Experimental Characterization of Air Entrainment in Rectangular Free Falling Jets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Instrumentation
2.3. Experimental Test and Flow Conditions
3. Results and Discussion
3.1. Void Fraction Distribution
3.2. Jet Thickness
3.3. Air–Water Phase Variation Count Rate
3.4. Sauter Mean Bubble Diameter
3.5. Air–Water Chord Length
3.6. Turbulence Intensity
3.7. Characteristic Frequencies and Spectral Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Federal Emergency Management Agency. FEMA. P-1015 Technical Manual: Overtopping Protection for Dams; US Department of Homeland Security: Washington, DC, USA, 2014. Available online: https://www.fema.gov/es/media-library/assets/documents/97888 (accessed on 21 June 2020).
- Wahl, T.L.; Frizell, K.H.; Cohen, E.A. Computing the trajectory of free jets. J. Hydraul. Eng. 2008, 134, 256–260. [Google Scholar] [CrossRef] [Green Version]
- Chanson, H. Air Bubble Entrainment in Free-Surface Turbulent Shear Flows; Academic Press: London, UK, 1997; p. 401. [Google Scholar]
- Wood, I.R. Air Entrainment in Free-Surface Flows; International Association for Hydro-Environment Engineering and Research: Madrid, Spain, 1991. [Google Scholar]
- Boes, R.M. Zweiphasenströmung und Energieumsetzung an Grosskaskaden (Two-Phase Flow and Energy Dissipation on Cascades). Ph.D. Thesis, VAW-ETH, Zürich, Switzerland, 2000. (In German). [Google Scholar]
- Anderson, A.A.; Tullis, B.P. Finite crest length weir nappe oscillation. J. Hydraul. Eng. 2018, 144, 04018020. [Google Scholar] [CrossRef]
- Castillo, L.; Carrillo, J.M.; Blázquez, A. Plunge pool mean dynamic pressures: A temporal analysis in nappe flow case. J. Hydraul. Res. 2015, 53, 101–118. [Google Scholar] [CrossRef]
- Ervine, D.A.; Falvey, H. Behaviour of turbulent jets in the atmosphere and plunge pools. Proc. Inst. Civ. Eng. 1987, 83, 295–314. [Google Scholar] [CrossRef]
- Ervine, D.A.; Falvey, H.; Withers, W.A. Pressure fluctuations on plunge pool floors. J. Hydraul. Res. 1997, 35, 257–279. [Google Scholar] [CrossRef]
- Chanson, H.; Toombes, L. Air-Water Flows down Stepped chutes: Turbulence and Flow Structure Observations. Int. J. Multiph. Flow 2002, 28, 1737–1761. [Google Scholar] [CrossRef] [Green Version]
- Bertola, N.; Wang, H.; Chanson, H. A physical study of air-water flow in planar plunging water jet with large inflow distance. Int. J. Multiph. Flow 2017, 100, 155–171. [Google Scholar] [CrossRef] [Green Version]
- Horeni, P. Disintegration of a Free Jet of Water in Air; Vyzkumny Ustav Vodohospodarsky Prace a Studie: Praha, Czech Republic, 1956. (In Czech) [Google Scholar]
- Castillo, L. Aerated jets and pressure fluctuation in plunge pools. In Proceedings of the Seventh International Conference on Hydroscience and Engineering; Piasecki, M., Ed.; College of Engineering, Drexel University: Philadelphia, PL, USA, 2006; pp. 1–23. [Google Scholar]
- Carrillo, J.M. Metodología Numérica y Experimental para el Diseño de los Cuencos de Disipación en el Sobrevertido de Presas de Fábrica. Ph.D. Thesis, Universidad Politécnica de Cartagena, Murcia, Spain, 2014. (In Spanish). [Google Scholar] [CrossRef] [Green Version]
- Castillo, L.; Carrillo, J.M.; Sordo-Ward, A. Simulation of overflow nappe impingement jets. J. Hydroinform. 2014, 16, 922–940. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, J.M.; Castillo, L.G.; Marco, F.; García, J.T. Characterization of two-phase flows in plunge pools. In Proceedings of the 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15–18 May 2018. [Google Scholar] [CrossRef]
- Carrillo, J.M.; Castillo, L.G.; Marco, F.; García, J.T. Experimental and numerical analysis of two-phase flows in plunge pools. J. Hydraul. Eng. 2020. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, J.M.; Ortega, P.R.; Castillo, L.G.; García, J.T. Air entrainment in rectangular free falling jets. In Proceedings of the 8th IAHR International Symposium on Hydraulic Structures 2020, Santiago, Chile, 12–15 May 2020. [Google Scholar] [CrossRef]
- Chanson, H. Air bubble entrainment in open channels. Flow structure and bubble size distributions. Int. J. Multiph. Flow 1997, 23, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Chanson, H. Air-water Flows in Water Engineering and Hydraulic Structures. Basic Processes and Metrology. In Proceedings of the Hydraulics of Dams and River Structures, London, UK; CRC Press: Boca Raton, FL, USA, 2004; pp. 3–16. ISBN 90 5809 632. [Google Scholar]
- Matos, J.; Frizell, K.H.; André, S.; Frizell, K.W. On the performance of velocity measurement techniques in air-water flows. In Proceedings of the Hydraulic Measurements and Experimental Methods, Estes Park, CO, USA, 28 July–1 August 2002; pp. 130–140. [Google Scholar]
- Toombes, L. Experimental Study of Air-Water Flow Properties on Low-Gradient Stepped Cascades. Ph.D. Thesis, School of Civil Engineering, The University of Queensland, St Lucia, Australia, 2002. Available online: https://espace.library.uq.edu.au/view/UQ:9270 (accessed on 21 June 2020).
- Scimemi, E. Sulla forma delle vene tracimanti. L’Energ. Elettr. 1931, 7, 293–305. (In Italian) [Google Scholar]
- Chanson, H. Turbulent air-water flows in hydraulic structures: Dynamic similarity and scale effects. Environ. Fluid. Mech. 2009, 9, 125–142. [Google Scholar] [CrossRef] [Green Version]
- Heller, V. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 2011, 49, 293–306. [Google Scholar] [CrossRef]
- Chanson, H. Velocity measurements within high velocity air-water jets. J. Hydraul. Res. 1993, 31, 365–382. [Google Scholar] [CrossRef] [Green Version]
- Toombes, L.H.; Chanson, H. Free-surface aeration and momentum exchange at a bottom outlet. J. Hydraul. Res. 2007, 45, 100–110. [Google Scholar] [CrossRef]
- Pfister, M.; Schwindt, S. Air concentration distribution in deflector jets. In Proceedings of the 5th IAHR International Symposium on Hydraulic Structures, Brisbane, Australia, 25–27 June 2014; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Felder, S. Air-Water Flow Properties on Stepped Spillways for Embankment Dams: Aeration, Energy Dissipation and Turbulence on Uniform, Non-Uniform and Pooled Stepped Chutes. Ph.D. Thesis, School of Civil Engineering, The University of Queensland, St Lucia, Australia, 2013. Available online: https://espace.library.uq.edu.au/view/UQ:301329 (accessed on 21 June 2020).
- André, S.; Boillat, J.L.; Schleiss, A.J. Discussion of “Two-phase flow characteristics of stepped spillways” by Robert M. Boes and Willi H. Hager. J. Hydraul. Eng. 2005, 131, 423–427. [Google Scholar]
- Brattberg, T.; Toombes, L.; Chanson, H. Developing air-water shear layers of two-dimensional water jets discharging into air. In Proceedings of the ASME Fluids Engineering Division Summer Meeting (FEDSM’98), Washington, DC, USA, 21–25 June 2008. [Google Scholar]
- Clift, R.; Grace, J.R.; Weber, M.E. Bubbles, Drops and Particles; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Chanson, H.; Carosi, G. Advanced post-processing and correlation analyses in high-velocity air-water flows. Environ. Fluid Mech. 2007, 7, 495–508. [Google Scholar] [CrossRef] [Green Version]
- Felder, S.; Chanson, H. Phase-detection probe measurements in high-velocity free-surface flows including a discussion of key sampling parameters. Exp. Therm. Fluid Sci. 2014, 61, 66–78. [Google Scholar] [CrossRef]
- Herringe, R.A.; Davis, M.R. Structural development of gas-liquid mixture flows. J. Fluid Mech. 1976, 73, 97–123. [Google Scholar] [CrossRef]
- Wang, H. Turbulence and Air Entrainment in Hydraulic Jumps. Ph.D. Thesis, School of Civil Engineering, The University of Queensland, St Lucia, Australia, 2014. Available online: https://espace.library.uq.edu.au/view/UQ:345033 (accessed on 21 June 2020).
Specific Flow, q (m3/s/m) | Energy Head over the Weir Crest, h (m) | Velocity at Initial Condition, Vi (m/s) | Reynolds Number at the Initial Condition, Re (-) | Weber Number at the Initial Condition, We (-) | Maximum Measurable Free-Falling Distance Ratio, Z/h (-) |
---|---|---|---|---|---|
0.048 | 0.080 | 1.78 | 47,148 | 1162 | −21.3 |
0.072 | 0.109 | 2.07 | 70,721 | 2029 | −15.6 |
0.096 | 0.131 | 2.25 | 94,202 | 2940 | −13.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo, J.M.; Ortega, P.R.; Castillo, L.G.; García, J.T. Experimental Characterization of Air Entrainment in Rectangular Free Falling Jets. Water 2020, 12, 1773. https://doi.org/10.3390/w12061773
Carrillo JM, Ortega PR, Castillo LG, García JT. Experimental Characterization of Air Entrainment in Rectangular Free Falling Jets. Water. 2020; 12(6):1773. https://doi.org/10.3390/w12061773
Chicago/Turabian StyleCarrillo, José M., Patricio R. Ortega, Luis G. Castillo, and Juan T. García. 2020. "Experimental Characterization of Air Entrainment in Rectangular Free Falling Jets" Water 12, no. 6: 1773. https://doi.org/10.3390/w12061773
APA StyleCarrillo, J. M., Ortega, P. R., Castillo, L. G., & García, J. T. (2020). Experimental Characterization of Air Entrainment in Rectangular Free Falling Jets. Water, 12(6), 1773. https://doi.org/10.3390/w12061773