Tree-Type Irrigation Pipe Network Planning and Design Method Using ICSO-ASV
Abstract
:1. Introduction
2. Improved Self-Pressure Tree-Type Pipe Network Planning Model
2.1. Traditional Pipe Network Planning Model
2.2. Improved Pipe Network Planning Model
3. The CSO and ICSO-ASV Algorithms
3.1. Traditional CSO Algorithm
3.2. ICSO-ASV Algorithm
3.2.1. Improved Control Coefficient Pair of the Hen Swarm
3.2.2. Adaptive Mutation Factors
- Step 1:
- Initialize the chicken swarm. Set the population size N, the number of roosters RN, the number of hens HN, the number of chicks CN, the number of chick mothers MN, the update period G, and the maximum number of iterations Tmax. Calculate the fitness values of all the individuals in the chicken swarm, initialize the individual optimal value and the global optimal value, and set the number of iterations to t = 1.
- Step 2:
- Update C1, C2, V1, and V2 according to Equations (14)–(16).
- Step 3:
- If t % G = 1, reorder all the individuals in the flock according to their fitness values, establish the corresponding hierarchical order, and divide the subgroups.
- Step 4:
- Update the rooster individual according to Equations (8) and (9). If β1 < V1 and fi > Pi are satisfied, then perform the adaptive mutation operation on the rooster individual according to Equation (17); update the hen individuals according to Equation (10); and update the chick individuals according to Equation (13). If β2 < V2 is satisfied, then randomly reset the chick individual.
- Step 5:
- Update and save the individual and global optimal values of the chicken swarm.
- Step 6:
- If the algorithm satisfies the iteration stop condition, then stop the iteration and output the optimal feasible solution; otherwise, go back to step 2.
3.3. ICSO-ASV Algorithm Performance Analysis
4. Design of an Irrigation Pipe Network Based on the ICSO-ASV Algorithm
4.1. Analysis of the Improved Pipe Network Planning Model
4.2. Pipe Network Design Case I
4.3. Pipe Network Design Case II
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Alexiou, D.; Tsouros, C. Design of an irrigation network system in terms of canal capacity using graph theory. J. Irrig. Drain. Eng. 2017, 143, 06017002. [Google Scholar] [CrossRef]
- Bai, D. Optimal Design of Water Transmission Conduits and Water Distribution Network. Ph.D. Thesis, Xi’an University of Technology, Xi’an, China, 2003. [Google Scholar]
- Ma, X.Y.; Fan, X.Y.; Zhao, W.J.; Kang, Y.H. Tree-type pipe network optimization design method based on integer coding genetic algorithm. J. Hydraul. Eng. 2008, 39, 373–379. [Google Scholar]
- Hu, J.H.; Ma, X.Y.; Yao, W.W.; Wang, Z.; Yin, J.C. The design of irrigation networks based on Kruskal Algorithm. China Rural Water Hydropower 2012, 2, 1–3. [Google Scholar]
- Lin, X.C.; Zhang, X.P. The optimal designing principle and method for gravititional low pressured pipe irrigation using the orthogonal scheme. J. Irrig. Drain. 1993, 4, 25–29. [Google Scholar]
- Wei, Y.Y. Using differential method to calculate the economic diameter of each pipe section of tree-type pipe network. Water Sav. Irrig. 1983, 3, 38–42, 60. [Google Scholar]
- Wang, X.K.; Cheng, D.L.; Lin, X.C. Optimum design of main pipe net for single well. Trans. Chin. Soc. Agric. Eng. 2001, 3, 41–44. [Google Scholar]
- Design and Optimization of Irrigation Pipe Networks. FAO Irrigation and Drainage Collection 44, 2nd ed.; China Agricultural Science and Technology Press: Beijing, China, 1992. [Google Scholar]
- Alomari, A.; Phillips, W.; Aslam, N.; Comeau, F. Swarm intelligence optimization techniques for obstacle-avoidance mobility-assisted localization in wireless sensor networks. IEEE Access 2018, 6, 22368–22385. [Google Scholar] [CrossRef]
- Li, H.B.; Ma, X.Y.; Zhao, W.J.; Sun, X.J. Layout and diameter simultaneous optimization method of tree pipe network. J. Syst. Simul. 2009, 11, 3180–3183. [Google Scholar]
- Zhou, R.M.; Lei, Y.F. Optimal layout of tree pipe networks based on improved single parent genetic algorithm. J. Hydraul. Eng. 2012, 43, 1243–1247. [Google Scholar]
- Ma, P.H.; Li, Y.N.; Hu, Y.J.; Cui, K.; Qu, Q. Optimal design of gravity tree-type pipe network based on Harmony Search Algorithm. China Rural Water Hydropower 2016, 6, 14–18. [Google Scholar]
- Chen, J.X.; Xu, S.Q.; Zhou, H. Optimal design of drip irrigation pipe network using the Firefly Algorithm. J. Irrig. Drain. 2018, 37, 48–55. [Google Scholar]
- Meng, X.B.; Liu, Y.; Gao, X.Z.; Zhang, H.Z. A New Bio-Inspired Algorithm: Chicken Swarm Optimization, International Conference in Swarm Intelligence; Springer: Cham, Switzerland, 2014; pp. 86–94. [Google Scholar]
- Qu, C.W.; Zhao, S.A.; Fu, Y.M.; He, W. Chicken swarm optimization based on elite opposition-based learning. Math. Probl. Eng. 2017, 2017. [Google Scholar] [CrossRef]
- Li, Y.C.; Wang, S.W.; Han, M.X. Truss Structure Optimization Based on Improved Chicken Swarm Optimization Algorithm. Adv. Civ. Eng. 2019, 2019. [Google Scholar] [CrossRef]
- Wang, J.Q.; Cheng, Z.W.; Ersoy, O.K.; Zhang, M.X.; Sun, K.X.; Bi, Y.S. Improvement and application of chicken swarm optimization for constrained optimization. IEEE Access 2019, 7, 58053–58072. [Google Scholar] [CrossRef]
- Gu, Y.C.; Lu, H.Y.; Xiang, L.; Shen, W.Q. Adaptive dynamic learning chicken swarm optimization algorithm. Comput. Eng. Appl. 2020, 1–12. [Google Scholar] [CrossRef]
- Sun, G.; Zhao, X.H.; Liang, S.; Liu, Y.H.; Zhou, X.; Zhang, Y. A modified chicken swarm optimization algorithm for synthesizing linear, circular and random antenna arrays. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–7. [Google Scholar]
- Fu, C.; Li, G.Q.; Lin, K.P.; Zhang, H.J. Short-term wind power prediction based on improved chicken algorithm optimization support vector machine. Sustainability 2019, 11, 512. [Google Scholar] [CrossRef] [Green Version]
- Niu, P.F.; Ding, X.; Liu, N.; Chang, L.F.; Zhang, X.C. Prediction of boiler NOx emission based on mixed chicken swarm algorithm and kernel extreme learning. Acta Metrol. Sin. 2019, 40, 929–936. [Google Scholar]
- Li, P.; Chen, G.F.; Hu, W.T. Research on wireless sensor network location based on chicken swarm optimization. Chin. J. Sens. Actuators 2019, 32, 866–871, 891. [Google Scholar]
- Lyu, S.L.; Wu, B.L.; Li, Z.; Hong, T.S.; Wang, J.H.; Huang, Y.L. Tree-Type irrigation pipe network planning using an improved bat algorithm. Trans. ASABE 2019, 62, 447–459. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Yang, X. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Robinson, J.; Rahmat-Samii, Y. Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 2004, 52, 397–407. [Google Scholar] [CrossRef]
- Damousis, I.G.; Bakirtzis, A.G.; Dokopoulos, P.S. Network-constrained economic dispatch using real-coded genetic algorithm. IEEE Trans. Power Syst. 2003, 18, 198–205. [Google Scholar] [CrossRef]
- Lyu, S.L.; Huang, Y.L.; Chen, H.Q.; Li, Z.; Wang, W.X. Improved bat algorithm using self-adaptive step. Control Decis. 2018, 33, 557–564. [Google Scholar]
Test Functions | Equation | Scope |
---|---|---|
Shifted sphere | [−100,100] | |
Shifted schwefel 1.2 | [−100,100] | |
Shifted rotated elliptic | [−100,100] | |
Shifted rosenbrock | [−100,100] | |
Griewank | [−600,600] | |
Rastrigin | [−5.12,5.12] | |
Ackley N.4 | [−35,35] | |
Periodic | [−10,10] | |
Schwefel 2.13 | [−π,π] | |
Levy | [−10,10] | |
Generalized Penalized N.1 | [−50,50] | |
Generalized Penalized N.2 | [−50,50] |
Algorithm | Parameter Settings |
---|---|
PSO 1 | Learning factor c1 = c2 = 2; inertia weight w = 0.4 |
BA 2 | Pulse frequency Fmax = 0, Fmin = −2; the initial range of the pulse loudness A was (1,2); the initial range of the pulse emission frequency R was (0,0.5), Rmax = 0.9 |
CSO 3 | RN = 0.15N, HN = 0.7N, CN = 0.15N, MN = 0.5HN, G = 10, FL ϵ [0.5,0.9] |
ICSO-ASV 4 | R = 3, α = 1, β = 1.5, γ = 3.5; the other parameters were kept consistent with the traditional CSO algorithm |
ADLCSO 5 | K = 20, a = 5; the other parameters were kept consistent with the traditional CSO algorithm |
ICSO-a 6 | A0 = 1, R0 = 0.9; the other parameters were kept consistent with the traditional CSO algorithm |
ICSO-b 7 | wmax = 0.9, wmin = 0.4; the other parameters were kept consistent with the traditional CSO algorithm |
Function | PSO | BA | CSO | ADLCSO | ICSO-a | ICSO-b | ICSO-ASV | |
---|---|---|---|---|---|---|---|---|
f1 | best | −4.4198 × 102 | −4.3082 × 102 | −3.8003 × 102 | −4.4603 × 102 | 1.1612 × 102 | 3.1889 × 103 | −4.5000 × 102 |
worst | 5.3485 × 103 | −3.3984 × 102 | 9.4911 × 102 | 1.1412 × 103 | 9.7823 × 102 | 4.6067 × 103 | −4.5000 × 102 | |
mean | −9.5422 × 101 | −3.9981 × 102 | 6.6306 × 101 | −2.8940 × 102 | 6.1614 × 102 | 3.9134 × 103 | −4.5000 × 102 | |
std | 1.2912 × 103 | 2.3069 × 101 | 2.6787 × 102 | 3.0979 × 102 | 1.8367 × 102 | 3.7222 × 102 | 5.6809 × 10−4 | |
f2 | best | 1.7770 × 104 | 1.7820 × 104 | 2.4538 × 104 | 1.7531 ×104 | 2.1433 × 104 | 8.5751 × 104 | 1.7530 × 104 |
worst | 2.4743 × 105 | 1.9323 × 104 | 6.6164 × 104 | 4.6608 × 104 | 2.8007 × 104 | 1.4533 × 105 | 1.7530 × 104 | |
mean | 3.0376 × 104 | 1.8266 × 104 | 4.3612 × 104 | 2.0052 × 104 | 2.4034 × 104 | 1.2456 × 105 | 1.7530 × 104 | |
std | 3.5114 × 104 | 3.0574 × 102 | 9.5788 × 103 | 4.7357 × 103 | 1.5189 × 103 | 1.3283 × 104 | 7.0028 × 10−3 | |
f3 | best | 8.9319 × 105 | 4.6584 × 105 | 1.0036 × 106 | 8.3129 × 105 | 2.3226 × 106 | 6.3700 × 107 | −4.4971 × 102 |
worst | 6.7774 × 107 | 1.5778 × 107 | 6.0109 × 107 | 3.3745 × 107 | 2.0906 × 107 | 2.1914 × 108 | −4.4535 × 102 | |
mean | 1.5552 × 107 | 3.5486 × 106 | 9.2439 × 106 | 7.0264 × 106 | 9.6165 × 106 | 1.3499 × 108 | −4.4834 × 102 | |
std | 1.9172 × 107 | 3.4124 × 106 | 8.6587 × 106 | 6.7121 × 106 | 4.0486 × 106 | 3.7299 × 107 | 1.1339 | |
f4 | best | 2.6352 × 103 | 7.9102 × 103 | 4.3791 × 106 | 6.8771 × 102 | 8.9495 × 105 | 6.0103 × 107 | 4.8889 × 102 |
worst | 1.6422 × 106 | 2.8984 × 105 | 6.5733 × 107 | 6.6123 × 107 | 9.7748 × 106 | 1.4435 × 108 | 1.2563 × 103 | |
mean | 1.9988 × 105 | 9.2552 × 104 | 1.9298 × 107 | 2.3041 × 106 | 4.6969 × 106 | 1.0252 × 108 | 6.1318 × 102 | |
std | 4.3595 × 105 | 6.9864 × 104 | 1.3209 × 107 | 1.0592 × 107 | 2.1167 × 106 | 2.0457 × 107 | 1.7386 × 102 | |
f5 | best | 0 | 1.4943 × 10−1 | 0 | 0 | 0 | 0 | 0 |
worst | 1.0648 | 1.0419 | 1.0284 × 10−1 | 2.8137 × 10−2 | 0 | 0 | 4.4409 × 10−16 | |
mean | 2.3734 × 10−1 | 8.6525 × 10−1 | 2.0570 × 10−3 | 2.5520 × 10−3 | 0 | 0 | 8.8818 × 10−18 | |
std | 3.6956 × 10−1 | 1.7333 × 10−1 | 1.4544 × 10−2 | 6.6883 × 10−3 | 0 | 0 | 6.2804 × 10−17 | |
f6 | best | 0 | 1.6315 × 10−2 | 0 | 0 | 0 | 0 | 0 |
worst | 9.1447 × 101 | 1.0708 × 102 | 0 | 1.0870 × 102 | 0 | 0 | 0 | |
mean | 2.8520 × 101 | 2.3136 × 101 | 0 | 1.2744 × 101 | 0 | 0 | 0 | |
std | 2.6732 × 101 | 2.4829 × 101 | 0 | 2.2205 × 101 | 0 | 0 | 0 | |
f7 | best | −7.2522 × 101 | −8.5097 × 101 | −7.3559 × 101 | −7.4302 × 101 | −8.1469 × 101 | −1.1934 × 101 | −8.5308 × 101 |
worst | 7.5589 × 101 | −3.1056 × 101 | −4.8019 × 101 | −4.3127 × 101 | −2.6206 × 101 | 9.7808 | −7.1335 × 101 | |
mean | −3.6711 × 101 | −7.1083 × 101 | −6.5206 × 101 | −6.3945 × 101 | −6.8844 × 101 | 1.1971 | −7.9057 × 101 | |
std | 3.0670 × 101 | 1.5813 × 101 | 5.1834 | 7.0511 | 1.3605 × 101 | 5.2720 | 3.2252 | |
f8 | best | 9.0002 × 10−1 | 1.0044 | 9.0000 × 10−1 | 1.0384 | 9.0000 × 10−1 | 9.0000 × 10−1 | 9.0000 × 10−1 |
worst | 3.7276 | 3.2981 | 1.8424 | 7.5581 | 9.2725 × 10−1 | 2.0576 | 9.0104 × 10−1 | |
mean | 2.0006 | 1.8181 | 1.0942 | 3.3441 | 9.0104 × 10−1 | 1.2782 | 9.0002 × 10−1 | |
std | 8.0633 × 10−1 | 5.7238 × 10−1 | 2.6566 × 10−1 | 1.7095 | 3.8629 × 10−3 | 2.9270 × 10−1 | 1.4686 × 10−4 | |
f9 | best | 1.0917 × 105 | 1.4679 × 105 | 7.7440 × 104 | 4.5150 × 104 | 4.0807 × 105 | 6.5180 × 105 | 4.6151 × 103 |
worst | 9.2474 × 105 | 1.7595 × 106 | 4.8612 × 105 | 3.8448 × 105 | 1.5760 × 106 | 1.2887 × 106 | 1.2667 × 105 | |
mean | 4.2627 × 105 | 6.5295 × 105 | 2.5861 × 105 | 1.9235 × 105 | 8.6552 × 105 | 1.0290 × 106 | 3.9165 × 104 | |
std | 1.9413 × 105 | 3.8037 × 105 | 8.0373 × 104 | 6.7142 × 104 | 2.2966 × 105 | 1.4234 × 105 | 2.7675 × 104 | |
f10 | best | 3.1835 × 10−1 | 6.2016 × 10−6 | 6.5353 × 10−1 | 6.3698 × 10−1 | 1.1833 × 10−1 | 1.6612 | 3.0642 × 10−6 |
worst | 1.3363 × 101 | 1.2156 × 10−1 | 1.7498 | 1.9599 × 101 | 7.0435 × 10−1 | 2.4077 | 5.8098 × 10−5 | |
mean | 2.2097 | 4.9715 × 10−3 | 1.1404 | 2.5014 | 2.5876 × 10−1 | 2.0564 | 1.6873 × 10−5 | |
std | 2.8557 | 1.7282 × 10−2 | 2.6750 × 10−1 | 4.5769 | 1.0182 × 10−1 | 1.4906 × 10−1 | 1.1682 × 10−5 | |
f11 | best | 4.9022 × 10−3 | 1.3304 × 10−5 | 3.4243 × 10−2 | 2.7791 × 10−2 | 4.8095 × 10−3 | 1.5586 × 10−1 | 3.4846 × 10−7 |
worst | 2.7097 | 2.5880 × 10−1 | 1.0322 | 3.2997 × 101 | 1.3432 × 10−1 | 4.8938 × 10−1 | 7.5615 × 10−6 | |
mean | 2.4630 × 10−1 | 1.6127 × 10−2 | 1.7266 × 10−1 | 6.7224 | 1.5590 × 10−2 | 3.3875 × 10−1 | 1.5938 × 10−6 | |
std | 5.3089 × 10−1 | 3.8480 × 10−2 | 1.7404 × 10−1 | 7.9878 | 1.7781 × 10−2 | 7.6893 × 10−2 | 1.4602 × 10−6 | |
f12 | best | 3.6434 × 10−1 | 2.7695 × 10−4 | 5.7850 × 10−1 | 4.4193 × 10−1 | 2.1136 × 10−2 | 2.0960 | 7.2050 × 10−7 |
worst | 6.1921 | 8.7633 × 10−1 | 2.4046 | 4.6132 × 101 | 2.9589 × 10−1 | 2.7165 | 1.1992 × 10−4 | |
mean | 2.1014 | 7.4953 × 10−2 | 1.1036 | 2.6501 | 1.2770 × 10−1 | 2.5493 | 1.8130 × 10−5 | |
std | 1.2645 | 1.5000 × 10−1 | 2.9481 × 10−1 | 8.7195 | 5.1404 × 10−2 | 1.2976 × 10−1 | 2.0787 × 10−5 |
Sequence Number | Coordinate x (m) | Coordinate y (m) | Elevation Gi (m) | Water Flow Q (m3/h) | Sequence Number | Coordinate x (m) | Coordinate y (m) | Elevation Gi (m) | Water Flow Q (m3/h) |
---|---|---|---|---|---|---|---|---|---|
0 | 2085 | 1320 | 250 | −295 | 8 | 2259 | 925 | 216 | 20 |
1 | 2681 | 377 | 220 | 20 | 9 | 1785 | 1098 | 216 | 20 |
2 | 2339 | 1652 | 220 | 20 | 10 | 1329 | 769 | 215 | 20 |
3 | 1121 | 1250 | 219 | 20 | 11 | 2018 | 421 | 214 | 20 |
4 | 1435 | 1359 | 219 | 25 | 12 | 562 | 2213 | 214 | 20 |
5 | 2071 | 1143 | 218 | 25 | 13 | 898 | 1212 | 212 | 20 |
6 | 2408 | 851 | 217 | 25 | 14 | 1314 | 2020 | 210 | 20 |
7 | 964 | 1637 | 216 | 20 |
Sequence Number | Pipe Diameter (mm) | Unit Price (Yuan) | Sequence Number | Pipe Diameter (mm) | Unit Price (Yuan) |
---|---|---|---|---|---|
0 | 50 | 2.5 | 5 | 140 | 8.6 |
1 | 75 | 3.6 | 6 | 160 | 11.0 |
2 | 90 | 4.5 | 7 | 180 | 13.0 |
3 | 110 | 6.2 | 8 | 200 | 15.6 |
4 | 125 | 7.0 | 9 | 225 | 19.2 |
Algorithms | Best (Yuan) | Mean (Yuan) | Worst (Yuan) |
---|---|---|---|
GA | 31,114 | 36,734 | 46,053 |
BA | 41,379 | 56,954 | 93,831 |
SABA | 33,776 | 40,698 | 46,572 |
CSO | 47,767 | 59,330 | 75,018 |
ADLCSO | 30,109 | 38,227 | 50,528 |
ICSO-a | 41,018 | 59,344 | 77,847 |
ICSO-ASV | 27,611 | 32,338 | 41,937 |
Sequence Number | Coordinate x (m) | Coordinate y (m) | Elevation Gi (m) | Water Flow Q (m3/h) | Sequence Number | Coordinate x (m) | Coordinate y (m) | Elevation Gi (m) | Water Flow Q (m3/h) |
---|---|---|---|---|---|---|---|---|---|
0 | 2085 | 1320 | 250 | −930 | 20 | 2184 | 521 | 224 | 25 |
1 | 1810 | 1470 | 238 | 30 | 21 | 1904 | 816 | 223 | 25 |
2 | 2586 | 1510 | 237 | 30 | 22 | 575 | 734 | 223 | 20 |
3 | 1535 | 431 | 236 | 25 | 23 | 2420 | 1150 | 221 | 25 |
4 | 2210 | 1165 | 235 | 30 | 24 | 611 | 1335 | 221 | 25 |
5 | 1570 | 689 | 235 | 25 | 25 | 1363 | 1511 | 221 | 25 |
6 | 2681 | 1570 | 235 | 30 | 26 | 2681 | 377 | 220 | 20 |
7 | 1727 | 920 | 234 | 20 | 27 | 2339 | 1652 | 220 | 20 |
8 | 427 | 1765 | 234 | 25 | 28 | 1121 | 1250 | 219 | 20 |
9 | 1738 | 1526 | 233 | 30 | 29 | 1435 | 1359 | 219 | 25 |
10 | 1649 | 1389 | 232 | 30 | 30 | 2071 | 1143 | 218 | 25 |
11 | 1906 | 899 | 231 | 25 | 31 | 2408 | 851 | 217 | 25 |
12 | 373 | 1209 | 231 | 25 | 32 | 964 | 1637 | 216 | 20 |
13 | 976 | 1455 | 230 | 25 | 33 | 2259 | 925 | 216 | 20 |
14 | 1321 | 1169 | 228 | 25 | 34 | 1785 | 1098 | 216 | 20 |
15 | 1008 | 725 | 227 | 25 | 35 | 1329 | 769 | 215 | 20 |
16 | 2190 | 1031 | 227 | 20 | 36 | 2018 | 421 | 214 | 20 |
17 | 1230 | 1373 | 226 | 20 | 37 | 562 | 2213 | 214 | 20 |
18 | 870 | 1922 | 225 | 20 | 38 | 898 | 1212 | 212 | 20 |
19 | 1411 | 1703 | 225 | 30 | 39 | 1314 | 2020 | 210 | 20 |
Algorithms | Best (Yuan) | Mean (Yuan) | Worst (Yuan) |
---|---|---|---|
GA | 174,720 | 2,144,100 | 9,183,900 |
BA | 210,540 | 253,180 | 325,060 |
SABA | 146,910 | 175,000 | 195,800 |
CSO | 184,880 | 218,500 | 278,870 |
ADLCSO | 161,030 | 237,440 | 418,740 |
ICSO | 186,860 | 226,730 | 268,130 |
ICSO-ASV | 127,410 | 160,900 | 200,550 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Lin, Z.; Lyu, S.; Wei, Z.; Huang, H. Tree-Type Irrigation Pipe Network Planning and Design Method Using ICSO-ASV. Water 2020, 12, 1985. https://doi.org/10.3390/w12071985
Li Z, Lin Z, Lyu S, Wei Z, Huang H. Tree-Type Irrigation Pipe Network Planning and Design Method Using ICSO-ASV. Water. 2020; 12(7):1985. https://doi.org/10.3390/w12071985
Chicago/Turabian StyleLi, Zhen, Zijian Lin, Shilei Lyu, Zhiwei Wei, and Heqing Huang. 2020. "Tree-Type Irrigation Pipe Network Planning and Design Method Using ICSO-ASV" Water 12, no. 7: 1985. https://doi.org/10.3390/w12071985
APA StyleLi, Z., Lin, Z., Lyu, S., Wei, Z., & Huang, H. (2020). Tree-Type Irrigation Pipe Network Planning and Design Method Using ICSO-ASV. Water, 12(7), 1985. https://doi.org/10.3390/w12071985