Ensemble Modeling of the Impact of Climate Warming and Increased Frequency of Extreme Climatic Events on the Thermal Characteristics of a Sub-Tropical Lake
Abstract
:1. Introduction
- A significant warming in the mean annual temperatures
- A clear trend of increasing temperatures during the summer months (June–October)
- An increase in the frequency and duration of heat spells
- An increase in the summer heat load, especially during August, the hottest month.
2. Materials and Methods
2.1. Study Site
2.2. Weather Generator
2.3. Hydrodynamic Models
2.4. GLM Calibration and Validation
2.5. Genetic Algorithm
2.6. GOTM Calibration and Validation
2.7. Ensemble Scenario Testing
- Unchanged—current meteorological characteristics remained unchanged. This scenario served as a reference for the other scenarios.
- Linear Increase (LI)—a gradual linear increase in air temperature over the entire period of the simulation. Temperature increased by a total of 2 °C over the period of the simulation.
- Heat waves (HW)—increased frequency of extreme heat events during the summer similar to the changes described by Ziv and colleagues [25].
- HW-LI—Merging of increased frequency of extreme events (scenario 3) and a gradual increase (scenario 2). This scenario is considered the most realistic.
3. Results
3.1. Calibration Results
3.2. Scenario Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1–32. [Google Scholar]
- Rockel, B. The regional downscaling approach: A brief history and recent advances. Curr. Clim. Chang. Rep. 2015, 1, 22–29. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Ailliot, P.; Allard, D.; Monbet, V.; Naveau, P. Stochastic weather generators: An overview of weather type models. J. Soc. Franç. Statis. 2015, 156, 101–113. [Google Scholar]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef]
- Verburg, P.; Hecky, R.E. The physics of the warming of Lake Tanganyika by climate change. Limno. Oceanog. 2009, 54, 2418–2430. [Google Scholar] [CrossRef]
- Woolway, R.I.; Jennings, E.; Carrea, L. Impact of the 2018 European heatwave on lake surface water temperature. Inland Waters 2020, 1–11. [Google Scholar] [CrossRef]
- Kraemer, B.M.; Chandra, S.; Dell, A.I.; Dix, M.; Kuusisto, E.; Livingstone, D.M.; Schladow, S.G.; Silow, E.; Sitoki, L.M.; Tamatamah, R. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism. Glob. Chang. Biol. 2017, 5, 23. [Google Scholar] [CrossRef]
- Rimmer, A.; Gal, G.; Opher, T.; Lechinsky, L.; Yacobi, Y.Z. Mechanisms of for long-term variations of thermal structure in a warm lake. Limnol. Oceanogr. 2011, 56, 974–988. [Google Scholar] [CrossRef]
- Trolle, D.; Elliott, J.A.; Mooij, W.M.; Janse, J.H.; Bolding, K.; Hamilton, D.P.; Jeppesen, E. Advancing projections of phytoplankton responses to climate change through ensemble modelling. Enviorn. Model. Soft. 2014, 61, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Trolle, D.; Hamilton, D.P.; Pilditch, C.A.; Duggan, I.C.; Jeppesen, E. Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management. Enviorn. Model. Soft. 2011, 26, 354–370. [Google Scholar] [CrossRef]
- Naithani, J.; Plisnier, P.-D.; Deleersnijder, E. Possible effects of global climate change on the ecosystem of Lake Tanganyika. Hydrobiologia 2011, 671, 147–163. [Google Scholar] [CrossRef]
- Elliott, A.J.; Thackeray, S.J.; Huntigford, C.; Jones, R.G. Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Freshw. Biol. 2005, 50, 1404–1411. [Google Scholar] [CrossRef]
- Arheimer, B.; Andreasson, J.; Fogelberg, S.; Johnsson, H.; Pers, C.B.; Persson, K. Climate Change Impact on Water Quality: Model Results from Southern Sweden. AMBIO J. Hum. Environ. 2005, 34, 559–566. [Google Scholar] [CrossRef]
- Fang, X.; Stefan, H.G.; Eaton, J.G.; McCormick, J.H.; Alama, S.R. Simulation of thermal/dissolved oxygen habitat for fishes in lakes under different climate scenarios Part 3. Warm-water fish in the contiguous US. Ecol. Model. 2004, 172, 55–68. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef] [Green Version]
- Alpert, P.; Krichak, S.O.; Shafir, H.; Haim, D.; Osetinsky, I. Climatic trends to extremes employing regional modeling and statistical interpretation over the E. Mediterranean. Glob. Planet Chang. 2008, 63, 163–170. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Gaffen, D.J.; Ross, R.J. Increased summertime heat stress in the US. Nature 1998, 396, 529–530. [Google Scholar] [CrossRef]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.; Tanarhte, M.; Tyrlis, E. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Chang. 2012, 114, 667–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Giannakopoulos, C.; Pozzer, A.; Tanarhte, M.; Tyrlis, E. Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century. Reg. Environ. Chang. 2014, 14, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- Zittis, G.; Hadjinicolaou, P.; Fnais, M.; Lelieveld, J. Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg. Environ. Chang. 2015, 1–14. [Google Scholar] [CrossRef]
- Ziv, B.; Saaroni, H.; Alpert, P. Temperature, Heat-Stress and Rainfall Fluctuations and Trends in Israel during the Last 30 Years: Is It Evidence of Climatic Change? A Climatological-Synoptic Study; The Open University of Israel: Ra’anana, Israel, 2011; p. 82. [Google Scholar]
- Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B. Toward a Metabolic Theory of Ecology. Ecology 2004, 85, 1771–1789. [Google Scholar] [CrossRef]
- Schlabing, D.; Frassl, M.A.; Eder, M.M.; Rinke, K.; Bardossy, A. Use of a weather generator for simulating climate change effects on ecosystems: A case study on Lake Constance. Enviorn. Model. Soft. 2014, 61, 326–338. [Google Scholar] [CrossRef]
- Ziv, B.; Shilo, E.; Lechinsky, Y.; Rimmer, A. Meteorology. In Lake Kinneret—Ecology and Management; Zohary, T., Sukenik, A., Berman, T., Nishri, A., Eds.; Springer: Dordrecht, The Netherland, 2014; pp. 81–96. [Google Scholar]
- Shilo, E.; Ziv, B.; Shamir, E.; Rimmer, A. Evaporation from Lake Kinneret, Israel, during hot summer days. J. Hydrol. 2015, 528, 264–275. [Google Scholar] [CrossRef]
- Imberger, J.; Patterson, J.C. A dynamic reservoir simulation model- DYRESM: 5. In Transport Models for Inland and Coastal Waters; Fischer, H.B., Ed.; Academic Press: New York, NY, USA, 1981; pp. 310–361. [Google Scholar]
- Gal, G.; Imberger, J.; Romero, J. Understanding the factors contributing to the rise in water temperature in a stratified lake using model simulations. Verh. Internat. Verein. Limnol. 2002, 28, 228–231. [Google Scholar] [CrossRef]
- Gal, G.; Imberger, J.; Zohary, T.; Antenucci, J.; Anis, A.; Rosenberg, T. Simulating the thermal dynamics of Lake Kinneret. Ecol. Model. 2003, 162, 69–86. [Google Scholar] [CrossRef]
- Gal, G.; Hipsey, M.R.; Parparov, A.; Wagner, U.; Makler, V.; Zohary, T. Implementation of ecological modeling as an effective management and investigation tool: Lake Kinneret as a case study. Ecol. Model. 2009, 220, 1697–1718. [Google Scholar] [CrossRef]
- Hipsey, M.R.; Bruce, L.C.; Boon, C.; Busch, B.; Carey, C.C.; Hamilton, D.P.; Hanson, P.C.; Read, J.S.; de Sousa, E.; Weber, M.; et al. A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON). Geosci. Model. Dev. 2019, 12, 473–523. [Google Scholar] [CrossRef] [Green Version]
- Read, J.S.; Winslow, L.A.; Hansen, G.J.A.; Van Den Hoek, J.; Hanson, P.C.; Bruce, L.C.; Markfort, C.D. Simulating 2368 temperate lakes reveals weak coherence in stratification phenology. Ecol. Model. 2014, 291, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Van Den Hoek, J.; Read, J.S.; Winslow, L.A.; Montesano, P.; Markfort, C.D. Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling. Remote Sens. Environ. 2014, 156, 551–560. [Google Scholar] [CrossRef]
- Bruce, L.; Frassl, M.; Arhonditsis, G.; Gal, G.; Hamilton, D.; Hanson, P. A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network. Environ. Model. Soft 2018, 102, 274–291. [Google Scholar] [CrossRef] [Green Version]
- Burchard, H.; Bolding, K.; Villarreal, M.R. GOTM, A General Ocean Turbulence Model: Theory, Implementation and Test Cases. Space Applications Institute: Ispra, Italy, 1999. [Google Scholar]
- Sachse, R.; Petzoldt, T.; Blumstock, M.; Moreira, S.; Pätzig, M.; Rücker, J.; Janse, J.H.; Mooij, W.M.; Hilt, S. Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality. Environ. Model. Soft 2014, 61, 410–423. [Google Scholar] [CrossRef]
- Kerimoglu, O.; Jacquet, S.; Vinçon-Leite, B.; Lemaire, B.J.; Rimet, F.; Soulignac, F.; Trévisan, D.; Anneville, O. Modelling the plankton groups of the deep, peri-alpine Lake Bourget. Ecol. Model. 2017, 359, 415–433. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.I.; Moras, S.; Pierson, D.C. Simulations of future changes in thermal structure of Lake Erken: Proof of concept for ISIMIP2b lake sector local simulation strategy. Hydrol. Earth Syst. Sci. Discuss. 2019, 2019, 1–25. [Google Scholar] [CrossRef]
- Burchard, H.; Bolding, K.; Kühn, W.; Meister, A.; Neumann, T.; Umlauf, L. Description of a flexible and extendable physical–biogeochemical model system for the water column. J. Mar. Syst. 2006, 61, 180–211. [Google Scholar] [CrossRef]
- Sukenik, A.; Zohary, T.; Markel, D. The Monitoring Program. In Lake Kinneret—Ecology and Management; Zohary, T., Sukenik, A., Berman, T., Nishri, A., Eds.; Springer: Dordrecht, The Netherland, 2014; pp. 561–575. [Google Scholar]
- Gilboa, Y.; Friedler, E.; Gal, G. Adapting empirical equations to Lake Kinneret data by using three calibration methods. Ecol. Model. 2009, 220, 3291–3300. [Google Scholar] [CrossRef]
- Chen, W.; Nielsen, A.; Andersen, T.K.; Hu, F.; Chou, Q.; Søndergaard, M.; Jeppesen, E.; Trolle, D. Modeling the Ecological Response of a Temporarily Summer-Stratified Lake to Extreme Heatwaves. Water 2020, 12, 94. [Google Scholar] [CrossRef] [Green Version]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Gal, G.; Makler-Pick, V.; Shachar, N. Dealing with uncertainty in ecosystem model scenarios: Application of the single-model ensemble approach. Environ. Model. Soft 2014, 61, 360–370. [Google Scholar] [CrossRef] [Green Version]
- Trolle, D.; Nielsen, A.; Andersen, H.E.; Thodsen, H.; Olesen, J.E.; Børgesen, C.D.; Refsgaard, J.C.; Sonnenborg, T.O.; Karlsson, I.B.; Christensen, J.P.; et al. Effects of changes in land use and climate on aquatic ecosystems: Coupling of models and decomposition of uncertainties. Sci. Total Environ. 2019, 657, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, B.M.; Anneville, O.; Chandra, S.; Dix, M.; Kuusisto, E.; Livingstone, D.M.; Rimmer, A.; Schladow, S.G.; Silow, E.; Sitoki, L.M.; et al. Morphometry and average temperature affect lake stratification responses to climate change. Geophy. Res. Lett. 2015, 42, 4981–4988. [Google Scholar] [CrossRef] [Green Version]
- Yvon-Durocher, G.; Caffrey, J.M.; Cescatti, A.; Dossena, M.; Del Giorgio, P.; Gasol, J.M.; Montoya, J.M.; Pumpanen, J.; Staehr, P.A.; Trimmer, M. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 2012, 487, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Garzke, J.; Ismar, S.M.; Sommer, U. Climate change affects low trophic level marine consumers: Warming decreases copepod size and abundance. Oecologia 2015, 177, 849–860. [Google Scholar] [CrossRef]
- Richardson, A.J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 2008, 65, 279–295. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, B.M.; Mehner, T.; Adrian, R. Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- De Senerpont Domis, L.N.; Elser, J.J.; Gsell, A.S.; Huszar, V.L.; Ibelings, B.W.; Jeppesen, E.; Kosten, S.; Mooij, W.M.; Roland, F.; Sommer, U. Plankton dynamics under different climatic conditions in space and time. Freshw. Biol. 2013, 58, 463–482. [Google Scholar] [CrossRef]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef]
- Kosten, S.; Huszar, V.L.; Bécares, E.; Costa, L.S.; van Donk, E.; Hansson, L.A.; Jeppesen, E.; Kruk, C.; Lacerot, G.; Mazzeo, N. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Chang. Biol. 2012, 18, 118–126. [Google Scholar] [CrossRef]
- Delpla, I.; Jung, A.V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Hipsey, M.R.; Gal, G.; Arhonditsis, G.B.; Carey, C.C.; Elliott, J.A.; Frassl, M.A.; Janse, J.H.; de Mora, L.; Robson, B.J. A system of metrics for the assessment and improvement of aquatic ecosystem models. Environ. Model. Soft 2020, 128, 104697. [Google Scholar] [CrossRef]
- Laval, B.; Imberger, J.; Hodges, B.R.; Stocker, R. Modeling circulation in lakes: Spatial and temporal variations. Limnol. Oceanogr. 2003, 48, 983–994. [Google Scholar] [CrossRef] [Green Version]
- Founda, D.; Varotsos, K.; Pierros, F.; Giannakopoulos, C. Observed and projected shifts in hot extremes’ season in the Eastern Mediterranean. Glob. Planet. Chang. 2019, 175, 190–200. [Google Scholar] [CrossRef]
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim. Chang. 2016, 137, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Tal, A. The implications of climate change driven depletion of Lake Kinneret water levels: The compelling case for climate change-triggered precipitation impact on Lake Kinneret’s low water levels. Sci. Total Environ. 2019, 664, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Givati, A.; Thirel, G.; Rosenfeld, D.; Paz, D. Climate change impacts on streamflow at the upper Jordan River based on an ensemble of regional climate models. J. Hydrol. Reg. Stud. 2019, 21, 92–109. [Google Scholar] [CrossRef]
- Rimmer, A.; Givati, A.; Samuels, R.; Alpert, P. Using ensemble of climate models to evaluate future water and solutes budgets in Lake Kinneret, Israel. J. Hydrol. 2011, 410, 248–259. [Google Scholar] [CrossRef]
- Ozturk, T.; Turp, M.T.; Türkeş, M.; Kurnaz, M.L. Future projections of temperature and precipitation climatology for CORDEX-MENA domain using RegCM4.4. Atmos. Res. 2018, 206, 87–107. [Google Scholar] [CrossRef]
- Bucak, T.; Trolle, D.; Tavşanoğlu, Ü.N.; Çakıroğlu, A.İ.; Özen, A.; Jeppesen, E.; Beklioğlu, M. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir. Sci. Total Environ. 2018, 621, 802–816. [Google Scholar] [CrossRef]
Parameter | Units | Description | Default Value | Permissible Range | Calibrated Value |
---|---|---|---|---|---|
min_layer_thick | m | Minimum layer thickness | 0.2–0.3 | 0.21 | |
max_layer_thick | M | Maximum layer thickness | 1.2–1.8 | 1.78 | |
coef_inf_entrain | - | 0 | 0–0.200 | 0.14 | |
coef_mix_conv | - | Mixing Efficiency, convective Overturn | 0.20 | 0.14–0.24 | 0.16 |
coef_wind_stir | - | Mixing Efficiency, Wind stirring | 0.23 | 0.184–0.276 | 0.25 |
coef_mix_shear | - | Mixing Efficiency, Shear production | 0.30 | - | 0.30 |
coef_mix_turb | - | Mixing Efficiency, Unsteady turbulence (acceleration) | 0.51 | 0.408–0.612 | 0.42 |
coef_mix_KH | - | Mixing Efficiency, Kelvin- Helmholtz turbulent billows | 0.30 | 0.18–0.36 | 0.33 |
coef_mix_hyp | - | Mixing efficiency of hypolimnetic turbulence | 0.50 | 0.40–0.60 | 0.55 |
wind factor | - | Wind multiplier | 0.75 | 0.8–1.2 | 0.99 |
ce | - | Bulk aerodynamic coefficient for latent heat transfer | 1.30 × 10−3 | 1.04 × 10−3–2.50 × 10−3 | 1.30 × 10−3 |
ch | - | Bulk aerodynamic coefficient for sensible heat transfer | 1.30 × 10−3 | 1.04 × 10−3–1.80 × 10−3 | 1.60 × 10−3 |
coef_wind_drag | - | Bulk aerodynamic Coefficient for Transfer of momentum | 1.30 × 10−3 | 1.04 × 10−3–1.56 × 10−3 | 1.30 × 10−3 |
Parameter | Role | Calibration Range | Calibrated Value |
---|---|---|---|
shf_factor | Scale factor on surface heat fluxes. | 0.5– 2 | 0.997 |
swr_factor | Scale factor for short wave solar radiation. | 0.5–2 | 0.870 |
wind_factor | Scale factor for wind. | 0.5–2 | 1.359 |
k_min | Minimum TKE | 1 × 10−7–1 × 10−5 | 8.36 × 10−7 |
A | Extinction parameters | 0.1–0.99 | 0.349 |
g1 | 0.1–0.99 | 0.673 | |
g2 | 1–30 | 5.073 |
Threshold °C | KLL | Masada | Unchanged | HW | LI | HW-LI |
---|---|---|---|---|---|---|
33 | 84.5 | 145.1 | 90.7 | 100.7 | 106.7 | 113.9 |
36 | 21.9 | 90.6 | 21.8 | 40.2 | 32.5 | 50.6 |
39 | 4.2 | 23.1 | 3.3 | 13.7 | 5.1 | 17.7 |
42 | 0.6 | 2.6 | 0.5 | 3.4 | 0.7 | 4.8 |
GLM | GOTM | |||||
---|---|---|---|---|---|---|
Metrics | R2 | RMSE (°C) | NSE | R2 | RMSE (°C) | NSE |
Surface (0–10 m) | 0.98 | 0.75 | 0.98 | 0.98 | 0.82 | 0.98 |
Bottom (30–40 m) | 0.53 | 1.45 | −3.30 | 0.65 | 0.63 | 0.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gal, G.; Yael, G.; Noam, S.; Moshe, E.; Schlabing, D. Ensemble Modeling of the Impact of Climate Warming and Increased Frequency of Extreme Climatic Events on the Thermal Characteristics of a Sub-Tropical Lake. Water 2020, 12, 1982. https://doi.org/10.3390/w12071982
Gal G, Yael G, Noam S, Moshe E, Schlabing D. Ensemble Modeling of the Impact of Climate Warming and Increased Frequency of Extreme Climatic Events on the Thermal Characteristics of a Sub-Tropical Lake. Water. 2020; 12(7):1982. https://doi.org/10.3390/w12071982
Chicago/Turabian StyleGal, Gideon, Gilboa Yael, Schachar Noam, Estroti Moshe, and Dirk Schlabing. 2020. "Ensemble Modeling of the Impact of Climate Warming and Increased Frequency of Extreme Climatic Events on the Thermal Characteristics of a Sub-Tropical Lake" Water 12, no. 7: 1982. https://doi.org/10.3390/w12071982
APA StyleGal, G., Yael, G., Noam, S., Moshe, E., & Schlabing, D. (2020). Ensemble Modeling of the Impact of Climate Warming and Increased Frequency of Extreme Climatic Events on the Thermal Characteristics of a Sub-Tropical Lake. Water, 12(7), 1982. https://doi.org/10.3390/w12071982