The Importance of Biological and Ecological Properties of Phragmites Australis (Cav.) Trin. Ex Steud., in Phytoremendiation of Aquatic Ecosystems—The Review
Abstract
:1. Introduction
- They are relatively inexpensive to construct and operate and are easy to maintain;
- They provide effective and ecologically friendly wastewater treatment;
- They can tolerate both great and small volumes of water and varying contaminant levels [22].
2. The Potential for Heavy Metal Absorption by Common Reeds Compared to Other Aquatic Plants
2.1. The Absorption of Heavy Metals by Plants
- (1)
- Plants attach the heavy metals to their cell wall;
- (2)
- The roots accumulate heavy metals and then translocate them to the shoots;
- (3)
- Hyperaccumulation (the ability to accumulate metals at very high concentrations in aboveground tissues, without phytotoxic effects).
2.2. The Role of Microbial Interactions with Common Reed in Heavy Metal Uptake
2.3. Arrangement of Heavy Metals in Various Parts of Common Reed
2.4. Comparison of Removal of Heavy Metals by Common Reed and Other Aquatic Plants
3. Removal of Other Contaminants by the Common Reed
4. Common Reed in Constructed Wetlands
5. Conclusion and Future Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Ikelle, L.T. Introduction to Earth Sciences: A Physics Approach, 2nd ed.; World Scientific Publishing Company: London, UK, 2020; p. 8. [Google Scholar]
- Sterner, R.W.; Keeler, B.; Polasky, S.; Poudel, R.; Rhude, K.; Rogers, M. Ecosystem services of Earth’s largest freshwater lakes. Ecosyst. Serv. 2020, 41, 101046. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. Population facts No. 2019/6, December 2019: How Certain Are the United Nations Global Population Projections? United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. [Google Scholar]
- Häder, D.P.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A.; Helbling, E.W. Anthropogenic pollution of aquatic ecosys-tems: Emerging problems with global implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.W. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 1974, 174, 897–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzymski, P.; Niedzielski, P.; Klimaszyk, P.; Poniedziałek, B. Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir. Environ. Monit Assess. 2014, 186, 3199–3212. [Google Scholar] [CrossRef] [Green Version]
- Hadad, H.R.; Maine, M.A.; Bonetto, C.A. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere 2006, 63, 1744–1753. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, N.; Wojciechowska, E.; Matej-Łukowicz, K.; Walkusz-Miotk, J.; Pazdro, K. Heavy metal accumulation and distribution in Phragmites australis seedlings tissues originating from natural and urban catchment. Environ. Sci. Pollut. Res. 2019, 1–11. [Google Scholar] [CrossRef]
- Wu, S.; Kuschk, P.; Brix, H.; Vymazal, J.; Dong, R. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Res. 2014, 57, 40–55. [Google Scholar] [CrossRef]
- González-Alcaraz, M.; Egea, C.; Jiménez-Cárceles, F.; Párraga, I.; Maria-Cervantes, A.; Delgado, M.; Álvarez-Rogel, J. Storage of organic carbon, nitrogen and phosphorus in the soil–plant system of Phragmites australis stands from a eutrophicated Mediterranean salt marsh. Geoderma 2012, 185, 61–72. [Google Scholar] [CrossRef]
- Iavniuk, A.A.; Shevtsova, N.L.; Gudkov, D.I. Disorders of the initial ontogenesis of seed progeny of the common reed (Phragmites australis) from water bodies within the Chernobyl Exclusion Zone. J. Environ. Radioact. 2020, 218, 106256. [Google Scholar] [CrossRef]
- Gałczyńska, M. Response of the Mare’s Tail (Hippuris vulgaris L.) and Frogbit (Hydrocharis morsus-ranae L.) to Water Pollution with Heavy Metals and a Possibility of Using These Plants for Water Phytoremediation’; Wydaw. Uczelniane ZUT: Szczecin, Poland, 2012; p. 85. [Google Scholar]
- Lv, T.; Carvalho, P.N.; Casas, M.E.; Bollmann, U.E.; Arias, C.A.; Brix, H.; Bester, K. Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis. Environ. Pollut. 2017, 229, 362–370. [Google Scholar] [CrossRef]
- Jie-Ting, Q.; Shao-Yong, L.; Xue-Yan, W.; Ke, L.; Wei, X.; Fang-Xin, C. Impact of hydraulic loading on removal of polycyclic aromatic hydrocarbons (PAHs) from vertical-flow wetland. Toxicol. Environ. Chem. 2015, 97, 388–401. [Google Scholar] [CrossRef]
- Dhir, B. Removal of pharmaceuticals and personal care products by aquatic plants. In Pharmaceuticals and Personal Care Products. Waste Manag. Treat. Techno. 2019, 2019, 321–340. [Google Scholar]
- Mateo-Sagasta, J.; Zadeh, S.M.; Turral, H.; Burke, J. Water Pollution from Agriculture: A Global Review; Food and Agriculture Organization of the United Nations: Rome, Italy; International Water Management Institute on behalf of the Water Land and Ecosystems Research Program: Colombo, Sri Lanka, 2017. [Google Scholar]
- Pedescoll, A.; Sidrach-Cardona, R.; Hijosa-Valsero, M.; Bécares, E. Design parameters affecting metals removal in horizontal constructed wetlands for domestic wastewater treatment. Ecol. Eng. 2015, 80, 92–99. [Google Scholar] [CrossRef]
- Hernández-Crespo, C.; Gargallo, S.; Benedito-Durá, V.; Nácher-Rodríguez, B.; Rodrigo-Alacreu, M.A.; Martín, M. Performance of surface and subsurface flow constructed wetlands treating eutrophic waters. Sci. Total Environ. 2017, 595, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol. Eng. 2005, 25, 478–490. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Akratos, C.S.; Tsihrintzis, V.A. Vertical Flow Constructed Wetlands: Eco-Engineering Systems for Wastewater and Sludge Treatment, 1st ed.; Elsevier Publishing: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Gajewska, M.; Obarska-Pempkowiak, H. 20 years of experience in the operation of wetlands in Poland. Rocz Ochr Sr. 2009, 11, 875–888. [Google Scholar]
- Gałczyńska, M.; Mańkowska, N.; Milke, J.; Buśko, M. Possibilities and limitations of using Lemna minor, Hydrocharis morsus-ranae and Ceratophyllum demersum in removing metals with contaminated water. J. Water Land Dev. 2019, 40, 161–173. [Google Scholar] [CrossRef]
- Gałczyńska, M.; Milke, J.; Gamrat, R.; Stoltman, M. Common mare’s tail (Hippuris vulgaris L.) in the assessment of water status and their phytoremediation. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2019, 3481, 57–70. [Google Scholar] [CrossRef]
- Githuku, C.R.; Ndambuki, J.M.; Salim, R.W.B.; Adedayo, A. Treatment potential of Typha latifolia in removal of heavy metals from wastewater using constructed wetlands. In Trans-Formation towards Sustainable and Resilient Wash Services, Proceedings of the 41st WEDC International Conference, Nakuru, Kenya, 9–13 July 2018, WEDC; Shaw, R.J., Ed.; Loughborough University United Kingdom (UK): Loughborough, UK, 2018; pp. 9–13. [Google Scholar]
- Kumar, V.; Singh, J.; Saini, A.; Kumar, P. Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environ. Sustain. 2019, 2, 55–65. [Google Scholar] [CrossRef]
- Odjegba, J.; Fasidi, I.O. Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist 2007, 27, 349–355. [Google Scholar] [CrossRef]
- Guo, L.; Ott, D.W.; Cutright, T.J. Accumulation and histological location of heavy metals in Phragmites australis grown in acid mine drainage contaminated soil with or without citric acid. Env. Exp. Bot. 2014, 105, 46–54. [Google Scholar] [CrossRef]
- Bonanno, G. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol. Environ. Saf. 2011, 74, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Rezania, S.; Park, J.; Rupani, P.F.; Darajeh, N.; Xu, X.; Shahrokhishahraki, R. Phytoremediation potential and control of Phragmites australis as a green phytomass: An overview. Environ. Sci. Pollut. Res. Int. 2019, 26, 7428–7441. [Google Scholar] [CrossRef]
- Eller, F.; Skálová, H.; Caplan, J.S.; Bhattarai, G.P.; Burger, M.K.; Cronin, J.T.; Guo, W.Y.; Guo, X.; Hazelton, E.L.G.; Kettenring, K.M.; et al. Cosmopolitan species as models for ecophysiological responses to global change: The Common Reed Phragmites australis. Front. Plant. Sci. 2017, 16, 1833. [Google Scholar] [CrossRef] [Green Version]
- Meyerson, L.A.; Cronin, J.T.; Pyšek, P. Phragmites australis as a model organism for studying plant invasions. Biol. Invasions 2016, 18, 2421–2431. [Google Scholar] [CrossRef]
- Packer, J.G.; Meyerson, L.A.; Skalova, H.; Pyšek, P.; Kueffer, C. Biological flora of the British Isles: Phragmites australis. J. Ecol. 2017, 105, 1123–1162. [Google Scholar] [CrossRef] [Green Version]
- Lambertini, C.; Sorrell, B.K.; Riis, T.; Olesen, B.; Brix, H. Exploring the borders of European Phragmites within a cosmopolitan genus. Aob Plants 2012, 2012, 1–18. [Google Scholar] [CrossRef]
- Meadows, R.E.; Saltonstall, K. Distribution of native and introduced Phragmites australis in freshwater and oligohaline tidal marshes of the Delmarva Peninsula and southern New Jersey. J. Torrey Bot. Soc. 2007, 134, 99–107. [Google Scholar]
- Payne, R.E.; Blossey, B. Presence and abundance of native and introduced Phragmites australis (Poaceae) in Falmouth, Massachusetts. Rhodora 2007, 109, 96–100. [Google Scholar]
- Mal, T.K.; Narine, L. The biology of Canadian weeds. 129. Phragmites australis (Cav.) Trin. ex Steud. Can. J. Plant Sci. 2004, 84, 365–396. [Google Scholar] [CrossRef]
- Lessmann, J.M.; Brix, H.; Bauer, V.; Clevering, O.A.; Comin, F.A. Effect of climatic gradients on the photosynthetic responses of four Phragmites australis populations. Aquat. Bot. 2001, 69, 109–126. [Google Scholar] [CrossRef]
- Rooth, J.E.; Stevenson, J.C.; Cornwall, J.C. Increased sediment accretion rates following invasion by Phragmites australis: The role of litter. Estuaries 2003, 26, 475–483. [Google Scholar] [CrossRef]
- Saltonstall, K. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. USA 2002, 99, 2445–2449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, J.K. Phragmites australis. In Wildland Shrubs of the United States and Its Territories: Thamnic Descriptions; Francis, J.K., Ed.; Gen. Tech. Rep. IITF-GTR-26; U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry: San Juan, PR, USA; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2004; Volume 1, pp. 555–557. [Google Scholar]
- Saltonstall, K. Microsatellite variation within and among North American lineages of Phragmites australis. Mol. Ecol. 2003, 12, 1689–1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyšek, P.; Skálová, H.; Čuda, J.; Guo, W.Y.; Doležal, J.; Kauzál, O.; Meyerson, L.A. Physiology of a plant invasion: Biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations. Preslia 2019, 91, 51–75. [Google Scholar] [CrossRef]
- Rutkowski, L. Key for the Determination of Lowland Poland Vascular Plants; Scientific Publisher PWN: Warsaw, Poland, 2006; p. 159. [Google Scholar]
- Brink, M.; Achigan-Dako, E.G. Plant Resources of Tropical Africa 16; Fibres PROTA Foundation: Wageningen, The Netherlands, 2012; pp. 152–154. [Google Scholar]
- Guo, W.Y.; Lambertini, C.; Li, X.Z.; Meyerson, L.M.; Brix, H. Invasion of Old World Phrag-mites australis in the New World: Precipitation and temperature patterns combined with human influences redesign the invasive niche. Glob. Chang. Biol. 2013, 19, 3406–3422. [Google Scholar]
- Haslam, S.M. Biological Flora of the British Isles. Phragmites communis Trin. J. Ecol. 1972, 60, 585–610. [Google Scholar] [CrossRef]
- Hansen, D.L.; Lambertini, C.; Jampeetong, A.; Brix, H. Clone-specific differences in Phragmites australis: Effects of ploidy level and geographic origin. Aquat. Bot. 2007, 86, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Eller, F.; Brix, H. Different genotypes of Phragmites australis show distinct phenotypic plas-ticity in response to nutrient availability and temperature. Aquat. Bot. 2012, 103, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Antonielli, M.; Pasqualini, S.; Batini, P.; Ederli, L.; Massacci, A.; Loreto, F.T.I. Physiological and anatomical characterisation of Phragmites australis leaves. Aquat. Bot. 2002, 72, 55–66. [Google Scholar] [CrossRef]
- Zheng, W.J.; Zheng, X.P.; Zhang, C.L. A survey of photosynthetic carbon metabolism in 4 ecotypes of Phragmites australis in northwest China: Leaf anatomy, ultra-structure, and activities of ribulose 1,5-biphosphate carboxylase. Physiol. Plant. 2000, 110, 201–208. [Google Scholar] [CrossRef]
- Golet, F.C.; Myshrall, D.H.; Oliver, L.R.; Paton, P.W.; Tefft, B.C. Role of Science and Partnerships in Salt Marsh Restoration at the Galilee Bird Sanctuary, Narragansett, Rhode Island. In Tidal Marsh Restoration; Island Press: Washington, DC, USA, 2012; pp. 333–353. [Google Scholar]
- Ge, Z.M.; Zhang, L.Q.; Yuan, L.; Zhang, C. Effects of salinity on temperature-dependent photosynthetic parameters of a native C3 and a non-native C4 marsh grass in the Yangtze estuary, China. Photosynthetica 2014, 52, 484–492. [Google Scholar] [CrossRef]
- Eller, F.; Lambertini, C.; Nielsen, M.W.; Radutoiu, S.; Brix, H. Expression of major photosynthetic and salt-resistance genes in invasive reed lineages grown under elevated CO2 and temperature. Ecol. Evol. 2014, 4, 4161–4172. [Google Scholar] [CrossRef] [PubMed]
- Nada, R.M.; Khedr, A.H.A.; Serag, M.S.; El-Nagar, N.A. Growth, photosynthesis and stress-inducible genes of Phragmites australis (Cav.) Trin. Ex Steudel from different habitats. Aquat. Bot. 2015, 124, 54–62. [Google Scholar] [CrossRef]
- Schöb, C.; Armas, C.; Guler, M.; Prieto, I.; Pugnaire, F.I. Variability in functional traits mediates plant interactions along stress gradients. J. Ecol. 2013, 101, 753–762. [Google Scholar] [CrossRef]
- Bhattarai, G.P.; Meyerson, L.A.; Cronin, J.T. Geographical variation in apparent competition between native and invasive Phragmites australis. Ecology 2017, 98, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Al-Garni, S.M.S. Increasing NaCl—Salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. Am. Eurasian, J. Agric. Environ. Sci. 2006, 1, 119–126. [Google Scholar]
- Saltonstall, K.; Castillo, H.E.; Blossey, B. Confirmed field hybridization of native and introduced Phragmites australis (Poaceae) in North America. J. Am. Bot. 2014, 101, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Douhovnikoff, V.; Hazelton, E.L. Clonal growth: Invasion or stability? A comparative study of clonal architecture and diversity in native and introduced lineages of Phragmites australis (Poaceae). Am. J. Bot. 2014, 101, 1577–1584. [Google Scholar] [CrossRef]
- Haslam, S.M. A book of reed: (Phragmites australis (Cav.) Trin. ex Steudel, Phragmites communis Trin.). Forrest 2010, 18, 34. [Google Scholar]
- Silliman, B.R.; Bertness, M.D. Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conserv. Biol. 2004, 18, 1424–1434. [Google Scholar] [CrossRef]
- Bart, D.; Burdick, D.; Chambers, R.; Hartman, J.M. Human facilitation of Phragmites australis invasions in tidal marshes: A review and synthesis. Wetl. Ecol. Manag. 2006, 14, 53–65. [Google Scholar] [CrossRef]
- Vasquez, E.A.; Glenn, E.P.; Guntenspergen, G.R.; Brown, J.J.; Nelson, S.G. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. Am. J. Bot. 2006, 93, 1784–1790. [Google Scholar] [CrossRef] [PubMed]
- Engloner, A.I.; Szego, D. Genetic diversity of riverine reed stands indicating the water regime of the habitat. Ecol. Indic. 2016, 61, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Lelong, B.; Lavoie, C.; Jodoin, Y.; Belzile, F. Expansion pathways of the exotic common reed (Phragmites australis) a historical and genetic analysis. Divers. Distrib. 2007, 13, 430–437. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Johnston, C.A. Environmental conditions promoting non-native Phragmites australis expansion in Great Lakes coastal wetlands. Wetlands 2010, 30, 577–587. [Google Scholar] [CrossRef]
- Kettenring, K.M.; Mock, K.E. Genetic diversity, reproductive mode, and dispersal differ between the cryptic invader, Phragmites australis, and its native conspecific. Biol. Invasions 2012, 14, 2489–2504. [Google Scholar] [CrossRef]
- Srivastava, J.; Swinder Kalra, S.J.S.; Naraian, R. Environmental perspectives of Phragmites australis (Cav.) Trin. Ex. Steudel. Appl. Water Sci. 2014, 4, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Meyerson, L.A.; Saltonstall, K.; Windham, L.; Kiviat, E.; Findlay, S. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetl. Ecol. Manag 2000, 8, 89–103. [Google Scholar] [CrossRef]
- Sarma, H. Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. Environ. Sci. Technol. 2011, 4, 118–138. [Google Scholar] [CrossRef] [Green Version]
- Obinna, B.I.; Enyoh, E.C. A review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. J. Anal. Methods Chem. 2019, 2, 5–38. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.K.; Tripathi, B.D. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour. Technol. 2008, 99, 7091–7097. [Google Scholar] [CrossRef] [PubMed]
- DalCorso, G.; Fasani, E.; Manara, A.; Visioli, G.; Furini, A. Heavy metal pollutions: State of the art and innovation in phytoremediation. Int. J. Mol. Sci. 2019, 20, 3412. [Google Scholar] [CrossRef] [Green Version]
- Morkunas, I.; Woźniak, A.; Mai, V.; Rucińska-Sobkowiak, R.; Jeandet, P. The role of heavy metals in plant response to biotic stress. Molecules 2018, 3, 2320. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Oliveira, R.S.; Freitas, H.; Zhang, C. Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation. Front. Plant Sci. 2016, 7, 918. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Dodd, J.C.; Castro, P.M.L. The mycorrhizal status of Phragmites australis in several polluted soils and sediments of an industrialized region of Northern Portugal. Mycorrhiza 2001, 10, 241–247. [Google Scholar] [CrossRef]
- Clemens, S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 2001, 212, 475–486. [Google Scholar] [CrossRef]
- Kushwaha, A.; Rani, R.; Kumar, S.; Gautam, A. Heavy metal detoxification and tolerance mechanisms in plants: Implications for phytoremediation. Environ. Rev. 2015, 24, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Bhat, J.A.; Shivaraj, S.M.; Singh, P.; Navadagi, D.B.; Tripathi, D.K.; Dash, P.K.; Solanke, A.U.; Sonah, H.; Deshmukh, R. Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 2019, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.; Swędrzyńska, D. Analysis of the interactions of microorganisms in soil environment. Kosmos 2016, 65, 49–55. [Google Scholar]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef] [PubMed]
- Yun, L.; Hao, D.; Ya, X.U. Effects of reed roots on rhizosphere microbes in constructed wetland. Syst. Sci. Compr. Stud. Agric. 2008, 24, 222–241. [Google Scholar]
- Toyama, T.; Furukawa, T.; Maeda, N.; Inoue, D.; Sei, K.; Mori, K.; Kikuchi, S.; Ike, M. Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions. Water Res. 2011, 45, 1629–1638. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.; Chandra, R.; Rai, V. Isolation and characterization of Phragmites australis L. rhizosphere bacteria from contaminated site for bioremediation of colored distillery effluent. Ecol. Eng. 2006, 27, 202–207. [Google Scholar] [CrossRef]
- Dan, A.; Zhang, N.; Qiu, R.; Li, C.; Wang, S.; Ni, Z. Accelerated biodegradation of p-tert-butylphenol in the Phragmites australis rhizosphere by phenolic root exudates. Environ. Exp. Bot. 2020, 169, 103891. [Google Scholar]
- Xu, J.; Zheng, L.; Xu, L.; Wang, X. Uptake and allocation of selected metals by dominant vegetation in Poyang Lake wetland: From rhizosphere to plant tissues. Catena 2020, 189, 104477. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, W.; Pang, L.; Li, R.; Li, S. Influence of Phragmites communis and Zizania aquatica on rhizosphere soil enzyme activity and bacterial community structure in a surface flow constructed wetland treating secondary domestic effluent in China. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Malicka, M.; Magurno, F.; Piotrowska-Seget, Z.; Chmura, D. Arbuscular mycorrhizal and microbial profiles of an aged phenol-polynuclear aromatic hydrocarbon-contaminated soil. Ecotoxicol. Environ. Saf. 2020, 192, 110299. [Google Scholar] [CrossRef]
- Wu, J.T.; Wang, L.; Zhao, L.; Huang, X.C.; Ma, F. Arbuscular mycorrhizal fungi effect growth and photosynthesis of Phragmites australis (Cav.) Trin ex. Steudel under copper stress. Plant Biol. 2020, 22, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, M.; Sandhya, S.; Prasad, M.N.V.; Freitas, H. Perspectives of plant associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 2012, 30, 1562–1574. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Saunders, A.M.; Schramm, A. Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments. Appl. Environ. Microbiol. 2009, 75, 3127–3136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, R.; Zeng, J.; Zhao, D.; Huang, R.; Yu, Z.; Wu, Q.L. Contrasting patterns in diversity and community assembly of Phragmites australis root-associated bacterial communities from different seasons. Appl. Environ. Microbiol. 2020. [Google Scholar] [CrossRef]
- Huang, X.; Li, W.; Fang, M. Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis. Chemosphere 2017, 187, 221–229. [Google Scholar] [CrossRef]
- Viehweger, K. How plants cope with heavy metals. Bot. Stud. 2014, 55, 35. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, G.; Borg, J.A.; Martino, V.D. Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment. Sci. Total Environ. 2017, 576, 796–806. [Google Scholar] [CrossRef]
- Baranowska-Morek, A. Mechanisms of plants tolerance to toxic influence of heavy metals. Kosmos 2003, 52, 283–298. [Google Scholar]
- Arazi, T.; Kaplan, B.; Fromm, H. A high-affinity calmodulin-binding site in tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol. Biol. 2000, 42, 591–601. [Google Scholar] [CrossRef]
- Geebelen, W.; Vangrosfeld, J.; Adriano, D.C.; Van Poucke, L.C.; Clijsters, H. Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiol. Plant 2002, 115, 377–384. [Google Scholar] [CrossRef]
- Ali, Z.; Mohammad, A.; Riaz, Y.; Quraishi, U.M.; Malik, R.N. Treatment efficiency of a hybrid constructed wetland system for municipal wastewater and its suitability for crop irrigation. Int. J. Phytoremediat. 2018, 20, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- Wani, R.A.; Ganai, B.A.; Shah, M.A.; Uqab, B. Heavy metal uptake potential of aquatic plants through phytoremediation technique—A review. J. Bioremediat. Biodegrad. 2017, 8, 404. [Google Scholar] [CrossRef] [Green Version]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015, 2015, 1–18. [Google Scholar] [CrossRef]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–775. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.J.; Weis, J.S.; Weis, P. Release of metals by the leaves of the salt marsh grasses Spartina alterniflora and Phragmites australis. Estuar Coast. Shelf Sci. 2000, 51, 153–159. [Google Scholar] [CrossRef]
- Aksoy, A.; Demirezen, D.; Duman, F. Bioaccumulation, detection and analysis of heavy metal pollution in Sultan Marsh and its environment. Water Air Soil Pollut. 2005, 164, 241–255. [Google Scholar] [CrossRef]
- Peltier, E.E.; Webb, S.M.; Gaillard, J. Zinc and lead sequestration in an impacted wetland system. Adv. Environ. Res. 2003, 8, 103–112. [Google Scholar] [CrossRef]
- Kastratović, V.; Krivokapić, S.; Durović, D.; Blagojević, N. Seasonal changes in metal accumulation and distribution in the organs of Phragmites australis (common reed) from Lake Skadar, Montenegro. J. Serb. Chem. Soc. 2013, 78, 1241–1258. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Reshi, Z.A.; Shah, M.A.; Rashid, I.; Ara, R.; Andrabi, S.M. Phytoremediation potential of Phragmites australis in Hokersar wetland-a Ramsar site of Kashmir Himalaya. Int. J. Phytoremediat. 2014, 16, 1183–1191. [Google Scholar] [CrossRef]
- Esmaeilzadeh, M.; Karbassi, A.; Moattar, F. Heavy metals in sediments and their bioaccumulation in Phragmites australis in the Anzali wetland of Iran. Chin. J. Oceanol Limn. 2016, 34, 810–820. [Google Scholar] [CrossRef]
- Bonanno, G. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol. Environ. Saf. 2013, 97, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Al-Homaidan, A.A.; Al-Otaibi, T.G.; El-Sheikh, M.A.; Al-Ghanayem, A.A.; Ameen, F. Accumulation of heavy metals in a macrophyte Phragmites australis: Implications to phytoremediation in the Arabian Peninsula wadis. Environ. Monit. Assess. 2020, 192, 1–10. [Google Scholar] [CrossRef]
- Prica, M.; Andrejic, G.; Šinžar-Sekulić, J.; Rakić, T.; Dželetović, Ž. Bioaccumulation of heavy metals in common reed (Phragmites australis) growing spontaneously on highly contaminated mine tailing ponds in Serbia and potential use of this species in phytoremediation. Bot. Serb. 2019, 43, 85–95. [Google Scholar] [CrossRef]
- Šíma, J.; Svoboda, L.; Šeda, M.; Krejsa, J.; Jahodová, J. The fate of selected heavy metals and arsenic in a constructed wetland. J. Environ. Sci. Health Part A 2019, 54, 56–64. [Google Scholar] [CrossRef]
- Bonanno, G.; Vymazal, J.; Cirelli, G.L. Translocation, accumulation and bioindication of trace elements in wetland plants. Sci. Total Environ. 2018, 631, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Shaltout, K.H.; Al-Sodany, Y.M.; Haroun, S.A.; Galal, T.M.; Ayed, H.; Jensen, K. Common reed (Phragmites australis (Cav.) Trin. ex Steudel) as a candidate for predicting heavy metal contamination in Lake Burullus, Egypt: A biomonitoring approach. Ecol. Eng. 2020, 148, 105787. [Google Scholar] [CrossRef]
- Štrbac, S.; Šajnović, A.; Grubin, K.M.; Vasić, N.; Dojčinović, B.P.; Simonović, P.; Jovančićević, B. Metals in sediment and Phragmites australis (common reed) from Tisza River, Serbia. Appl Ecol Env Res. 2014, 12, 105–122. [Google Scholar] [CrossRef]
- Bonanno, G.; Lo Giudice, R. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic. 2010, 10, 639–645. [Google Scholar] [CrossRef]
- Anjum, N.A.; Ahmad, I.; Válega, M.; Pacheco, M.; Figueira, E.; Duarte, A.C.; Pereira, E. Salt marsh macrophyte Phragmites australis strategies assessment for its dominance in mercury-contaminated coastal lagoon (Ria de Aveiro, Portugal). Environ. Sci. Pollut. Res. 2012, 19, 2879–2888. [Google Scholar] [CrossRef]
- Eid, E.M.; Galal, T.M.; Sewelam, N.A.; Talha, N.I.; Abdallah, S.M. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: A comparative assessment. Environ. Sci. Pollut. Res. 2020, 27, 1–14. [Google Scholar] [CrossRef]
- Chernykh, N.A.; Chan, H.K.; Baeva, Y.I.; Grachev, V.A. The regularities of heavy metals and arsenic accumulation in the vegetation of riverside depending on the level of technogenic load. Int. J. Pharm. Sci. Res. 2018, 10, 800–804. [Google Scholar]
- Klink, A. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: Implication for phytoremediation. Environ. Sci. Pollut. Res. 2017, 24, 3843–3852. [Google Scholar] [CrossRef] [PubMed]
- Ganjali, S.; Tayebi, L.; Atabati, H.; Mortazavi, S. Phragmites australis as a heavy metal bioindicator in the Anzali wetland of Iran. Toxicol. Environ. Chem. 2014, 96, 1428–1434. [Google Scholar] [CrossRef]
- Morari, F.; Dal Ferro, N.; Cocco, E. Municipal wastewater treatment with Phragmites australis L. and Typha latifolia L. for irrigation reuse. Boron and heavy metals. Water Air Soil Pollut. 2015, 226, 56. [Google Scholar] [CrossRef]
- Jiang, B.; Xing, Y.; Zhang, B.; Cai, R.; Zhang, D.; Sin, G. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China. Environ. Sci. Pollut. Res. 2018, 25, 31272. [Google Scholar] [CrossRef]
- Kastratović, V.; Krivokapić, S.; Đurović, D. Vanadium uptake, translocation and bioaccumulation in ecosystem of Skadar Lake, Montenegro. Zaštita Materijala 2020, 61, 31–40. [Google Scholar] [CrossRef]
- Catling, P.M.; Mitrow, G.; Haber, E.; Posluszny, U.; Charlton, W.A. The biology of Canadian weeds. 124. Hydrocharis morsus-ranae L. Can. J. Plant Sci. 2003, 83, 1001–1016. [Google Scholar] [CrossRef]
- Ramprasad, C.; Philip, L. Greywater treatment using horizontal, vertical and hybrid flow constructed wetlands. Curr. Sci. 2018, 114, 155–165. [Google Scholar] [CrossRef]
- Zena, F.A.; Qusay, A.A.A.; Rana, F.A.; Saad, H.K. Knowing of accumulation capacity of [Ceratophyllum demersum L. and Hydrilla verticillata plant] when one plant is used to remove the copper element in a laboratory-contaminated water-polluting ecosystem. Curr. Res. Microbiol. Biotechnol. 2018, 6, 1501–1505. [Google Scholar]
- Sasmaz, A.; Dogan, I.M.; Sasmaz, M. Removal of Cr, Ni, and Co in the water of chromium mining areas by using Lemna gibba L. and Lemn. Minor L. Water Environ. J. 2016, 30, 235–242. [Google Scholar] [CrossRef]
- Polechońska, L.; Samecka-Cymerman, A. Cobalt and nickel content in Hydrocharis morsus-ranae and their bioremoval from single- and binary solutions. Environ. Sci. Pollut. Res. 2018, 25, 32044. [Google Scholar] [CrossRef]
- Aurangzeb, N.; Nisa, S.; Bibi, Y.; Javed, F.; Hussain, F. Phytoremediation potential of aquatic herbs from steel foundry effluent. Braz. J. Chem. Eng. 2014, 31, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Lizama-Allende, K.; Jaque, I.; Ayala, J.; Montes-Atenas, G.; Leiva, E. Arsenic removal using horizontal subsurface flow Constructed Wetlands: A sustainable alternative for Arsenic-Rich Acidic Waters. Water 2018, 10, 1447. [Google Scholar] [CrossRef] [Green Version]
- Johnson, U.E.; Adeogun, B.K.; Ugya, A.Y. Efficacy of aquatic plants in industrial effluent treatment using vertical subsurface flow constructed wetland: Studies on Ceratophyllum demersum, Ludwigia abyssinica and Hydrolea glabra. Int. J. Eng. 2019, XVII, 213–217. [Google Scholar]
- Daud, M.; Ali, S.; Abbas, Z.; Zaheer, I.E.; Riaz, M.A.; Malik, A.; Zhu, S.J. Potential of duckweed (Lemna minor) for the phytoremediation of landfill leachate. J. Chem. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Abbas, Z.; Arooj, F.; Ali, S.; Zaheer, I.E.; Rizwan, M.; Riaz, M.A. Phytoremediation of landfill leachate waste contaminants through floating bed technique using water hyacinth and water lettuce. Int. J. Phytoremediat. 2019, 31, 1–12. [Google Scholar] [CrossRef]
- Bello, A.O.; Tawabini, S.; Khalil, A.B.; Boland, C.R.; Saleh, T.A. Phytoremediation of cadmium, lead and nickel contaminated water by Phragmites australis in hydroponic systems. Ecol Eng. 2018, 120, 126–133. [Google Scholar] [CrossRef]
- Parnian, A.; Chorom, M.; Jaafarzadeh, N.; Dinarvand, M. Use of two aquatic macrophytes for the removal of heavy metals from synthetic medium. Ecohydrol. Hydrobiol. 2016, 163, 194–200. [Google Scholar] [CrossRef]
- Al-Khafaji, M.S.; Al-Ani, F.H.; Ibrahim, A.F. Removal of some heavy metals from industrial wastewater by Lemna minor. KSCE J. Civ. Eng. 2018, 22, 1077–1082. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Jayawardana, C.K. Potential of aquatic macrophytes Eichhornia crassipes, Pistia stratiotes and Salvinia molesta in phytoremediation of textile wastewater. J. Water Secur. 2018, 4, 1–8. [Google Scholar] [CrossRef]
- Shirinpur-Valadi, A.; Hatamzadeh, A.; Sedaghathoor, S. Study of the accumulation of contami-nants by Cyperus alternifolius, Lemna minor, Eichhornia crassipes, and Canna × generalis in some contaminated aquatic environments. Environ. Sci. Pollut. Res. 2019, 26, 21340. [Google Scholar] [CrossRef] [PubMed]
- Amare, E.; Kebede, F.; Mulat, W. Wastewater treatment by Lemna minor and Azolla filiculoides in tropical semiarid regions of Ethiopia. Ecol. Eng. 2018, 120, 464–473. [Google Scholar] [CrossRef]
- Tabinda, A.B.; Irfan, R.; Yasar, A.; Iqbal, A.; Mahmood, A. Phytoremediation potential of Pistia stratiotes and Eichhornia crassipes to remove chromium and copper. Environ. Technol. 2018, 41, 1514–1519. [Google Scholar] [CrossRef]
- Gomes, H.I.; Mayes, W.M.; Whitby, P.; Rogerson, M. Constructed wetlands for steel slag leachate management: Partitioning of arsenic, chromium, and vanadium in waters, sediments, and plants. J. Environ. Manag. 2019, 243, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Jenkins, R.O.; Haris, P.I. Extending the geographic reach of the water hyacinth plant in removal of heavy metals from a temperate Northern Hemisphere river. Sci. Rep. 2018, 8, 11071. [Google Scholar] [CrossRef] [PubMed]
- Úsuga, F.A.; Patiño, A.F.; Rodríguez, D.C.; Peñuela, G.A. Kinetic study and removal of contaminants in the leachate treatment using subsurface wetlands at pilot scale. Rev. Ion 2017, 30, 55–63. [Google Scholar]
- Anning, A.K.; Korsah, P.E.; Addo-Fordjour, P. Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands. Int. J. Phytoremediat. 2013, 15, 452–464. [Google Scholar] [CrossRef]
- Tufaner, F. Post-treatment of effluents from UASB reactor treating industrial wastewater sediment by constructed wetland. Environ. Technol. 2018, 41, 912–920. [Google Scholar] [CrossRef]
- Goswami, C.; Majumder, A.; Misra, A.K.; Bandyopadhyay, K. Arsenic uptake by Lemna minor in hydroponic system. Int. J. Phytoremediat. 2014, 16, 1221–1227. [Google Scholar] [CrossRef]
- Chorom, M.; Parnian, A.; Jaafarzadeh, N. Nickel removal by the aquatic plant (Ceratophyllum demersum L.). Int. J. Environ. Sci. Dev. 2012, 3, 372–375. [Google Scholar] [CrossRef]
- Rai, U.; Upadhyay, A.; Singh, N.; Dwivedi, S.; Tripathi, R. Seasonal applicability of horizontal sub-surface flow constructed wetland for trace elements and nutrient removal from urban wastes to conserve Ganga River water quality at Haridwar, India. Ecol. Eng. 2015, 81, 115–122. [Google Scholar] [CrossRef]
- Rana, V.; Maiti, S.K. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland. Environ. Monit Assess. 2018, 190, 328. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.; Muradov, N.; Gujar, A.; Stevenson, T.; Nugegoda, D.; Ball, A.; Mouradov, A. Application of Aquatic Plants for the Treatment of Selenium-Rich Mining Wastewater and Production of Renewable Fuels and Petrochemicals. J. Sustain. Bioenergy Syst. 2014, 4, 97–112. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.H.; Nguyen, B.Q.; Duong, T.T.; Bui, A.T.K.; Nguyen, H.T.A.; Cao, H.T.; Mai, N.T.; Nguyen, K.M.; Pham, T.T.; Kim, K.W. Pilot-scale removal of arsenic and heavy metals from mining wastewater using adsorption combined with constructed wetland. Minerals 2019, 9, 379. [Google Scholar] [CrossRef] [Green Version]
- Ugya, A. The efficiency of Lemna minor L. In the phytoremediation of Rani Stream: A case study of Kaduna Refinery and Petrochemical Company polluted stream. J. Appl. Biol. Biotech. 2015, 3, 11–14. [Google Scholar]
- Foroughi, M.; Najafi, P.; Toghiani, S. Trace elements removal from waster water by Ceratophyllum demersum. JASEM 2011, 15, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, K.M.A.; Mahmoud, H.A.; Sayed, S.S.M. Potential role of Ceratophyllum demersum in bioaccumulation and tolerance of some heavy metals. EJABF 2018, 22, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Türker, O.C.; Yakar, A.; Türe, C.; Saz, Ç. Boron (B) removal and bioelectricity captured from irrigation water using engineered duckweed-microbial fuel cell: Effect of plant species and vegetation structure. Environ. Sci. Pollut. Res. 2019, 26, 31522–31536. [Google Scholar] [CrossRef]
- Kumari, M.; Tripathi, B. Effect of Phragmites australis and Typha latifolia on biofiltration of heavy metals from secondary treated effluent. Int. J. Environ. Sci. Technol. 2015, 12, 1029–1038. [Google Scholar] [CrossRef]
- Kumari, M.; Tripathi, B.D. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicol. Environ. Saf. 2015, 112, 80–86. [Google Scholar] [CrossRef]
- Ranieri, E.; Fratino, U.; Petruzzelli, D.; Borges, A.C. A comparison between Phragmites australis and Helianthus annuus in chromium phytoextraction. Water Air Soil Pollut. 2013, 224, 1465. [Google Scholar] [CrossRef]
- Yeh, T.Y.; Chou, C.C.; Pan, C.T. Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination 2009, 249, 368–373. [Google Scholar] [CrossRef]
- Marchand, L.; Nsanganwimana, F.; Oustrière, N.; Grebenshchykova, Z.; Lizama-Allende, K.; Mench, M. Copper removal from water using a bio-rack system either unplanted or planted with Phragmites australis, Juncus articulatus and Phalaris arundinacea. Ecol. Eng. 2014, 64, 291–300. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, J.; Chopra, A.K. Assessment of plant growth attributes bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent. Int. J. Phytoremediat. 2018, 20, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Dan, A.; Fujii, D.; Soda, S.; Machimura, T.; Ike, M. Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands. Sci. Total Environ. 2017, 578, 566–576. [Google Scholar]
- Cui, H.; Hense, B.A.; Müller, J.; Schröder, P. Short term uptake and transport process for metformin in roots of Phragmites australis and Typha latifolia. Chemosphere 2015, 134, 307–312. [Google Scholar] [CrossRef]
- Petrie, B.; Smith, B.D.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. Multi-residue determination of micropollutants in Phragmites australis from constructed wetlands using microwave assisted extraction and ultra-high-performance liquid chromatography tandem mass spectrometry. Anal. Chim. Acta 2017, 959, 91–101. [Google Scholar] [CrossRef]
- He, Y.; Langenhoff, A.A.; Sutton, N.B.; Rijnaarts, H.H.; Blokland, M.H.; Chen, F.; Huber, C.; Schröder, P. Metabolism of ibuprofen by Phragmites australis: Uptake and phytodegradation. Environ. Sci Technol. 2017, 51, 4576–4584. [Google Scholar] [CrossRef]
- Carvalho, P.N.; Basto, M.C.; Almeida, C.M. Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media. Bioresour Technol. 2012, 116, 497–501. [Google Scholar] [CrossRef]
- Lv, T.; Carvalho, P.N.; Zhang, L.; Zhang, Y.; Button, M.; Arias, C.A.; Weber, K.P.; Brix, H. Functionality of microbial communities in constructed wetlands used for pesticide remediation: Influence of system design and sampling strategy. Water Res. 2017, 110, 241–251. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Santos, F.; Ferreira, A.C.F.; Gomes, C.R.; Basto, M.C.P.; Mucha, A.P. Constructed wetlands for the removal of metals from livestock wastewater–Can the presence of veterinary antibiotics affect removals? Ecotoxicol. Environ. Saf. 2017, 137, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Zambello, E. How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci. Total Environ. 2014, 470–471, 1281–1306. [Google Scholar] [CrossRef] [PubMed]
- Vystavna, Y.; Frkova, Z.; Marchand, L.; Vergeles, Y.; Stolberg, F. Removal efficiency of pharmaceuticals in a full scale constructed wetland in East Ukraine. Ecol. Eng. 2017, 108, 50–58. [Google Scholar] [CrossRef]
- Kankılıç, G.B.; Metin, A.Ü.; Tüzün, İ. Phragmites australis: An alternative biosorbent for basic dye removal. Ecol. Eng. 2016, 86, 85–94. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Bai, J.; Liu, Z.; Song, X.; Yan, D.; Abiyu, A.; Zhao, Z.; Yan, D. High efficiency of inorganic nitrogen removal by integrating biofilmelectrode with constructed wetland: Autotrophic denitrifying bacteria analysis. Bioresour. Technol. 2017, 227, 7–14. [Google Scholar] [CrossRef]
- Liang, Y.; Zhua, H.; Banuelos, G.; Yan, B.; Zhou, Q.; Yu, X.; Cheng, X. Constructed wetlands for saline wastewater treatment: A review. Ecol. Eng. 2017, 98, 275–285. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press: New York, NY, USA, 2008; pp. 6–10. [Google Scholar]
- Moore, M.T.; Rodgers, J.H., Jr.; Cooper, C.M.; Smith, S., Jr. Constructed wetlands for mitigation of atrazine-associated agricultural runoff. Environ. Pollut. 2000, 110, 393–399. [Google Scholar] [CrossRef]
- Kivaisi, A.K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecol. Eng. 2001, 16, 545–560. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. 2010, 45, 61–69. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, R. Performance evaluation of semi continuous vertical flow constructed wetlands (SC-VF-CWs) for municipal wastewater treatment. Bioresour. Technol. 2017, 232, 321–330. [Google Scholar] [CrossRef]
- Vymazal, J. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. 2013, 61, 582–592. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- Halalsheh, M.M.; Rumman, M.Z.A.; Field, J.A. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket-anaerobic filter system. J. Environ. Sci. Health 2010, 45, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Almuktar, S.A.; Abed, S.N.; Scholz, M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environ. Sci. Pollut. Res. 2018, 25, 23595–23623. [Google Scholar] [CrossRef] [Green Version]
- Nivala, J.; Knowles, P.; Dotro, G.; García, J.; Wallace, S. Clogging in subsurface-flow treatment wetlands: Measurement, modeling and management. Water Res. 2012, 46, 1625–1640. [Google Scholar] [CrossRef] [PubMed]
- Fonder, N.; Headley, T. Systematic classification, nomenclature and reporting for constructed treatment wetlands. In Water and Nutrient Management in Natural and Constructed Wetlands; Springer: Berlin/Heidelberg, Germany, 2010; pp. 191–219. [Google Scholar]
- Vymazal, J.; Kröpfelová, L. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 14, pp. 328–451. [Google Scholar]
- Chung, A.K.C.; Wu, Y.; Tam, N.F.Y.; Wong, M.H. Nitrogen and phosphate mass balance in a subsurface flow constructed wetland for treating municipal wastewater. Ecol. Eng. 2008, 32, 81–89. [Google Scholar] [CrossRef]
- Rehman, F.; Pervez, A.; Mahmood, Q.; Nawab, B. Wastewater remediation by optimum dissolve oxygen enhanced by macrophytes in constructed wetlands. Ecol. Eng. 2017, 102, 112–126. [Google Scholar] [CrossRef]
- Al-Isawi, R.; Ray, S.; Scholz, M. Comparative study of domestic wastewater treatment by mature vertical-flow constructed wetlands and artificial ponds. Ecol. Eng. 2017, 100, 8–18. [Google Scholar] [CrossRef]
- Vystavna, Y.; Yakovlev, V.; Diadin, D.; Vergeles, Y.; Stolberg, F. Hydrochemical characteristics and water quality assessment of surface and ground waters in the transboundary (Russia/Ukraine) Seversky Donets basin. Environ. Earth Sci. 2015, 74, 585–596. [Google Scholar] [CrossRef]
- Chow, K.L.; Man, Y.B.; Tam, N.F.Y.; Liang, Y.; Wong, M.H. Removal of decabromodiphenyl ether (BDE-209) using a combined system involving TiO2 photocatalysis and wetland plants. J. Hazard. Mater. 2017, 322, 263–269. [Google Scholar] [CrossRef]
- Du Laing, G.; Tack, F.M.G.; Verloo, M.G. Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Anal. Chim. Acta 2003, 497, 191–198. [Google Scholar] [CrossRef]
- Mulkeen, C.; Williams, C.; Gormally, M.; Healy, M. Seasonal patterns of metals and nutrients in Phragmites australis (Cav.) Trin. ex Steudel in a constructed wetland in the west of Ireland. Ecol. Eng. 2017, 107, 192–197. [Google Scholar] [CrossRef]
- Healy, M.G.; Newell, J.; Rodgers, M. Harvesting effects on biomass and nutrient retention in Phragmites australis in a free-water surface constructed wetland in western Ireland. Biol. Environ. Proc. R. Ir. Acad. 2007, 107, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, A.; Scholz, M. Nutrient accumulation in Typha latifolia L. and sediment of a representative integrated constructed wetland. Water Air Soil Pollut. 2011, 219, 329–341. [Google Scholar] [CrossRef]
- Vymazal, J.; Březinová, T. Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review. Chem. Eng. Sci. 2016, 290, 232–242. [Google Scholar] [CrossRef]
- Bragato, C.; Brix, H.; Malagoli, M. Accumulation of nutrients and heavy metals in Phragmites australis (cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ. Pollut. 2006, 144, 967–975. [Google Scholar] [CrossRef]
- Toscano, A.; Marzo, A.; Milani, M.; Cirelli, G.L.; Barbagallo, S. Comparison of removal efficiencies in Mediterranean pilot constructed wetlands vegetated with different plant species. Ecol. Eng. 2015, 75, 155–160. [Google Scholar] [CrossRef]
- Massoudinejad, M.; Alavi, N.; Ghaderpoori, M.; Musave, F.; Massoudinejad, S. Feasibility removal of BOD5, COD, and ammonium by using Gambusia fish and Phragmites australis in HSSF wetland. Int. J. Environ. Sci. Technol. 2019, 16, 5891–5900. [Google Scholar] [CrossRef]
- Tara, N.; Arslan, M.; Hussain, Z.; Iqbal, M.; Khan, Q.; Afzal, M. On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. J. Clean. Prod. 2019, 217, 541–548. [Google Scholar] [CrossRef]
- Dębska, A.; Jóźwiakowski, K.; Gizińska-Górna, M.; Pytka, A.; Marzec, M.; Sosnowska, B.; Pieńko, A. The efficiency of pollution removal from domestic wastewater in constructed wetland systems with vertical flow with common reed and Glyceria maxima. J. Ecol. Eng. 2015, 16, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Andreo-Martínez, P.; García-Martínez, N.; Quesada-Medina, J.; Almela, L. Domestic wastewaters reuse reclaimed by an improved horizontal subsurface-flow constructed wetland: A case study in the southeast of Spain. Bioresour Technol. 2017, 233, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Çakir, R.; Gidirislioglu, A.; Çebi, U. A study on the effects of different hydraulic loading rates (HLR) on pollutant removal efficiency of subsurface horizontal flow constructed wetlands used for treatment of domestic wastewaters. J. Environ. Manag. 2015, 164, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Kalipci, E. Investigation of decontamination effect of Phragmites australis for Konya domestic wastewater treatment. J. Appl. Res. Med. Aromat. Plants 2011, 5, 6571–6577. [Google Scholar] [CrossRef]
- Lopez, D.; Sepúlveda, M.; Vidal, G. Phragmites australis and Schoenoplectus californicusin constructed wetlands: Development and nutrient uptake. J. Soil Sci. Plant. Nutr. 2016, 16, 763–777. [Google Scholar]
- Shahamat, Y.D.; Asgharnia, H.; Kalankesh, L.R. Data on wastewater treatment plant by using wetland method, Babol, Iran. Data Brief 2018, 16, 1056–1061. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; Hellal, M.S. Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus. Ecol. Eng. 2012, 47, 209–213. [Google Scholar] [CrossRef]
- Fan, J.; Liang, S.; Zhang, B.; Zhang, J. Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy. Environ. Sci. Pollut. Res. 2013, 20, 2448. [Google Scholar] [CrossRef]
- García-Ávila, F.; Patiño-Chávez, J.; Zhinín-Chimbo, F.; Donoso-Moscoso, S.; del Pino, L.F.; Avilés-Añazco, L. Performance of Phragmites Australis and Cyperus Papyrus in the treatment of municipal wastewater by vertical flow subsurface constructed wetlands. Int. Soil Water Conserv. Res. 2019, 7, 286–296. [Google Scholar] [CrossRef]
- Mietto, A.; Borin, M. Performance of two small subsurface flow constructed wetlands treating domestic wastewaters in Italy. Environ. Technol. 2013, 34, 1085–1095. [Google Scholar] [CrossRef]
- Abdelhakeem, S.G.; Aboulroos, S.A.; Kamel, M.M. Performance of a vertical subsurface flow constructed wetland under different operational conditions. J. Adv. Res. 2016, 7, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Barco, A.; Borin, M. Treatment performance and macrophytes growth in a restored hybrid constructed wetland for municipal wastewater treatment. Ecol. Eng. 2017, 107, 160–171. [Google Scholar] [CrossRef]
- Rivas, A.; Barceló-Quintal, I.; Moeller, G.E. Pollutant removal in a multistage municipal wastewater treatment comprised of constructed wetlands and a maturation pond, in a temperate climate. Water Sci. Technol. 2011, 64, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Greenway, M.; Tonderski, K.; Brix, H.; Mander, Ü. Constructed Wetlands for Wastewater Treatment. In Wetlands and Natural Resource Management. Ecological Studies (Analysis and Synthesis); Verhoeven, J.T.A., Beltman, B., Bobbink, R., Whigham, D.F., Eds.; Springer: Berlin, Germany, 2006; Volume 190, pp. 69–96. [Google Scholar]
The ecotype C3–C4 | |
C3 | C4 |
Aqueous conditions | Dry conditions |
Temperature | |
T < 22 °C | T > 22 °C |
Photorespiration | |
Can exceed 30% | Hardly achieve 5% |
Mycorrhization | |
Less Mycorrhization | Higher Mycorrhization |
Biomass | |
Less Biomass Accumulation | Higher Biomass Accumulation |
Water use efficiency | |
Less efficient | Highly efficient |
Nitrogen use efficiency | |
Less efficient | Highly efficient |
Stomatal conductance | |
High | Lower |
Greenhouse gases—CO2 | |
Lower | High |
Greenhouse gases—CH4 | |
High | Lower |
Element | Organs | Type of Systems | Climatic Conditions | References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Root | Rhizome | Stem | Leaf | Climate Zone | Aquatic Ecosystem Type | °C | Precipitation (mm) | Flow (m3/s) | Month | |||
Cr | 6.87 min 3.32 max 10.3 | - | 1.77 min 1.05 max 2.68 | 0.66 min 0.28 max 1.24 | natural | subtropical climate with a Mediterranean variety | lake | 8.7 | 1245 | - | April June August October | [108] |
5.32 min 3.81 max 6.84 | 5.32 min 3.81 max 6.84 | 0.571 min 0.241 max 0.901 | 0.571 min 0.241 max 0.901 | natural | moderate warm climate | lake | 8.7 | 397.1 | - | April | [8] | |
11.06 ± 0.52 | - | 8.82 ± 0.09 | - | natural | Mediterranean climate | wetland | 13.6 | - | - | - | [109] * | |
Co | 2.805 min 0.60 max 5.57 | - | 0.112 min 0.06 max 0.14 | 0.302 min 0.14 max 0.46 | natural | subtropical climate with a Mediterranean variety | lake | - | - | - | April June August October | [108] |
1.1 | - | 0.22 | 0.31 | natural | subtropical continental climate | wetland | - | 1280 | - | April | [110] | |
6.72 ± 0.20 | - | 5.09 ± 0.036 | - | natural | Mediterranean climate | wetland | 13.6 | - | - | - | [109] * | |
Ni | 4.78 ± 0.67 | 3.89 ± 0.56 | 0.79 ± 0.06 | 2.59 ± 0.18 | natural | Mediterranean subtropical climate | shallow water coastal | 12.0–18.0 | 400–1000 | - | - | [97] |
8.36 ± 0.98 | 0.79 ± 0.06 | - | 2.21 ± 0.36 | natural | Mediterranean subtropical climate | river | 19.3 | 622 | 1.0 | October | [111] | |
41.2 min 23.5 max 63.1 | 12.03 min 1.8 max 31.4 | 9.65 min 2.5 max 24.9 | 12.31 min 2.9 max 28.3 | natural | extremely dry climate | wetland | 25.4 | 111 | - | March | [112] | |
Cu | 298.6 ± 2.1 | 24.9 ± 3.8 | 12.6 ± 0.15 | 11.3 ± 1.05 | natural | moderate warm climate | mine tailing pond | 11.3 | 631 | - | season summer | [113] |
18.8 min 11.2 max 26.4 | 18.8 min 11.2 max 26.4 | 22.3 min 12.0 max 12.3 | 22.3 min 12.0 max 12.3 | natural | moderate warm climate | wetland | 21 | 690 | - | August | [114] | |
67.08 min 12.3 max 138.6 | 14.38 min 7.1 max 24.8 | 13.41 min 7.2 max 21.5 | 14.5 min 10.9 max 17.4 | natural | extremely dry climate | wetland | 25.4 | 111 | - | March | [112] | |
Zn | 135 ± 15.7 | - | 21.4 ± 3.32 | 66.5 ± 8.43 | natural | Mediterranean subtropical climate | coastal wetland | 18.0 | - | 0.50–2.0 | April October | [115] |
76.0 min 55.0 max 131.0 | - | 49.0 min 27.0 max 69.0 | 39.5 min 39.0 max 106.0 | natural | dry tropical climate | lake | 21.3 | 18 | - | - | [116] * | |
- | 21.85 min 17.28 max 27.93 | 15.46 min 9.10 max 21.02 | 17.89 min 14.38 max 20.45 | natural | moderate warm climate | river | 11.3 | 631 | - | September | [117] | |
Cd | 1.13 ± 0.08 | 1.00 ± 0.08 | 0.68 ± 0.06 | 1.05 ± 0.10 | natural | Mediterranean subtropical climate | river | 11.8–26.8 | 430 | - | August September | [118] |
5.64 ± 5.64 | 0.54 ± 0.09 | 0.0 ± 0 | 0.05 ± 0.02 | natural | moderate warm climate | mine tailing pond | 11.3 | 631 | - | season summer | [113] | |
5.63 min 1.8 max 4.3 | 2.3 min 0.5 max 3.8 | 2.18 min 0.5 max 4.6 | 1.8 min 0.3 max 3.8 | natural | extremely dry climate | wetland | 25.4 | 111 | - | March | [112] | |
Hg | 3.06 ± 0.55 | - | 0.97 ± 0.04 | 1.84 ± 0.21 | natural | Mediterranean subtropical climate | river | 19.3 | 622 | 1.0 | October | [111] |
0.91 ± 0.11 | 0.74 ± 0.09 | 0.27 ± 0.03 | 0.54 ± 0.06 | natural | Mediterranean subtropical climate | shallow water coastal | 12.0–18.0 | 400–1000 | - | - | [97] | |
0.230 min 0.189 max 0.321 | 0.055 min 0.011 max 0.089 | - | 0.0342 min 0.019 max 0.067 | natural | moderate warm climate | shallow coastal lagoon | 14.4 | 1178 | - | - | [119] | |
Pb | 8.45 ± 1.12 | - | 0.66 ± 0.07 | 2.05 ± 0.24 | natural | Mediterranean subtropical climate | coastal wetland | 18.0 | 600 | 0.50–2.0 | April October | [115] |
117.3 ± 11.7 | 17.5 ± 2.1 | 11.2 ± 2.0 | 5.8 ± 0.9 | natural | moderate warm climate | mine tailing pond | 11.3 | 631 | - | summer season | [113] | |
272.4 | 263.1 | 257.5 | 255.9 | natural | extremely dry climate | drainage | 25.4 | 111 | 20–80 | July | [120] | |
As | 2.85 ± 0.34 | - | 0.23 ± 0.04 | 0.44 ± 0.66 | natural | Mediterranean subtropical climate | coastal wetland | 18.0 | 600 | 0.50–2.0 | April October | [115] |
9.09 ± 2.89 | - | 6.06 ± 1.55 | - | natural | moderately climate zone warm | river | - | - | - | March October | [121] | |
- | 2.97 min 0.53 max 6.56 | 0.97 min 0.23 max 1.78 | 0.49 min 0.00 max 0.98 | natural | moderate warm climate | river | 11.3 | 631 | - | September | [117] | |
Mn | 784 ± 240 | 76.3 ± 23.3 | 61.1 ± 18.7 | 509 ± 156 | natural | moderate warm climate | lake | 8.4 | 551 | - | July August | [122] |
181.1 min 85.7 max 378 | 34.2 min 5.00 max 75.0 | 36.1 min 7.3 max 93.0 | 108.5 min 16.7 max 248.2 | natural | extremely dry climate | wetland | 25.4 | 111 | - | March | [112] | |
558 ± 84.3 | 157 ± 24.6 | 44.5 ± 7.23c | 336 ± 56.2 | natural | Mediterranean subtropical climate | shallow water coastal | 12.0–18.0 | 400–1000 | - | - | [97] | |
Fe | 1481 ± 438 | 709 ± 205 | 41.6 ± 12.0 | 101 ± 29.3 | natural | moderate warm climate | lake | 8.4 | 551 | - | July August | [122] |
459.7 ± 23.02 | - | 31.3 ± 4.3 | 122.9 ± 9.2 | natural | subtropical continental climate | wetland | - | - | - | December | [123] | |
4303 min 3003 max 5688 | 440.2 min 299.9 max 667.9 | 260.6 min 122.7 max 333.3 | 326.8 min 200.3 max 380.3 | natural | extremely dry climate | wetland | 25.4 | 111 | - | March | [112] | |
Al | 3153 ± 264 | 513 ± 64.21 | 67.30 ± 8.55 | 389 ± 27.31 | natural | Mediterranean subtropical climate | river | 18.1 | 430 | - | August September | [29] |
2570 ± 420 | - | 86.6 ± 10.3 | 345 ± 29.8 | natural | Mediterranean subtropical climate | river | 19.3 | 622 | 1.0 | October | [111] | |
2394.20 ± 74 | - | 706.7 ± 55.6 | - | natural | Mediterranean climate | wetland | 13.6 | - | - | - | [109] * | |
Se | <0.50 | <0.50 | <0.50 | <0.50 | natural | Mediterranean subtropical climate | river | 18.1 | 430 | - | August September | [29] |
- | 1.12 min 0.89 max 1.44 | 1.25 min 1.91 max 0.86 | 1.26 min 1.04 max 1.61 | natural | moderate warm climate | river | 11.3 | 631 | - | September | [117] | |
V | 9.09 ± 0.98 | - | <0.14 | 0.46 ± 0.1 | mesocosm | Mediterranean subtropical climate | constructed wetland | - | - | - | May September | [124] * |
- | 0.75 | - | - | natural | subtropical continental monsoon climate | river | 16.0 | 820 | - | July September | [125] | |
3.01 min 0.29 max 6.91 | - | 0.25 min 0.00 max 0.18 | 0.05 min 0.00 max 0.15 | natural | subtropical climate with a Mediterranean variety | lake | 8.7 | 1245 | - | April October | [126] | |
B | 17.60 ± 2.52 | 37.40 ± 4.93 | 11.0 ± 0.88 | 25.90 ± 2.94 | natural | subtropical climate | river | 18.1 | 430 | - | August | [29] |
- | 0.00 | 0.00 | 0.81 min 0.16 max 2.10 | natural | moderate warm climate | river | 11.3 | 631 | - | September | [117] |
Metal | Aquatic Plants | Removal Rate | Concentration Metal in the Environment mg/L | pH | References |
---|---|---|---|---|---|
Cu | Phragmites australis | Cu—96.4% | 0.041–0.051 | 7.24–8.34 | [128] |
Typha latifolia | Cu—67.73% | 0.240 | 7.11–8.48 | [101] | |
Hippuris vulgaris | Cu—0.8–34.2% | 0.120 | 7.2 | [12] | |
Ceratophyllum demersum | Cu—79.8% | 40 | - | [129] | |
Lemna minor | Cu—87% | 0.067 ± 0.002 | 7.17–7.52 | [130] | |
Hydrocharis morsus-ranae | Cu—85% | 0.120 | 6.3–7.2 | [131] | |
Pistia stratiotes | Cu—53.20% | 5 | - | [26] | |
Eichhornia crassipes | Cu—78.6% | 0.001 | 7.4 | [132] | |
Pb | Phragmites australis | Pb > 99% | 0.890 | 4.2–7.5 | [133] |
Typha latifolia | Pb—83.83% | 10 | - | [25] | |
Hippuris vulgaris | Pb—0.3–6.7% | 0.600 | 7.2 | [12] | |
Ceratophyllum demersum | Pb—48.54% | 0.210 | 6.2 | [134] | |
Lemna minor | Pb—78% | 0.830 | 7.9 | [135] | |
Hydrocharis morsus-ranae | Pb—95% | 0.600 | 6.3–7.2 | [131] | |
Pistia stratiotes | Pb—43.02–76.66% | 0.860 | 8.4 | [136] | |
Eichhornia crassipes | Pb—36.09–84.41% | 0.860 | 8.7 | [136] | |
Cd | Phragmites australis | Cd—89.12% | 5 | - | [137] |
Typha latifolia | Cd—89.12% | 5 | - | [25] | |
Hippuris vulgaris | Cannot be found in the available literature | ||||
Ceratophyllum demersum | Cd—82% | 0.360 | 7.0 | [138] | |
Lemna minor | Cd—44.93% | 0.023 | <7 | [139] | |
Hydrocharis morsus-ranae | Cannot be found in the available literature | ||||
Pistia stratiotes | Cd—47.4% | 0.190 | 6.5–7.7 | [140] | |
Eichhornia crassipes | Cd—20% | 10 | 6.8–7.5 | [141] | |
Cr | Phragmites australis | Cr—96.61% | 15 | - | [25] |
Typha latifolia | Cr—78.07% | 0.150 | 7.1–8.4 | [101] | |
Hippuris vulgaris | Cannot be found in the available literature | ||||
Ceratophyllum demersum | Cr—56.4% | 0.210 | 6.20 | [134] | |
Lemna minor | Cr—72–91% | 0.062 | 6.5–7.5 | [142] | |
Hydrocharis morsus-ranae | Cannot be found in the available literature | ||||
Pistia stratiotes | Cr—77.3% | 2 | - | [143] | |
Eichhornia crassipes | Cr—80.9% | 2 | - | [143] | |
Zn | Phragmites australis | Zn—98% | 0.100 | >12 | [144] |
Typha latifolia | Zn—66.2% | 0.945 | 7.3 | [132] | |
Hippuris vulgaris | Zn—15.6–29.2% | 2.400 | 7.2 | [12] | |
Ceratophyllum demersum | Zn—58.65% | 1.850 | 6.2 | [134] | |
Lemna minor | Zn—83% | 1.470 | 7.9 | [135] | |
Hydrocharis morsus-ranae | Zn—95% | 2.400 | 6.3–7.2 | [131] | |
Pistia stratiotes | Zn—26.99–79.57% | 1.670 | 8.4 | [136] | |
Eichhornia crassipes | Zn—62% | 4.050 | 7.0–7.8 | [145] | |
Hg | Phragmites australis | Hg—37.8–92.9% | 5.920 | 8.36 | [146] |
Typha latifolia | Hg—46.63% | 0.050 | - | [147] | |
Hippuris vulgaris | Cannot be found in the available literature | ||||
Ceratophyllum demersum | Cannot be found in the available literature | ||||
Lemna minor | Hg—82.84% | 2 | 7.48 | [148] | |
Hydrocharis morsus-ranae | Cannot be found in the available literature | ||||
Pistia stratiotes | Hg—62.14% | 5 | - | [26] | |
Eichhornia crassipes | Hg—16.52% | 0.450 | 5.5 | [27] | |
As | Phragmites australis | As > 99% | 2.030 | 4.2–7.5 | [133] |
Typha latifolia | Cannot be found in the available literature | ||||
Hippuris vulgaris | Cannot be found in the available literature | ||||
Ceratophyllum demersum | Cannot be found in the available literature | ||||
Lemna minor | As—70% | 0.500 | - | [149] | |
Hydrocharis morsus-ranae | Cannot be found in the available literature | ||||
Pistia stratiotes | Cannot be found in the available literature | ||||
Eichhornia crassipes | As—74% | 0.596 | 7.4 | [132] | |
Ni | Phragmites australis | Ni—98% | 0.100 | >12 | [144] |
Typha latifolia | Ni—76% | 1.210 | 7.9 | [135] | |
Hippuris vulgaris | Cannot be found in the available literature | ||||
Ceratophyllum demersum | Ni—52.5% | 2 | 7 | [150] | |
Lemna minor | Ni—76% | 0.112 | <7 | [139] | |
Hydrocharis morsus-ranae | Ni—91.4% | 0.057 | 6.9–7.2 | [131] | |
Pistia stratiotes | Ni—28.96–68.79% | 1.310 | 8.4 | [136] | |
Eichhornia crassipes | Ni—25.68–81.56 | 1.830 | 8.7 | [136] | |
Co | Phragmites australis | Co—76.86% | 0.044 | 6.6 | [151] |
Typha latifolia | Co—82.2–84.2% | 0.004 | 7.0–7.5 | [152] | |
Hippuris vulgaris | Cannot be found in the available literature | ||||
Ceratophyllum demersum | Cannot be found in the available literature | ||||
Lemna minor | Co—87% | 0.0002 | - | [153] | |
Hydrocharis morsus-ranae | Co—98.6% | 0.0286 | 6.9–7.2 | [131] | |
Pistia stratiotes | Cannot be found in the available literature | ||||
Eichhornia crassipes | Cannot be found in the available literature | ||||
Mn | Phragmites australis | Mn—96.9% | 2.560–3.750 | 7.3 | [154] |
Typha latifolia | Mn—65.24% | 0.150 | 7.1–8.4 | [101] | |
Hippuris vulgaris | Mn—10.4–37.9% | 1.200 | 7.2 | [12] | |
Ceratophyllum demersum | Mn—81% | 0.050 | 6.2 | [134] | |
Lemna minor | Mn—94.3% | 5 | 6.29–7.7 | [155] | |
Hydrocharis morsus-ranae | Mn—90% | 1.200 | 6.3–7.2 | [131] | |
Pistia stratiotes | Mn—94.3% | 5 | 6.29–7.7 | [155] | |
Eichhornia crassipes | Mn—22% | 4.050 | 7.0–7.8 | [145] | |
Fe | Phragmites australis | Fe > 98% | 61.540 | 4.2–7.5 | [133] |
Typha latifolia | Fe—70.09% | 0.950 | 7.1–8.4 | [101] | |
Hippuris vulgaris | Fe—4.2–104.2% | 2.400 | 7.2 | [12] | |
Ceratophyllum demersum | Fe—67.5% | 0.020 | 6.28 | [156] | |
Lemna minor | Fe—77% | 1.170 | 7.9 | [135] | |
Hydrocharis morsus-ranae | Fe—88% | 2.400 | 6.3–7.2 | [131] | |
Pistia stratiotes | Fe—83.20% | 5 | - | [26] | |
Eichhornia crassipes | Fe—61% | 0.320 | 7.4 | [132] | |
Al | Phragmites australis | Al—96% | 1 | 8.7 | [124] |
Typha latifolia | Al—96% | 1 | 8.8 | [124] | |
Hippuris vulgaris | Cannot be found in the available literature | ||||
Ceratophyllum demersum | Al—95.89% | 3 | 7.0 | [157] | |
Lemna minor | Cannot be found in the available literature | ||||
Hydrocharis morsus-ranae | Cannot be found in the available literature | ||||
Pistia stratiotes | Al—73% | 0.320 | 7.4 | [149] | |
Eichhornia crassipes | Al—63% | 4.050 | 7.0–7.8 | [145] | |
V | Phragmites australis | V—50% | 0.095 | - | [124] |
Typha latifolia | Cannot be found in the available literature | ||||
Hippuris vulgaris | Cannot be found in the available literature | ||||
Ceratophyllum demersum | V—50% | 0.095 | - | [124] | |
Lemna minor | Cannot be found in the available literature | ||||
Hydrocharis morsus-ranae | Cannot be found in the available literature | ||||
Pistia stratiotes | Cannot be found in the available literature | ||||
Eichhornia crassipes | Cannot be found in the available literature | ||||
B | Phragmites australis | B—40% | 1 | 8.7 | [124] |
Typha latifolia | B—12.5–21.4% | 25 | 6.0 | [124] | |
Hippuris vulgaris | Cannot be found in the available literature | ||||
Ceratophyllum demersum | Cannot be found in the available literature | ||||
Lemna minor | B—12% | 32 | 7.8 | [158] | |
Hydrocharis morsus-ranae | Cannot be found in the available literature | ||||
Pistia stratiotes | Cannot be found in the available literature | ||||
Eichhornia crassipes | Cannot be found in the available literature |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milke, J.; Gałczyńska, M.; Wróbel, J. The Importance of Biological and Ecological Properties of Phragmites Australis (Cav.) Trin. Ex Steud., in Phytoremendiation of Aquatic Ecosystems—The Review. Water 2020, 12, 1770. https://doi.org/10.3390/w12061770
Milke J, Gałczyńska M, Wróbel J. The Importance of Biological and Ecological Properties of Phragmites Australis (Cav.) Trin. Ex Steud., in Phytoremendiation of Aquatic Ecosystems—The Review. Water. 2020; 12(6):1770. https://doi.org/10.3390/w12061770
Chicago/Turabian StyleMilke, Justyna, Małgorzata Gałczyńska, and Jacek Wróbel. 2020. "The Importance of Biological and Ecological Properties of Phragmites Australis (Cav.) Trin. Ex Steud., in Phytoremendiation of Aquatic Ecosystems—The Review" Water 12, no. 6: 1770. https://doi.org/10.3390/w12061770
APA StyleMilke, J., Gałczyńska, M., & Wróbel, J. (2020). The Importance of Biological and Ecological Properties of Phragmites Australis (Cav.) Trin. Ex Steud., in Phytoremendiation of Aquatic Ecosystems—The Review. Water, 12(6), 1770. https://doi.org/10.3390/w12061770