An analysis of the inducing effects of irrigation and the responses of loess landslides in Heifangtai area. Geol. Bull. China 2013, 32, 893–898. (In Chinese) [Google Scholar]
- Wei, Z. Study on Relationship between Groundwater Hydrodynamic Field Evolution and Geological Disasters in Hei Fangtai Irrigation Area. Master’s Thesis, Chang’an University, Xi’an, China, 2014; 70p. (In Chinese). [Google Scholar]
- Zhang, M.S. Formation mechanism as well as prevention and controlling techniques of loess geo-hazards in irrigated areas: A case study of Heifangtai immigration area in the Three Gorges Reservoir of the Yellow River (In Chinese). Geol. Bull. China 2013, 32, 833–839. (In Chinese) [Google Scholar]
- Xu, L.; Dai, F.; Tu, X.; Tham, L.G.; Zhou, Y.; Iqbal, J. Landslides in a loess platform, North-West China. Landslides 2013, 11, 993–1005. [Google Scholar] [CrossRef]
- Xu, L.; Dai, F.C.; Tham, L.G.; Tu, X.B.; Min, H.; Zhou, Y.F.; Wu, C.X.; Xu, K. Field testing of irrigation effects on the stability of a cliff edge in loess, North-west China. Eng. Geol. 2011, 120, 10–17. [Google Scholar] [CrossRef]
- Gu, T.; Zhang, M.; Wang, J.; Wang, C.; Xu, Y.; Wang, X. The effect of irrigation on slope stability in the Heifangtai Platform, Gansu Province, China. Eng. Geol. 2019, 248, 346–356. [Google Scholar] [CrossRef]
- Wu, W.; Su, X.; Meng, X. Characteristics and origin of loess landslides on loess terraces at Heifangtai, Gansu Province, China. Appl. Mech. Mater. 2014, 694, 455–461. [Google Scholar] [CrossRef]
- Hou, X.; Vanapalli, S.K.; Li, T. Water infiltration characteristics in loess associated with irrigation activities and its influence on the slope stability in Heifangtai loess highland, China. J. Eng. Geol. 2018, 234, 27–37. (In Chinese) [Google Scholar] [CrossRef]
- Duan, Z.; Cheng, W.; Peng, J.; Wang, Q.; Chen, W. Investigation into the triggering mechanism of loess landslides in the south Jingyang platform, Shaanxi province. Bull. Eng. Geol. Environ. 2019, 78, 4919–4930. [Google Scholar] [CrossRef]
- Li, H.; Jin, Y. Initiation analysis of an irrigation-induced loess landslide. Appl. Mech. Mater. 2012, 170–173, 574–580. [Google Scholar] [CrossRef]
- Gu, T.F.; Zhu, L.F.; Hu, W.; Wang, J.D.; Liu, Y.M. Effect on slope stability due to groundwater rising caused by irrigation: A case study of Heifang Platform in Gansu. China Geosci. 2015, 29, 408–413. (In Chinese) [Google Scholar]
- Gao, J.; Dai, F.; Zhu, Y.; Yao, X. Failure mechanism of the Shuitang Village Landslide in Ningnan County, Sichuan Province. Chin. J. Geol. Hazard. Control. 2019, 30, 1–9. (In Chinese) [Google Scholar]
- Qiu, C.; Huang, J.K.; Hu, Y.C.; Guo, X.P.; Hu, Y.Q. Influence of irrigation on slope stability of dump in arid desert area of Northwest China: A case study of Xinxing coal mine, Wuhai. J. ZheJiang Univ. 2019, 53, 1467–1477. (In Chinese) [Google Scholar]
- Lei, X.Y. The hazards of loess landslides in the southern plateau of Jingyang County, Shaanxi and their relationship with the channel water into fields. Chin. J. Eng. Geol. 1995, 3, 56–64. (In Chinese) [Google Scholar]
- Wen, B.-P.; He, L. Influence of lixiviation by irrigation water on residual shear strength of weathered red mudstone in Northwest China: Implication for its role in landslides’ reactivation. Eng. Geol. 2012, 151, 56–63. [Google Scholar] [CrossRef]
- Ma, P.; Peng, J.; Wang, Q.; Zhuang, J.; Zhang, F. The mechanisms of a loess landslide triggered by diversion-based irrigation: A case study of the South Jingyang Platform, China. Bull. Int. Assoc. Eng. Geol. 2019, 78, 4945–4963. [Google Scholar] [CrossRef]
- Xi, Y.; Li, T.; Xing, X. Analysis of the triggering mechanism of a loess flow slide induced by water canal leakage. J. Earth Sci. Environ. 2017, 39, 135–142. (In Chinese) [Google Scholar]
- Wang, G.X. Sliding mechanism and prediction of critical sliding of Huangci landslide in Yongjing county, Gansu Province. J. Catastrophol. 1997, 12, 23–27. (In Chinese) [Google Scholar]
- Wang, J.D.; Xiao, S.F.; Zhang, Z.Y. The mechanism for movement of irrigation induced high speed loess landslide. Chin. J. Eng. Geol. 2001, 9, 241–246. (In Chinese) [Google Scholar]
- Cui, S.; Pei, X.; Wu, H.-Y.; Huang, R.-Q. Centrifuge model test of an irrigation-induced loess landslide in the Heifangtai loess platform, Northwest China. J. Mt. Sci. 2018, 15, 130–143. [Google Scholar] [CrossRef]
- Lian, B.; Wang, X.; Zhu, R.; Liu, J.; Wang, Y. A numerical simulation study of landslides induced by irrigation in Heifangtai loess area—A case study of Huangci. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 32064. [Google Scholar] [CrossRef]
- Xing, X.L. The Mechanism of Irrigation-Induced Flow-Slide and Its Motion Simulation–Taking Gaolou Village Landslide as the Research Object. Master’s Thesis, Chang’an University, Xi’an, China, 2013; 62p. (In Chinese). [Google Scholar]
- Zhang, F.; Wang, G. Effect of irrigation-induced densification on the post-failure behavior of loess flowslides occurring on the Heifangtai area, Gansu, China. Eng. Geol. 2018, 236, 111–118. [Google Scholar] [CrossRef]
- Song, D. The Centrifuge Modeling Test and Numerical Analysis of Irrigation-Induced Loess Landslide. Master’s Thesis, Chang’an University, Xi’an, China, 2014; 86p. (In Chinese). [Google Scholar]
- Huan-dong, M.U.; Deng-yan, S.O.N.G.; Zhang, M.S. Centrifuge modelling tests on loess landslides induced by irrigation. Chin. J. Geotech. Eng. 2016, 38, 172–177. (In Chinese) [Google Scholar]
- Cao, Y.; Yin, K. The artificial dropping experiment about the mechanism reach of loess landslides induced by rain or irrigation. EJGE 2015, 20, 1965–1980. [Google Scholar]
- Ding, Y. Study on the Stability of High Loess Slope under Artificial Rainfall simulation. Ph.D. Thesis, Department of Geological Engineering, Northwestern University, Xi’an, China, 2011; 86p. (In Chinese). [Google Scholar]
- Duan, Z.; He, Z.G.; Lin, H.Z. Stability Analysis of Loess Landslides Induced by Irrigation. Appl. Mech. Mater. 2014, 716, 395–399. [Google Scholar] [CrossRef]
- Zhuang, J.; Peng, J.; Wang, G.; Javed, I.; Wang, Y.; Li, W. Distribution and characteristics of landslide in Loess Plateau: A case study in Shaanxi province. Eng. Geol. 2018, 236, 89–96. [Google Scholar] [CrossRef]
- Lei, X.Y. Geo-Hazards in Loess Plateau and Human Activity; Environmental Degradation Press: Beijing, China, 2001; 236p. (In Chinese) [Google Scholar]
- Wang, Z.R.; Wu, W.J.; Zhou, Z.Q. Landslide induced by over-irrigation in loess platform areas in Gansu Province. Chin. J. Geol. Hazard. Control. 2004, 15, 43–46. (In Chinese) [Google Scholar]
- Guo, P. Application of domestic high-resolution satellite data in the investigation of irrigation-induced loess landslides. Gansu Water Resour. Hydropower Technol. 2018, 54, 41–44. (In Chinese) [Google Scholar]
- Ballón, A. Deslizamientos de tierras en el distrito de Aczo, Ancash. In Comisión Carta Geológica Nacional; Compilación de Estudios Geológicos. Boletín N°13; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 1966; pp. 177–190. [Google Scholar]
- Morales, G. Deslizamiento de tierras en el área de Yuncanpata, Cerro de Pasco. In Comisión Carta Geológica Nacional; Compilación de Estudios Geológicos. Boletín N°13; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 1966; pp. 35–44. [Google Scholar]
- Lacroix, P.; Dehecq, A.; Taipe, E. Irrigation-triggered landslides in a Peruvian desert caused by modern intensive farming. Nat. Geosci. 2020, 13, 56–60. [Google Scholar] [CrossRef]
- Araujo-Huamán, E.E.; Taipe-Maquerhua, E.L.; Miranda-Cruz, R.; Valderrama-Murillo, P.A. Dinámica y Monitoreo del Deslizamiento de Siguas; Región Arequipa, provincia Caylloma y Arequipa, distrito Majes y San Juan de Siguas; Instituto Geológico, Minero y Metalúrgico: Lima, Peru, 2017; 54p. [Google Scholar]
- Valderrama, P.; Araujo, G.E.; Fidel, L.; Miranda, R. Investigación del Deslizamiento de Lari; Primer Report; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2015; 38p. [Google Scholar]
- Soncco, Y.; Manrique, N. Peligro por Deslizamientos en el Sector Matarani, Tacna; Informe Técnico N°A6833; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2018; 27p. [Google Scholar]
- Girard, D. Deslizamiento y derrumbes en el distrito de San Pedro, Ayacucho. In Servicio de Geología y Minería; Geodinámica e Ingeniería Geológica: Lima, Peru, 2000; pp. 43–58. [Google Scholar]
- Benavente, C. Evaluación de Peligro Geológico en el Sector de Challa, Provincia de Tarata, Tacna; Informe Técnico; lnstituto Minero, Geológico y Metalúrgico: Lima, Peru, 2007; 12p. [Google Scholar]
- Núñez, S. Evaluación de los Peligros Geológicos que Afectan al Anexo de Llocche, Lima; Informe Técnico; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2007; 27p. [Google Scholar]
- Núñez, S. Deslizamiento del Cerro Pucutura, Lima. Informe Técnico; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2009; 27p. [Google Scholar]
- Zavala, B.; Gomez, J.C.; Herrera, B. Deslizamiento del Cerro Rodeopampa y Embalse del rio Socota—Región Cajamarca. Informe; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2010; 33p. [Google Scholar]
- Vilchez, M. Deslizamiento de Horno Huayoc, Huancavelica; Informe Técnico N°A6604; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2012; 27p. [Google Scholar]
- Luque, G.; Rosado, M. Evaluación Ingeniero-Geológica del Deslizamiento de Santiago de Anchucaya, Lima; Informe Técnico N°A6603; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2012; 36p. [Google Scholar]
- Luque, G.; Rosado, M. Deslizamiento-Flujo de Tierra en la Comunidad Campesina Astobamba, Cajamarca; Informe Técnico NºA6589; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2012; 39p. [Google Scholar]
- Vizcarra, M.E. Evaluación Geofísica del Deslizamiento del Cerro Pucruchacra, Distrito de San Mateo, Lima. Bachelor’s Thesis, Facultad de Geología Geofísica y Minas, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2014; 125p. [Google Scholar]
- Luza, C.; Sosa, N.; Núñez, S. Deslizamiento de Aurahuá, Huancavelica; Informe Técnico N°A6697; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2015; 19p. [Google Scholar]
- Carrillo, R.P. Evaluación de Zonas Susceptibles a Movimientos en Masa del Tipo Deslizamiento en el Centro Poblado de Carampa, Distrito de Pazos, Provincia de Tayacaja, Región Huancavelica, Aplicando el Protocolo de Cenepred. Bachelor’s Thesis, Facultad de Ingeniería de Minas, Universidad Nacional de Piura: Castilla, Peru, 2015; 149p. [Google Scholar]
- Carlotto, V. Deslizamiento traslacional de Huamancharpa, Cusco, Perú. In Movimientos en Masa en la Región Andina: Una Guía Para la Evaluación de Amenazas; Publicación Geológica Multinacional #4: Salta, Argentina, 2007; pp. 208–212. [Google Scholar]
- Medina, L.; Calderón, E. Deslizamiento Ccochalla, Ayacucho; Informe Técnico N°A6670; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2015; 29p. [Google Scholar]
- De la Cruz, O.; Gómez, D. Deslizamiento en el Sector de Huellap, Ancash; Informe Técnico N°A6738; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2017; 23p. [Google Scholar]
- Núñez, S.; Ochoa, M. Peligros Por Deslizamiento en el Sector La Lampa, Cajamarca; Informe Técnico; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2017; 30p. [Google Scholar]
- Ingemmet. Deslizamiento en los Caseríos de Higosbamba, Hichabamba, Huayllabamba y Churucana. Cajamarca; Informe Técnico N°A6903; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2019; 13p. [Google Scholar]
- Alvarado, R.S.; Torres, D.F. Análisis de la Estabilidad y Estimación Preliminar de Riesgos por Deslizamiento Para el Mejoramiento y Ampliación del Sistema de Agua Potable y Desagüe en la Localidad de Vilcabamba. Bachelor’s Thesis, Geofísica y Minas, Factiltad de Geología, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2019; 173p. [Google Scholar]
- Ingemmet. Evaluación geológica-geodinámica del Centro Poblado Santa María de Otopongo, Lima; Informe Técnico N°A7053; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2020; 25p. [Google Scholar]
- Núñez, S.; Pilco, E. Deslizamiento de Pilchaca, Huancavelica; Informe Técnico N°A6669; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2015; 34p. [Google Scholar]
- Villacorta, S. Evaluación Geológica-Geodinámica del Deslizamiento en el Anexo de Llapay (Distrito de Laraos, provincia de Yauyos, Región Lima); Informe Técnico; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 2009; 12p. [Google Scholar]
- Jurio, E.M.; Chiementon, M.E.; Mare, M.D. Desestabilización del sistema natural a partir de cambios en el uso del suelo: El caso de los deslizamientos de Vista Alegre, Provincia del Neuquén. Boletín Geofísico 2014, 36, 11–25. [Google Scholar]
- Villaseñor-Reyes, C.I.; Daávila-Harris, P.; Hernández-Madrigal, V.M.; Figueroa-Miranda, S. Deep-seated gravitational slope deformations triggered by extreme rainfall and agricultural practices (eastern Michoacan, Mexico). Landslides 2018, 15, 1867–1879. [Google Scholar] [CrossRef]
- García, M.T. Origen y Evaluación de un Deslizamiento de Tierras en Metztitlán, México. Bachelor’s Thesis, Facultad de Filosofía y Letras, Universidad Nacional Autónoma de México, Mexico City, Mexico, 1995; 138p. [Google Scholar]
- Yadún, C.A.; Guzman, J.; Aguirre, P.M. Evaluacioán de Riesgos Ambientales en la Gestiön del Riego en el Canal de San Rafael y Monteolivo, de la Cuenca del Riáo Escudillas; CUVILLIER VERLAG Press: Göttingen, Germany, 2020; 69p. [Google Scholar]
- Samaniego, E.E. Deslizamientos en la comunidad de Pueblo Viejo, Canton Alausi, Provincia del Chimborazo. Diploma Thesis, Universidad de Postgrados del Estado, Quito, Ecuador, 2008; 66p. [Google Scholar]
- Rosales, U.B.; Centeno, Y.C. Vulnerabilidad potencial de los suelos a deslizamientos de tierra en el municipio de La Conquista, Carazo, Nicaragua. Bachelor’s Thesis, Facultad de Recursos Naturales y del Ambiente, Universidad Nacional Agraria, Managua, Nicaragua, 2009; 112p. [Google Scholar]
- Reyes, W.; Jiménez, F.; Faustino, J.; Velásquez, S. Vulnerabilidad y Áreas Críticas a Deslizamientos en la Microcuenca del Río Talgua, Honduras. Recur. Nat. Ambiente 2006, 48, 103–110. [Google Scholar]
- Carbajal, F.A. Análisis de vulnerabilidad ambiental por deslizamiento en la microcuenca del río Tabarcia, Cantón de Mora, República de Costa Rica. Master’s Thesis, Facultad de Geología, Universidad de Costa Rica, Costa Rica, 2019; 181p. [Google Scholar]
- Bradley, K.; Mallick, R.; Andikagumi, H.; Hubbard, J.; Meilianda, E.; Switzer, A.D.; Du, N.; Brocard, G.; Alfian, D.; Benazir, B.; et al. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation. Nat. Geosci. 2019, 12, 935–939. [Google Scholar] [CrossRef]
- Watkinson, I.M.; Hall, R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides. Nat. Geosci. 2019, 12, 940–945. [Google Scholar] [CrossRef]
- Cummins, P.R. Irrigation and the Palu landslides. Nat. Geosci. 2019, 12, 881–882. [Google Scholar] [CrossRef]
- Knott, J.R. The Influence of Irrigation on Slope Movements, Ventura County, California, USA. Environ. Eng. Geosci. 2008, 14, 151–165. [Google Scholar] [CrossRef]
- Clague, J.J. Geologic Framework of Large Historic Landslides in Thompson River Valley, British Columbia. Environ. Eng. Geosci. 2003, 9, 201–212. [Google Scholar] [CrossRef]
- Gorokhovich, Y.; Doocy, S.; Walyawula, F.; Muwanga, A.; Nardi, F. Landslides in Bududa, Eastern Uganda: Preliminary assessment and proposed solutions. In Landslide Science and Practice. Volume 4: Global Environmental Change; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin, Germany, 2012; pp. 145–149. [Google Scholar]
- Domej, G.; Aslanov, U.; Ischuk, A. Geophysical investigations on the contribution of irrigation channels to landslide activity in Tusion, Tajikistan. J. Himal. Earth Sci. 2019, 52, 161–177. [Google Scholar]
- Ishihara, K.; Okusa, S.; Oyagi, N.; Ischuk, A. Liquefaction-Induced Flow Slide in the Collapsible Loess Deposit in Soviet Tajik. Soils Found. 1990, 30, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Ali, J.; Nizami, A.; Hebinck, P. Mismanagement of Irrigation Water and Landslips in Yourjogh, Pakistan. Mt. Res. Dev. 2017, 37, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Slack, D.; Martin, E.; Sheta, A.; Fox, F., Jr.; Clark, L.; Ashley, R. Crop coefficients normalized for climatic variability with growing-degree-days. In Proceedings of the International Conference on Evapotranspiration and Irrigation Scheduling, San Antonio, TX, USA, 3–6 November 1996; pp. 892–898. [Google Scholar]
- Li, P.; Zhang, X.; Shi, H. Investigation for the initiation of a loess landslide based on the unsaturated permeability and strength theory. Geoenviron. Disasters 2015, 2, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, J. Controlling factors of loess landslides in western China. Environ. Earth Sci. 2009, 59, 1671–1680. [Google Scholar] [CrossRef]
- Jongmans, D.; Garambois, S. Geophysical investigation of landslides: A review. BSGF Earth Sci. Bull. 2007, 178, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Baeza, C.; Corominas, J. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf. Process. Landforms 2001, 26, 1251–1263. [Google Scholar] [CrossRef]
- Bogoslovsky, V.A.; Ogilvy, A.A. Geophysical Methods for the Investigation of Landslides. Geophysics 1977, 42, 562–571. [Google Scholar] [CrossRef]
- Adegoke, J.O.; Pielke, R.; Carleton, A.M. Observational and modeling studies of the impacts of agriculture-related land use change on planetary boundary layer processes in the central U.S. Agric. For. Meteorol. 2007, 142, 203–215. [Google Scholar] [CrossRef]
- He, Y. Identification and Monitoring of the Loess Landslide by Using of High Resolution Remote Sensing and InSAR. Master’s Thesis, Department of Geodesy and Survey Engineering, Chang’an University, Xi’an, China, 2016; 70p. (In Chinese). [Google Scholar]
- Wang, Z.-F.; Shen, S.-L.; Cheng, W.-C. Simple Method to Predict Ground Displacements Caused by Installing Horizontal Jet-Grouting Columns. Math. Probl. Eng. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Mozas-Calvache, A.T.; Pérez-García, J.L.; Castillo, T.F.-D. Monitoring of landslide displacements using UAS and control methods based on lines. Landslides 2017, 14, 1–14. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Q.; He, Y.; Peng, J.; Yang, C.; Kang, Y. Small-scale loess landslide monitoring with small baseline subsets interferometric synthetic aperture radar technique—case study of Xingyuan landslide, Shaanxi, China. J. Appl. Remote. Sens. 2016, 10, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Gómez, H.; Kavzoglu, T. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng. Geol. 2005, 78, 11–27. [Google Scholar] [CrossRef]
- Kong, L. Selection of treatment measures for Heifangtai landslide disaster in Yongjing County. Gansu Sci. Technol. 2008, 24, 60–62. (In Chinese) [Google Scholar]
- Van der Wall, A. Understanding Groundwater and Wells in Manual Drilling; Practica Foundation: Papendrecht, The Netherlands, 2010; 41p. [Google Scholar]
- Dasberg, S.; Or, D. Drip Irrigation; Springer: Berlin/Heidelberg, Germany, 1999; 162p. [Google Scholar]
- Garcia-Chevesich, P. Erosion Control. and Land Restoration; Outskirts Press: Denver, CO, USA, 2016; 486p. [Google Scholar]
- Zhou, Y.F.; Tham, L.G.; Yan, W.M.; Dai, F.C.; Xu, L. Laboratory study on soil behavior in loess slope subjected to infiltration. Eng. Geol. 2014, 183, 31–38. [Google Scholar] [CrossRef]
- Ke, H.; Li, P.; Li, Z.; Shi, P.; Hou, J. Soil Water Movement Changes Associated with Revegetation on the Loess Plateau of China. Water 2019, 11, 731. [Google Scholar] [CrossRef] [Green Version]
- Huggel, C.; Clague, J.J.; Korup, O. Is climate change responsible for changing landslide activity in high mountains? Earth Surf. Process. Landforms 2011, 37, 77–91. [Google Scholar] [CrossRef]
- Dixon, N.; Brook, E. Impact of predicted climate change on landslide reactivation: Case study of Mam Tor, UK. Landslides 2007, 4, 137–147. [Google Scholar] [CrossRef]
- Barnett, T.P.; Pierce, D.W.; Hidalgo, H.G.; Bonfils, C.; Santer, B.D.; Das, T.; Bala, G.; Wood, A.W.; Nozawa, T.; Mirin, A.A.; et al. Human-Induced Changes in the Hydrology of the Western United States. Science 2008, 319, 1080–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, J.S. Proving the occurrence and cause of a landslide in a legal context. Bull. Int. Assoc. Eng. Geol. 1999, 58, 75–85. [Google Scholar] [CrossRef]
- Hermanns, R.L.; Valderrama, P.; Fauqué, L.; Penna, I.M.; Sepúlveda, S.; Moreiras, S.; Carrión, B.Z. Landslides in the Andes and the need to communicate on an interandean level on landslide mapping and research. Rev. Asoc. Geológica Argent. 2012, 69, 321–327. [Google Scholar]
Country | Region | Annual Precipitation (mm) | Rainy Season | Geological Material | Source |
---|---|---|---|---|---|
Argentina | Neuquén | 200 | Summer | Alluvial | [144] *** |
Canada | Spences Bridge | 233 | Sedimentary | [156] ** | |
China | Gansu | 316 | Loess | [105] ** | |
[85] * | |||||
[86] * | |||||
[96] * | |||||
[91] ** | |||||
[83] * | |||||
[106] ** | |||||
[55] ** | |||||
[103] * | |||||
[80] * | |||||
[116] * | |||||
[68] * | |||||
[100] ** | |||||
[92] ** | |||||
[56] * | |||||
[107] * | |||||
[90] ** | |||||
[63] ** | |||||
[88] * | |||||
[77] * | |||||
350 | [87] * | ||||
358 | [93] * | ||||
549 | [78] * | ||||
Shaanxi | 504 | [79] * | |||
548 | [72] ** | ||||
[95] ** | |||||
[76] * | |||||
[58] ** | |||||
[113] ** | |||||
[94] ** | |||||
[101] ** | |||||
[73] * | |||||
585 | [70] ** | ||||
[71] * | |||||
[69] ** | |||||
[102] * | |||||
648 | [99] * | ||||
1000 | [97] * | ||||
Wuhai | 159 | [98] * | |||
Costa Rica | Mora | 844 | Summer, fall | Volcanic | [151] *** |
Ecuador | Bolívar | 1626 | Summer | Sedimentary | [147] *** |
Pueblo Viejo | [148] *** | ||||
Honduras | Talgua | 1337 | Summer, fall | [150] *** | |
Indonesia | Palu valley | 1432 | Spring and summer | Alluvial | [152] ** |
[154] ** | |||||
[153] ** | |||||
Mexico | Metztitlán | 437 | Summer | Sedimentary | [146] *** |
Michoacán | 553 | Summer, fall | Volcanic | [145] *** | |
Nicaragua | La Conquista | 1300 | Sedimentary | [149] *** | |
Pakistan | Yourjogh | 451 | Winter | Volcanic | [160] ** |
Peru | Aczo | 350 | Summer | Sedimentary | [118] *** |
Ancash | 1000 | Year round | [137] *** | ||
Arequipa | 350 | Summer | [123] *** | ||
[122] *** | |||||
Ayacucho | 350 | Summer | Volcanic | [136] *** | |
Barranca | 5 | Alluvial | [141] *** | ||
Cajamarca | 32 | Sedimentary | [138] *** | ||
400 | Fall | Alluvial | [128] *** | ||
700 | Summer | Sedimentary | [139] *** | ||
Cerro Pucutura | 525 | [127] *** | |||
Challa | 12 | Volcanic | [125] *** | ||
Cusco | 700 | [140] *** | |||
Sedimentary | [135] *** | ||||
Huancavelica | 72 | Alluvial | [133] *** | ||
350 | Sedimentary | [142] *** | |||
500 | Spring | Alluvial | [129] *** | ||
702 | Summer | Volcanic | [134] *** | ||
Lima | 350 | Spring and summer | Alluvial | [130] *** | |
550 | Volcanic | [131] *** | |||
Llapay | 500 | Summer | Alluvial | [143] *** | |
Llocche | 350 | Sedimentary | [126] *** | ||
San Mateo | 342 | Volcanic | [132] *** | ||
San Pedro | 29 | [124] *** | |||
Siguas | 16 | Sedimentary | [121] *** | ||
Vítor-Siguas | 16 | [120] ** | |||
Yuncanpata | 100 | Spring and summer | Alluvial | [119] *** | |
Tajikistan | Dushanbe | 568 | Fall, winter, and spring | Loess | [159] ** |
Tusion | 170 | Spring | Sedimentary | [158] ** | |
Uganda | Bududa | 188 | Year round | [157] ** | |
United States | Oak Ridge, CA | 432 | Winter | [155] ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Chevesich, P.; Wei, X.; Ticona, J.; Martínez, G.; Zea, J.; García, V.; Alejo, F.; Zhang, Y.; Flamme, H.; Graber, A.; et al. The Impact of Agricultural Irrigation on Landslide Triggering: A Review from Chinese, English, and Spanish Literature. Water 2021, 13, 10. https://doi.org/10.3390/w13010010
Garcia-Chevesich P, Wei X, Ticona J, Martínez G, Zea J, García V, Alejo F, Zhang Y, Flamme H, Graber A, et al. The Impact of Agricultural Irrigation on Landslide Triggering: A Review from Chinese, English, and Spanish Literature. Water. 2021; 13(1):10. https://doi.org/10.3390/w13010010
Chicago/Turabian StyleGarcia-Chevesich, Pablo, Xiaolu Wei, Juana Ticona, Gisella Martínez, Julia Zea, Vilma García, Francisco Alejo, Yao Zhang, Hanna Flamme, Andrew Graber, and et al. 2021. "The Impact of Agricultural Irrigation on Landslide Triggering: A Review from Chinese, English, and Spanish Literature" Water 13, no. 1: 10. https://doi.org/10.3390/w13010010
APA StyleGarcia-Chevesich, P., Wei, X., Ticona, J., Martínez, G., Zea, J., García, V., Alejo, F., Zhang, Y., Flamme, H., Graber, A., Santi, P., McCray, J., Gonzáles, E., & Krahenbuhl, R. (2021). The Impact of Agricultural Irrigation on Landslide Triggering: A Review from Chinese, English, and Spanish Literature. Water, 13(1), 10. https://doi.org/10.3390/w13010010