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Abstract: Climate extremes, which are steadily increasing in frequency, can have detrimental
consequences for lake ecosystems. We used a state-of-the-art, one-dimensional, hydrodynamic-
ecosystem model [General Ocean Turbulence Model (GOTM)-framework for aquatic biogeochemical
models (FABM)-PCLake] to determine the influence of extreme climate events on a temperate and
temporarily summer stratified lake (Lake Bryrup, Denmark). The model was calibrated (eight years
data) and validated (two years data), and the modeled variables generally showed good agreement
with observations. Then, a span of extreme warming scenarios was designed based on weather data
from the heatwave seen over northern Europe in May–July 2018, mimicking situations of extreme
warming returning every year, every three years, and every five years in summer and all year
round, respectively. We found only modest impacts of the extreme climate events on nutrient levels,
which in some scenarios decreased slightly when looking at the annual mean. The most significant
impacts were found for phytoplankton, where summer average chlorophyll a concentrations and
cyanobacteria biomass peaks were up to 39% and 58% higher than during baseline, respectively. As a
result, the phytoplankton to nutrient ratios increased during the heat wave experiments, reflecting
an increased productivity and an increased cycling of nutrients in the pelagic. The phytoplankton
blooms occurred up to 15 days earlier and lasted for up to half a month longer during heat wave
years relative to the baseline. Our extreme scenarios illustrated and quantified the large impacts of a
past heat wave (observed 2018) and may be indicative of the future for many temperate lakes.

Keywords: extreme climate; GOTM-FABM-PCLake; temporary stratified lake; lake ecosystem;
heatwave 2018

1. Introduction

The global average surface temperature has increased by approximately 0.6 ◦C in the past
century [1], and the Intergovernmental Panel on Climate Change (IPCC) predicts increases in global
surface temperature of 1.4–5.8 ◦C for the year 2100 [1]. Especially in 2018, the extreme summer
temperature occurred in Europe, parts of North America, and East Asia. Denmark had an extremely
warm, long lasting summer compared with those in the past few decades [2]. In 2018, Danish summer
season showed record warmth with a record-breaking number of summer days and the highest low
temperatures since 1874. Such changes are expected to affect lake ecosystem dynamics by altering the
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trophic structure and interacting with nutrients, potentially intensifying eutrophication and human
health problems, the latter due to enhanced growth of potentially toxin producing cyanobacteria [3,4].

Global warming is also expected to result in a higher frequency and magnitude of climate extremes,
such as severe droughts, heavy rainfall, and heat waves (IPCC 2014) [5]. It was recently shown that the
European summer might experience a marked increase in year-to-year temperature variations and
incidences of heat waves [6,7], which may pose a serious threat to lake ecosystems. Shallow lakes,
having a strong interaction between sediment and the overlying water, are highly sensitive to climate
change [8]. With inclining temperatures, the current pattern of temporary lake stratification may
change and occur more frequently with longer duration in shallow lakes, creating a more complex
nutrient and ecological dynamic. Temporary stratification may accelerate release of nutrients from
the sediment due to oxygen depletion near the bottom, and these nutrients may support the growth
of phytoplankton when water mixes again. Climate change is also projected to result in increases in
precipitation, which may change the hydrology of lake catchments [9] and lead to higher export of
nutrients from watersheds to north European lakes, further enhancing eutrophication [10]. Extreme
and uncommon events such as this pose abrupt and significant risks to the environment and society,
which draws attention to the need to further understand its impact on lakes.

Several methods can be used to estimate the response of lake ecosystems to climate change [11,12].
These include analysis of long-term data series from monitoring, space-for-time analysis of data collected
across latitudes, paleolimnology, experimentation (e.g., mesocosms), and modeling. Process-based
ecological models can dynamically simulate the complex responses to changes in climate as they
attempt to account for temperature effects on a wide range of processes. However, the value of such
models depends on their accuracy in simulating the ecosystem and their ability to adapt to the observed
change at a scale of interest to scientists or managers.

In this study, we aimed to determine the ecosystem response to extreme climate events for a
temporarily stratified, eutrophic lake (Lake Bryrup, Silkeborg, Denmark) using a state-of-the-art and
comprehensive ecosystem model [General Ocean Turbulence Model (GOTM)-framework for aquatic
biogeochemical models (FABM)-PCLake] and air temperature data from the unusually warm summer
of 2018 as a basis for the extreme scenario analysis. We hypothesized that summer stratification
would be stronger and of longer duration during a heat wave year, leading to increases in the internal
loading of nutrients. This would stimulate phytoplankton growth, which together with the elevated
temperatures would lead to higher dominance of cyanobacteria.

2. Methods

2.1. Study Site

Lake Bryrup is shallow lake located in the Central Region of Denmark, southeast of the town
of Silkeborg (56.02◦ N, 9.53◦ E). The lake has a mean depth of 4.6 m and a maximum depth of 9 m.
Its surface area is 0.37 km2, the lake volume is 1.72 million m3, and the hydraulic retention time
varies between 2–3 months. The average inflow discharge is about 0.25 m3

·s−1, and the outflow
discharge almost equals the inflow discharge. The lake temporarily stratifies during summers. During
1996–2005, the average chlorophyll a (Chl a) concentration in the lake was 26.3 µg·L−1, which is
eutrophic, and average total nitrogen (TN) and total phosphorus (TP) concentrations were 3.37 mg·L−1

and 0.094 mg·L−1, respectively. Most of the water comes from the stream Nimdrup Bæk in the south,
and the water flows from the lakes Kvindsø and Kulsø to the stream Salten Å and the River Gudenå
(Figure 1). The watershed is 49.9 km2, of which 60% is used for agriculture, 12% is used for forest, and
about 10% is used for urban area. Lake Bryrup receives a large amount of nutrients via inlets that drain
agricultural areas and small towns in the countryside, which has resulted in an increased algae growth
and cyanobacteria blooms during summer months. Measures (notably improved sewage treatment
and diversion of part of the sewage, reduction of diffuse sources) have been taken to reduce the external
nutrient loading and, as a consequence, TN loading has decreased from 8.1 to 5.7 g·m−2 lake area·year-1
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and TP loading from 0.15 to 0.08 g·m−2
·year−1 during 1990–2014. The effect of the measures has been

positive, especially for lake TP, which has declined by almost 50% from approximately 0.15 mg·L−1 to
0.10 mg·L−1.

Figure 1. Map of the study lake, Lake Bryrup, and its watershed.

2.2. Model Description

For simulating the lake ecosystem, we used the complex GOTM-FABM-PCLake model (https:
//projects.au.dk/wet/), a process-based, two-way coupled hydrodynamic-ecosystem model. It consists
of a one-dimensional hydrodynamic model (GOTM) coupled with a lake ecosystem model (PCLake)
via the framework for aquatic biogeochemical models (FABM). The model complex describes the most
significant hydrodynamic, biotic, and abiotic components of an aquatic ecosystem. The GOTM-lake is
a water column model of the principal hydrodynamic and thermodynamic processes related to vertical
mixing in natural waters [13,14]. The chemical and the biological dynamics in the water column and
the sediment are based on a further development of the PCLake model (for more details, see Janse
2005 [15,16]), namely FABM-PCLake by Hu et al. 2016 [17]. The state variables of stratified lakes are
different at different layers due to the influence of momentum and heat. The variables simulated by
the biochemical model are transported to the hydrodynamic model GOTM through FABM, then the
hydrodynamic model integrates ecological and mixing processes and sends updated states back to the
biochemical model [17]. The GOTM-FABM-PCLake ecosystem model complex differs from PCLake by
taking into account: (i) the stratification over the water column for several state variables (temperature,
nutrients, phytoplankton, etc.); (ii) more complex description of sediment nutrient dynamics, e.g., with
regards to release of nutrients by including a physically based sediment resuspension routine.

2.3. Model Input Data

Model input files include data on the physical domain of the lake (hypsography), flow discharge,
inflow nutrient concentration, and meteorological forcing (Table 1). Since GOTM is a vertical
hydrodynamic model, the physical domain is specified as a hypsography, which represents the
relationship between depth (m) and the corresponding horizontal area (m2) for a given water layer,
which is easily obtained from bathymetric maps. Inflow discharge (m3

·s−1) and inflow nutrient
concentrations, including nitrate (NO3) (mg N·L−1), ammonia (NH4) (mg N·L−1), dissolved organic

https://projects.au.dk/wet/
https://projects.au.dk/wet/
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nitrogen (mg N·L−1), particulate organic nitrogen (mg N·L−1), phosphate (PO4) (mg P·L−1), dissolved
organic phosphorus (mg P·L−1), and particulate organic phosphorus (mg P·L−1), are also required as
boundary conditions. Discharge and concentrations of nitrogen (N) and phosphorus (P) were obtained
from the National Monitoring Program (NOVANA) [18]. Daily meteorological data input to the model
include wind speed in both N–S and E–W directions (m·s−1), air pressure (hPa), air temperature (2 m
height) (◦C), dew-point temperature (◦C), and cloud cover fraction (varying from 0–1). These data
were obtained from the ERA-Interim reanalysis dataset by the European Center for Medium-Range
Weather Forecasts (ECMWF) [19], which is a consistent and continuous 3-hour data series.

Table 1. The input and some selected output of the model.

Input Output

Physical domain
Longitude, latitude, depth (m), and the
corresponding horizontal area (m2) for a given
water layer (hypsography)

Temperature, DO, NO3, NH4,
TN, PO4, TP, Chl a

Flow discharge Inflow discharge (m3
·s−1), outflow discharge

(m3
·s−1)

Inflow nutrient concentrations

NO3 (mg N·L−1), NH4 (mg N·L−1), dissolved
organic nitrogen (mg N·L−1), particulate
organic nitrogen (mg N·L−1), PO4 (mg P·L−1),
dissolved organic phosphorus (mg P·L−1),
particulate organic phosphorus (mg P·L−1)

Meteorological forcing

Wind speed in both N–S and E–W directions
(m·s−1), air pressure (hPa), air temperature (2 m
height) (◦C), dew-point temperature (◦C), and
cloud cover fraction (varying from 0–1).

DO, dissolved oxygen. NO3, nitrate. NH4, ammonia. TN, total nitrogen. PO4, phosphate. TP, total phosphate.
Chl a, chlorophyll a.

2.4. Model Calibration and Validation

Currently, the most complete dataset available for Lake Bryrup covers the period 1990–2005. To
reduce the uncertainty associated with model initialization in relation to model calibration, the years
1990–1995 were used as a model warm-up period. The model was then calibrated against observed
data covering the following eight-year period (1996–2003) for variables of temperature, dissolved
oxygen (DO), NO3, NH4, TN, PO4, TP, and phytoplankton concentrations (represented by Chl a).
The model’s initial calibrated parameters and boundary conditions were based on predefined values
in the GOTM-FABM-PCLake model and site-specific measurements for Lake Bryrup. On the basis
of a sensitivity analysis previously performed by Janse et al. [20] as well as model experience, 117
parameters were subject to adjustment to achieve feasible model performance of the water quality
variables (see Appendix A). The model was calibrated using ACPy, a Python based auto-calibration
tool developed for GOTM-FABM-PCLake. ACPy uses a differential evolution algorithm to calibrate
model parameters by optimizing against a maximum likelihood function. Calibration was performed
through a series of steps, analogue to the methodology by Trolle et al., where each step targets a
selection of parameters identified to have strong influence on temporal and vertical dynamics of
specific state variables of which observations exist for the lake. In each step, several calibration
iterations were conducted, switching between adjustments of the parameter ranges and evaluation of
model performance through root-mean-square-error (RMSE) and the coefficients of determination (R2)
between model output variables and observed water quality data [21]. The model calibration in each
step continued until there was little advancement in RMSE and R2 values. Then, model validation
was estimated for a two-year period (2004–2005) for all variables with corresponding RMSE and R2

values calculated.
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2.5. Base Scenario and Extreme Climate Scenarios

From our calibrated base model simulation, we designed one baseline and a total of five
scenarios—three scenarios with real world extreme weather events (summer 2018) and two with
generated extreme weather events, all running for 50 years to project the climate effects on lake
ecosystem. The baseline represented loading and meteorology data from 2001 to 2005 looped forward
(as five-year periods) until 2050. The extreme weather event in year 2018 was then applied to the
baseline to quantify the impacts of extreme weather on the lake ecosystem. In the first three scenarios,
we swapped (with varying frequency) each 3-hour air temperature record from May to end of July with
the equivalent record (match on day and time) of air temperature from the 2018 summer data—every
five years (SC1), every three years (SC2), and every year (SC3). For the last two scenarios, a long-term
delta change was created based on a temperature difference analysis. Here, we calculated the mean air
temperature difference for each day and year (2001–2005) in a particular year compared to temperatures
in the summer 2018. Subsequently, the means of quantile 50 (2.9 ◦C) (SC4) and 75 (5.0 ◦C) (SC5) were
applied to all 3-hour records separately after 2005. We extracted and analyzed the predicted variables
of the last five years (2046–2050) of the 50-year scenario period.

3. Results

3.1. Model Calibration and Validation

The modeled temperature corresponded well with observed values (Figure 2). For oxygen, the
model succeeded in capturing the seasonal trends in concentrations; however, some steep short-term
decreases during winter were not captured well during calibration or for the validation period.

As NO3 constitutes the main part of TN, TN concentrations showed the same trend as NO3

concentrations. The modeled TN and NO3 generally tracked annual and seasonal dynamics of
the monitoring data. However, modeled NO3 occasionally missed maxima and minima (e.g., 1998;
Figure 2), and so did TN. While the modeled NH4 successfully captured trends in concentrations during
the entire period 1996–2005, the monitoring data in the summer were underestimated, particularly
at some high peaks. NH4 concentrations in the epilimnion showed a bit of a poor fit, and the model
lacked the capability to simulate seasonal peak dynamics in both the epilimnion and the hypolimnion.
NO3 and NH4 had only one peak per year, in spring and in autumn, respectively (Figure 2). Then,
NH4 concentrations started to increase in summer, mainly at the bottom of the water column.

There was good agreement between the model output and the monitoring data for TP. However,
the model at times tended to underestimate the observed TP, especially for the hypolimnion, and
it did not capture the full extent of the high summer peaks. The PO4 concentrations were rather
poorly reproduced for the summer period, especially in the hypolimnion, the monitored high peaks in
summer being overestimated (Figure 2). Moreover, the predicted winter peaks of PO4 were slightly
higher than those recorded.

The dynamics of total Chl a were reproduced reasonably well, capturing seasonal and inter-annual
variability of the monitoring data. However, the simulated autumn blooms were occasionally
underestimated (e.g., 1998), while the spring bloom peaks were overestimated for some years,
especially during the calibration period.
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Figure 2. Comparison of model simulation results (line) against observations (dots) during the
calibration (blue circles) and the validation periods (green squares) in the epilimnion (0.0–−3.0 m) and
the hypolimnion (−6.0–−10.0 m), respectively. A, temperature. B, DO. C, nitrate. D, ammonium. E,
total nitrogen. F, phosphate. G, total phosphorus. H, Chl a.

3.2. Extreme Climate Scenarios

Relative to baseline, the model predicted, as expected from the changes in air temperature, a
gradual increase in water temperature from SC1 to SC5 (Figure 3). Temperatures in scenarios SC3–SC5
increased by 6% to 17% relative to the baseline. For the simulated TN concentrations, which gradually
declined with increased air temperature, the effects of extreme warming in SC1 and SC2 were similar
in the surface water, and there was an evident decrease in TN concentrations from SC3 to SC5, from 5%
to 13%. TP concentrations in the extreme climate effects scenario were somewhat lower than those in
baseline, and the most marked changes in simulated TP occurred in SC3 and SC5 with a decrease of 3%
and 3.5%, respectively. The impacts of extreme warming in scenarios SC1–SC5 were most pronounced
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for Chl a concentrations and cyanobacteria biomass, with a considerable increase during summer.
Otherwise, the increases in the dynamics of Chl a and cyanobacteria were similar, starting with a
slow increase in SC1 and SC2 followed by a sharp increase in SC3–SC5 (Figure 3). As in Lake Bryrup,
the phytoplankton composition during summer was dominated by cyanobacteria, and the projected
phytoplankton biomass approximately resembled the pattern of cyanobacteria biomass (Figure 4). In
the last year of scenarios (2050), the bloom timing of cyanobacteria in SC5 was 15 days earlier compared
to baseline.

Figure 3. Simulated effects of extreme summer weather on water temperature, TN, TP, Chl a
concentration, cyanobacteria biomass, NO3, Chl a:TP ratio, and PO4 in the surface of Lake Bryrup
based on summer averages from daily values during the last five years.
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In baseline, the period where the lake is subject to temporary stratification events lasted about
four months, from May to August, and often there was full mixing of the water column from bottom to
surface in June every year (Figure 5). The summer stratification of the lake was strengthened in the
extreme climate scenarios. For nitrogen concentrations, the scenario results (Figure 3) demonstrated
minor impacts of extreme warming on TN and major impacts on inorganic nutrients. The most notable
changes in NO3 and TN in the future scenarios were a 77% and a 13% decrease, respectively, both in
SC5. The longer duration of cyanobacteria blooms (Figure 4) in the extreme warming scenarios implied
higher PO4 consumption and lower TP than in baseline. The most pronounced impact of warming
occurred in SC5, with TP and PO4 concentrations decreased by 3.5% and 13%, respectively, compared
with baseline. With increasing temperature, the model predicted progressively more severe summer
blooms and increasing Chl a:TP, as also seen in empirical studies [22,23]. Due to the impact of extreme
warming, the duration of summer blooms was longer due to an earlier (around two weeks) onset of
the blooms (Figure 4). Moreover, the intensity of both the spring and the summer blooms was greater,
and in SC5, the peak concentration of Chl a was 46% higher than in baseline (Figure 4).

Figure 4. Simulated phytoplankton, cyanobacteria, diatom, and other algae biomass of baseline, SC3,
SC4, and SC5 during the last simulation year (2050).
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Figure 5. Simulation for the whole water column in 2050 in base scenario. (a) Temperature; (b) DO.

4. Discussion

4.1. Model Performance

The GOTM-FABM-PCLake model reproduced satisfactorily the seasonal dynamics for most state
variables of Lake Bryrup although some discrepancies between model and observations occurred
(Table 2). Conceptually, the model accounts for key ecological processes and predicted the impact of
extreme warming on lake trophic components, including Chl a, DO, NO3, NH4, TN, PO4, TP, and
water temperature. However, due to the large variability of observations, the projections should still
be interpreted with some caution.
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Table 2. Root-mean-square-error (RMSE) values and coefficients of determination (R2) between
simulated model output and observations separated in calibration and validation.

R2 RMSE

Calib. Valid. Calib. Valid.

Temperature 0.98 0.98 1.37 1.41
DO 0.45 0.38 3.09 3.15

NO3 0.85 0.85 0.69 0.71
NH4 0.45 0.51 0.32 0.15
TN 0.79 0.81 0.71 0.78
PO4 0.30 0.19 0.03 0.04
TP 0.31 0.15 0.08 0.08

Chl a 0.29 0.28 23.65 35.91

Note: Calib. = calibration value; Valid. = validation value.

In general, the coefficients of determination (R2) between the modeled and the observed data
demonstrated a good fit for temperature (Table 2); however, the observed temperature in winter was
underestimated by the model. This may reflect that ice cover is not yet explicitly included in the
GOTM-FABM-PCLake model and, furthermore, we did not account for the impact of streams, resulting
in a lower modeled winter lake temperature.

The modeled oxygen concentrations overall exhibited the same variations as the measured data
during calibration and validation periods, except periodically in winter. The model generally showed
a lack in accuracy when the temperature was low.

The model performance for nitrogen was generally better than in most other lake model
studies [24–26]. However, the R2-values of inorganic nutrients showed a slightly poorer fit, such as
NH4. NH4 is labile and affected by phytoplankton uptake (included in the model) and nitrification. In
the epilimnion, the consumption of NH4 as the main nutrient for cyanobacteria is large in summer.
The denitrification and the nitrification, which are important for NH4 variation, are affected by oxygen
concentration. In this study, the oxygen changed fast when the lake became fully mixing (Figure 4),
therefore NH4 dynamics showed quick changes in the surface, which may explain the poor fit. Periodic
resuspension events caused by wind-induced shear stress and bioturbation may significantly affect the
exchange of sediment nutrient, including nitrogen, and enhance denitrification [27,28]. Therefore, the
relatively simplified and empirical-based conceptualization of resuspension of this model might have
influenced the denitrification levels and thus inorganic N.

The modeled phosphorus concentrations generally exhibited the same seasonal dynamics and
inter-annual variations as the measured data during the calibration and the validation periods. The
summer PO4 peak reflects internal factors (decomposition and nutrient release from the sediment), while
variations and peaking in winter indicate that PO4 was mainly due to external nutrient inputs combined
with slow in-lake uptake due to low temperatures. The simulated too low nitrate concentrations in the
bottom water layer before the full mixing of the water column (around July) may have resulted in a
reduced release of PO4 compared with the observations. Nitrate is part of the diagenetic sequence in lake
sediments and affects the redox potential, as has been seen in field studies in several lakes [25,29]. Then,
because of the high nutrient consumption during severe summer blooms followed by sedimentation,
the available amount of PO4 did not suffice for diatom development in spring, showing a bloom delay
in the last two high temperature scenarios. In addition, the simplified process of sediment diagenesis
might have contributed as well. For example, decomposition of sediment layers and phosphorus
release induced by high pH are not included in the model [14]. These factors have previously been
shown to affect phosphorus release, especially in eutrophic lakes in the summer [30].

For Chl a, the model generally showed good agreement with the field records mimicking the
two peaks per year. Our model included three algae forms: cyanobacteria, diatoms, and “other
algae”. Diatoms were the dominant algae in the spring, while cyanobacteria dominated in the summer,
reflecting that the optimal growth temperature of the algae are different. According to the calibration,
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the optimum temperature for diatom growth (20.3 ◦C) was lower than that for cyanobacteria (28.1 ◦C);
thus, the conditions for diatom growth were most favorable in spring and for cyanobacteria in
late summer.

4.2. Effects of Extreme Temperatures

In the five extreme temperature scenarios, summer Chl a concentrations increased gradually,
and cyanobacteria contributed progressively more to the overall phytoplankton biomass, as seen in
other model studies of climate warming effects [11,31]. Because the last two scenarios were applied
for the whole year instead of only summer, the intensity of the diatom bloom was greater compared
with baseline and the first three scenarios. Therefore, with the warmer climate, extensive surface
NO3 and PO4 consumption occurred in summer, reflected in increasing phytoplankton biomass,
especially cyanobacteria. Since NO3 and PO4 are the main components of TN and TP, respectively, the
dynamics trend of TN and TP changed with the variations of NO3 and PO4. The first three scenarios
(SC1–SC3) were applied only in the summer, and for the last two scenarios (SC4 and SC5), warming
was applied year-round. Sediment nutrient release mechanisms and remineralization are related to the
temperature [32]. Thus, compared with the SC1–SC3, more phosphorous under SC4 and SC5 could
potentially be released from the sediment [33] not only in summer but also in spring and in autumn.
Thus, phosphorus concentrations in SC4 were also overall slightly higher than those in SC3.

In general, we did not anticipate that nutrient levels would remain somewhat similar or even
decrease in our heat wave experiments, as other studies found the opposite [12]. Previous studies
applied somewhat simpler models; however, in those studies, for example, sediment nutrient pools
were not dynamically accounted for. Model simulations in our study indicate that, although the
periods where Lake Bryrup undergoes temporary stratification may be stronger and last a bit longer
during a heat wave, the regeneration of sediment-bound phosphorus in-between stratification events
is not sufficient to result in a marked increase in overall annual TP levels. Hence, we found that the
initial sediment release of PO4 during the first stratification event of a heat wave year would cause
higher peaks of bottom water PO4 and TP levels relative to baseline, but that the peaks of the following
stratification events were somewhat lower compared to baseline.

4.3. Study Constraints

In this study, most of the selected model parameters and ranges used for calibration were derived
from previous research using the PCLake model [11,34], while the rest were chosen on the basis of
experience. Therefore, the final model parameter selection, among more than 300 parameters, may not
be entirely accurate for the calibration of the model specifically for Lake Bryrup. In addition, a highly
parameterized model such as GOTM-FABM-PCLake is also subject to some degree of equifinality,
meaning that more than one set of parameter combinations could result in an overall similar and
acceptable model performance during calibration. While we ignored this aspect in our study, it perhaps
could potentially be accounted for by utilizing more than one (plausible) model parameterization
during the scenario simulations, which then might also give insight into the potential uncertainty
of the scenarios by providing an envelope of simulated outcomes rather than a single outcome of
each scenario.

Although the GOTM-FABM-PCLake model is a state-of-the-art, one-dimensional lake ecosystem
model, it still simplifies some aspects of a real lake ecosystem. The application of this model to Lake
Bryrup was effective, but some model compartments can still be further developed to improve the
performance, such as an explicit ice-cover module that caused the discrepancies seen for temperature
and DO during some winters.

GOTM-FABM-PCLake is a one-dimensional model with focus on vertical ecological dynamics.
The model suffices for most small lakes, but for lakes with large horizontal heterogeneity, a
multi-dimensional model would be necessary. For example, the horizontal impact of wind is ignored
in GOTM-FABM-PCLake, as the model assumes that there are no biogeochemical gradients in the
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horizontal direction—although this can have important influence on the distribution of surface algal
blooms. Most ecological systems reveal heterogeneity and patchiness on a broad range of scales [35,36],
and this patchiness can be fundamental to population dynamics, community organization, and stability.

The focal point of our study was the direct consequences of heatwaves and their frequency on lake
ecosystems. However, heatwaves may also affect processes within the watershed and consequently alter
loads of water and nutrients into the lake. The heatwave of summer 2018 not only elevated temperature
but also diminished rain (the driest year since 1996 [2]), leading to drought and consequently drops
in productivity in the arable land. Such altered conditions within the watershed may carry memory
between growing seasons potentially beyond what was found through our study design. Employing
both watershed modeling and lake modeling could provide additional insight into the consequences
of heatwaves on lake ecosystems.

4.4. Implications for Lake Management

Previous model studies on the impact of extreme climate events on aquatic ecosystems are sparse.
Some of the studies that have been conducted to predict the effects on lake ecosystems [36,37] showed
that an extreme climate leads to lake water quality deterioration. The methods applied in these
former model studies have largely been simple or based on uncalibrated models, which only provide
a potential qualitative tendency of the development of water quality in extreme climate scenarios
rather than quantitative estimates. Here, we used a calibrated complex ecological model to predict
the impacts of extreme climate events on a lake ecosystem. The model results indicate that the future
extreme climate will lead to enhanced summer average Chl a concentrations and cyanobacteria biomass
with a concurrent increase in summer algal blooms and their duration. The peak Chl a concentrations
increased up to 46% compared with the baseline, and the timing of the bloom period occurred up to
half a month earlier than normal and lasted longer. In addition, we found that the effects of extreme
warming generally diminished within one or two months following the event, which was similar
to the time of hydraulic retention. The variations of summer average TN concentrations and TP
concentrations under the impacts of extreme climate were not pronounced, and the largest changes of
TN concentrations and TP concentrations were 13% and 3.5%, respectively. Thus, lake managers will
be challenged with additional problems in order to obtain good ecological status and water quality in
a future with expectations of more frequent heat waves. On the positive side, our results indicate that
the capacity of the lakes to remove nitrogen might increase, whereby the lakes become a better filter
for nitrogen in transport from land to the sea.
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Appendix A

Parameter Description Unit
Parameter Value

Default Adjusted

Abiotic_Water Module

cThetaAer temperature coefficient for reaeration [−] 1.024 1.005
cThetaNitr temperature coefficient for nitrification [−] 1.08 1.003
cVSetPOM maximum settling rate of POM m·day−1

−0.25 −0.35
cVSetIM maximum settling rate of inorganic matter m·day−1

−1.0 −0.95
hNO3Denit quadratic half saturation NO3 conc. for denitrification mgN·L−1 2.0 0.3

hO2BOD half saturation oxygen conc. for BOD mgO2·L−1 1.0 4.79
hO2Nitr half saturation oxygen conc. for nitrification mgO2·L−1 2.0 3.57
kNitrW nitrification rate constant in water day−1 0.1 0.39

NO3PerC denitrified NO3 per mol C mineralised mol NO3 0.8 1.47
O2PerNH4 used O2 per mol NH4+ nitrified mol O2 2.0 3.30

cThetaMinPOMW temperature coefficient for mineralization from POM to DOM [−] 1.07 1.01
kDMinPOMW decomposition constant for POM-DW to DOM-DW day−1 0.01 0.0001
kNMinPOMW decomposition constant for POM-N to DOM-N day−1 0.01 0.014
kPMinPOMW decomposition constant for POM-P to DOM-P day−1 0.01 0.0003
kSiMinPOMW decomposition constant for POM-Si to DOM-Si day−1 0.01 0.0097

cThetaMinDOMW temperature coefficient for DOM mineralization [−] 1.07 1.05
kDMinDOMW mineralization constant of dissolved organic DW day−1 0.01 0.035
kNMinDOMW mineralization constant of dissolved organic N day−1 0.01 0.016
kPMinDOMW mineralization constant of dissolved organic P day−1 0.01 0.014
kSiMinDOMW mineralization constant of dissolved organic Si day−1 0.01 0.0083

Abiotic_Sediment Module

fRefrPOMS refractory fraction of sediment POM [−] 0.15 0.08
O2PerNH4 O2 used per mol NH4+ nitrified mol 2.0 1.71

kNitrS nitrification rate constant day−1 1.0 0.34
cThetaNitr temperature coefficient for nitrification [−] 1.08 1.01
NO3PerC NO3 denitrified per mol C mineralised [−] 0.8 0.91

hNO3Denit quadratic half-sat. NO3 conc. for denitrification mgN·L−1 2.0 0.25
kPSorp P sorption rate constant not too high -> model speed day−1 0.05 0.089

cRelPAdsD max. P adsorption per g DW gP·gD−1 3 × 10−5 4.76 × 10−5

cRelPAdsFe max. P adsorption per g Fe gP·gFe−1 0.065 0.055
fFeDIM Fe content of inorganic. matter gFe·Gd−1 0.01 0.026

fRedMax max. reduction factor of P adsorption affinity [−] 0.9 0.86
cKPAdsOx P adsorption affinity at oxidized conditions m3

·gP−1 0.6 1.6
coPO4Max max. SRP conc. in pore water mgP·L−1 1.0 1.04
cThetaDif temperature coefficient for diffusion [−] 1.02 1.02

kNDifNH4 molecular NH4 diffusion constant m2
·day−1 0.000112 0.000112

cTurbDifNut bioturbation factor for diffusion [−] 5.0 14.76
kO2Dif molecular O2 diffusion constant m2

·day−1 2.6 × 10−5 0.00018
cTurbDifO2 bioturbation factor for diffusion [−] 5.0 1.93
kDMinHum maximum decomposition constant of humic material (1D−5) day−1 1 × 10−5 0.00021

cThetaMinPOMS temperature coeff. for sediment mineralization of POM to DOM [−] 1.07 1.05
kDMinPOMS mineralization constant in sediment from POM-DW to DOM-DW day−1 0.002 0.0027
kNMinPOMS mineralization constant in sediment from POM-N to DOM-N day−1 0.002 0.0002
kPMinPOMS mineralization constant in sediment from POM-P to DOM-P day−1 0.002 0.0001

cThetaMinDOMS exp. temperature constant of sediment mineralization [−] 1.07 1.02
kDMinDOMS mineralization constant for sediment dissolved organic matter day−1 0.002 0.0027
kNMinDOMS mineralization constant for sediment dissolved organic N day−1 0.002 0.0017
kPMinDOMS mineralization constant for sediment dissolved organic P day−1 0.002 0.0022
kSiMinDOMS mineralization constant for sediment dissolved organic Si day−1 0.002 0.0019
kDDifDOM molecular diffusion constant for dissolved organic matter m2

·day−1 0.000112 0.0029
kNDifDOM molecular diffusion constant for dissolved organic N m2

·day−1 0.000112 0.000118
kPDifDOM molecular diffusion constant for dissolved organic P m2

·day−1 0.000112 0.000118
sPAIMS sediment absorbed phosphate g·m−2 2.0 0.5

sDPOMS sediment particulate organic DW g·m−2 474 1104
sNPOMS sediment particulate organic N g·m−2 6.0 15.13
sPPOMS sediment particulate organic g·m−2 1.0 10
sDHumS sediment humus DW g·m−2 3719 4488
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Parameter Description Unit
Parameter Value

Default Adjusted

Phytoplankton_Water Module

cSigTmDiat temperature constant diatoms (sigma in Gaussian curve) ◦C 20.0 15.66
cTmOptDiat optimum temperature of diatoms ◦C 18.0 20.29
cSigTmBlue temperature constant blue-greens (sigma in Gaussian curve) ◦C 12.0 12.16
cTmOptBlue optimum temperature of blue-greens ◦C 25.0 28.11
cSigTmGren temperature constant greens (sigma in Gaussian curve) ◦C 15.0 12.12
cTmOptGren optimum temperature of greens ◦C 25.0 19.09
cPDDiatMin minimum P/DW ratio for diatoms mg P·mg DW−1 0.0005 0.0024
cNDDiatMin minimum N/DW ratio for diatoms mg N·mg DW−1 0.01 0.005
cPDGrenMin minimum P/DW ratio greens mg P·mg DW−1 0.0015 0.0018
cNDGrenMin minimum N/DW ratio greens mg N·mg DW−1 0.02 0.013
cPDBlueMin minimum P/DW ratio blue-greens mg P·mg DW−1 0.0025 0.0012
cNDBlueMin minimum N/DW ratio blue-greens mg N·mg DW−1 0.03 0.018
cLOptRefDiat optimum PAR for diatoms at 20 ◦C W·m−2 54.0 23.32
cLOptRefGren optimum PAR for greens at 20 ◦C W·m−2 30.0 35.82
cLOptRefBlue optimum PAR for blue-greens at 20 ◦C W·m−2 13.6 13
cMuMaxBlue maximum growth rate blue-greens day−1 0.6 1.38
cMuMaxGren maximum growth rate greens day−1 1.5 1.13
cMuMaxDiat maximum growth rate diatoms day−1 2.0 3
kMortBlueW mortality constant of blue-greens in water day−1 0.01 0.15

cVNUptMaxDiat maximum N uptake capacity of diatoms mg N·mg DW−1
·day−1 0.07 0.067

cVNUptMaxBlue maximum N uptake capacity of blue-greens mg N·mg DW−1
·day−1 0.07 0.079

cAffNUptDiat initial N uptake affinity diatoms mg DW−1
·day−1 0.2 0.19

cAffNUptBlue initial N uptake affinity bluegreens mg DW−1
·day−1 0.2 0.15

fDissMortPhyt soluble nutrient fraction of died algae [−] 0.2 0.41
cVSetDiat settling rate of diatoms m day−1

−0.5 −0.1
cVSetGren settling rate of greens m day−1

−0.2 −0.42
cVSetBlue settling rate of blue-greens m·day−1 0.06 0.03

cChDBlueMax maximum chlorophyll/C ratio for blue-greens mg Chl a·mg DW−1 0.015 0.0031
cChDBlueMin minimum chlorophyll/C ratio for blue-greens mg Chl a·mg DW−1 0.005 0.014
cChDDiatMax maximum chlorophyll/C ratio for diatoms mg Chl a·mg DW−1 0.012 0.021
cChDDiatMin minimum chlorophyll/C ratio for diatoms mg Chl a·mg DW−1 0.004 0.010
cChDGrenMax maximum chlorophyll/C ratio for greens mg Chl a·mg DW−1 0.02 0.020
cChDGrenMin minimum chlorophyll/C ratio for greens mg Chl a·mg DW−1 0.01 0.0075

fPrimDOMW
fraction of dissolved organic matter from water column
phytoplankton

[−] 0.5 0.02

kDRespBlue maintenance respiration constant blue-greens day−1 0.03 0.047

Phytoplankton_Sediment Module

fDissMortPhyt soluble nutrient fraction of died algae [−] 0.2 0.01

Macrophytes Module

cDVegIn external macrophytes density g D·m2 1.0 0.46
kMigrVeg macrophyte migration rate day−1 0.001 0.0016

cMuMaxVeg maximum growth rate of macrophytes at 20 degrees day−1 0.2 0.031
cDCarrVeg maximum macrophytes standing crop g DW·m−2 400.0 207.78

cDayWinVeg day of the year for the end of growing season day of the year 259.0 218.90
cTmInitVeg temperature for onset of initial growth ◦C 9.0 10.08
cCovSpVeg specific cover Gdw−1

·m−2 0.5 0.27
hLRefVeg half-saturation for influence of light on macrophytes W·m−2 PAR 17.0 18.05
fWinVeg fraction surviving in winter ([−]), default = 0.3 [−] 0.3 0.31

fSedUptVegMax maximum sediment fraction of nutrient uptake [−] 0.998 0.64
cHeightVeg macrophytes height m 1.0 0.95
cExtSpVeg specific extinction of macrophytes m2

·g DW 0.01 0.0043
cDVegMin minimum dry weight of macrophytes in system g DW·m−2 1 × 10−5 5.2 × 10−5

cQ10ProdVeg temperature quotient of production [−] 1.2 1.18
cQ10RespVeg temperature quotient of respiration [−] 2.0 1.98

Zooplankton Module

cTmOptZoo optimum temperature for zooplankton ◦C 25.0 17.91
kDRespZoo maintenance respiration constant for zooplankton day−1 0.15 0.02

cPrefDiat selection factor for diatoms [−] 0.75 0.90
cPrefBlue selection factor for blue-greens [−] 0.125 0.25
cPrefPOM selection factor for particulate organic matter [−] 0.25 0.16

hFilt half-saturation constant for food conc. on zooplankton g DW·m−3 1.0 1.19
fDAssZoo dry weight assimilation efficiency of zooplankton [−] 0.35 0.33
cFiltMax maximum filtering rate ltr·mg DW−1

·day−1 4.5 1.11
fZooDOMW dissolved organic fraction from zooplankton [−] 0.5 0.36
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Parameter Description Unit
Parameter Value

Default Adjusted

Fish Module

kDAssFiJv maximum assimilation rate of zooplanktivorous fish day−1 0.12 0.121
cDCarrPiscMax maximum carrying capacity of piscivorous fish g DW·m−2 1.2 2.74

cCovVegMin minimum submerged macrophytes coverage for piscivorous fish % 40.0 25.67
hDVegPisc half-saturation constant for macrophytes on piscivorous fish g·m−2 5.0 2.08

Zoobenthos Module

fBenDOMS dissolved organic fraction from zoobenthos [−] 0.5 0.52

Auxiliary Module

kVegResus relative resuspension reduction per gram macrophytes m2
·g DW−1 0.01 0.05

kTurbFish relative resuspension by adult fish browsing g·gfish−1
·day−1 1.0 2.15

cVSedPOM maximum sedimentation velocity of POM m·day−1 0.25 0.5
cVSedDiat sedimentation velocity of diatoms m·day−1 0.5 0.68
cVSedGren sedimentation velocity of greens m·day−1 0.2 0.54
cVSedBlue sedimentation velocity of blue-greens m·day−1 0.06 0.01
crt_shear critical shear stress N·m−2 0.005 0.014
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