# Tsunami Propagation and Flooding in Sicilian Coastal Areas by Means of a Weakly Dispersive Boussinesq Model

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. The Numerical Model

## 3. Validation of the Numerical Model

#### 3.1. The Carrier and Greenspan Numerical Solution

#### 3.2. The Fringing Reef Experiment

## 4. Results and Discussions of a Real Case of Tsunami Propagation

## 5. Concluding Remarks

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Molina, R.; Manno, G.; Lo Re, C.; Anfuso, G.; Ciraolo, G. Storm Energy Flux Characterization along the Mediterranean Coast of Andalusia (Spain). Water
**2019**, 11, 509. [Google Scholar] [CrossRef] [Green Version] - Molina, R.; Manno, G.; Lo Re, C.; Anfuso, G.; Ciraolo, G. A Methodological Approach to Determine Sound Response Modalities to Coastal Erosion Processes in Mediterranean Andalusia (Spain). J. Mar. Sci. Eng.
**2020**, 8, 154. [Google Scholar] [CrossRef] [Green Version] - Manno, G.; Lo Re, C.; Ciraolo, G. Uncertainties in shoreline position analysis: The role of run-up and tide in a gentle slope beach. Ocean Sci.
**2017**, 13, 661–671. [Google Scholar] [CrossRef] [Green Version] - Lo Re, C.; Musumeci, R.E.; Foti, E. A shoreline boundary condition for a highly nonlinear Boussinesq model for breaking waves. Coast. Eng.
**2012**, 60, 41–52. [Google Scholar] [CrossRef] - Roeber, V.; Cheung, K.F.; Kobayashi, M.H. Shock-capturing Boussinesq-type model for nearshore wave processes. Coast. Eng.
**2010**, 57, 407–423. [Google Scholar] [CrossRef] - Roeber, V.; Cheung, K.F. Boussinesq-type model for energetic breaking waves in fringing reef environments. Coast. Eng.
**2012**, 70, 1–20. [Google Scholar] [CrossRef] - Zhang, H.; Zhang, M.; Ji, Y.; Wang, Y.; Xu, T. Numerical study of tsunami wave run-up and land inundation on coastal vegetated beaches. Comput. Geosci.
**2019**, 132, 9–22. [Google Scholar] [CrossRef] - Marivela, R.; Weiss, R.; Synolakis, C. The Temporal and Spatial Evolution of Momentum, Kinetic Energy and Force in Tsunami Waves during Breaking and Inundation. arXiv
**2016**, arXiv:1611.04514. [Google Scholar] - Manoj Kumar, G.; Sriram, V.; Didenkulova, I. A hybrid numerical model based on FNPT-NS for the estimation of long wave run-up. Ocean Eng.
**2020**, 202, 107181. [Google Scholar] [CrossRef] - Wei, Z.; Dalrymple, R.A.; Rustico, E.; Hérault, A.; Bilotta, G. Simulation of Nearshore Tsunami Breaking by Smoothed Particle Hydrodynamics Method. J. Waterway Port Coast. Ocean Eng.
**2016**, 142, 05016001. [Google Scholar] [CrossRef] - Qin, X.; Motley, M.; LeVeque, R.; Gonzalez, F.; Mueller, K. A comparison of a two-dimensional depth-averaged flow model and a three-dimensional RANS model for predicting tsunami inundation and fluid forces. Nat. Hazards Earth Syst. Sci.
**2018**, 18, 2489–2506. [Google Scholar] [CrossRef] [Green Version] - Qu, K.; Ren, X.; Kraatz, S. Numerical investigation of tsunami-like wave hydrodynamic characteristics and its comparison with solitary wave. Appl. Ocean Res.
**2017**, 63, 36–48. [Google Scholar] [CrossRef] - Arico, C.; Lo Re, C. A non-hydrostatic pressure distribution solver for the nonlinear shallow water equations over irregular topography. Adv. Water Resour.
**2016**, 98, 47–69. [Google Scholar] [CrossRef] [Green Version] - Presti, V.L.; Antonioli, F.; Auriemma, R.; Ronchitelli, A.; Scicchitano, G.; Spampinato, C.; Anzidei, M.; Agizza, S.; Benini, A.; Ferranti, L.; et al. Millstone coastal quarries of the Mediterranean: A new class of sea level indicator. Quat. Int.
**2014**, 332, 126–142. [Google Scholar] [CrossRef] - Samaras, A.; Karambas, T.V.; Archetti, R. Simulation of tsunami generation, propagation and coastal inundation in the Eastern Mediterranean. Ocean Sci.
**2015**, 11, 643–655. [Google Scholar] [CrossRef] [Green Version] - Schambach, L.; Grilli, S.T.; Kirby, J.T.; Shi, F. Landslide Tsunami Hazard Along the Upper US East Coast: Effects of Slide Deformation, Bottom Friction, and Frequency Dispersion. Pure Appl. Geophys.
**2019**, 176, 3059–3098. [Google Scholar] [CrossRef] - Mueller, C.; Micallef, A.; Spatola, D.; Wang, X. The Tsunami Inundation Hazard of the Maltese Islands (Central Mediterranean Sea): A Submarine Landslide and Earthquake Tsunami Scenario Study. Pure Appl. Geophys.
**2020**, 177, 1617–1638. [Google Scholar] [CrossRef] - Suardana, A.M.A.P.; Sugianto, D.N.; Helmi, M. Study of Characteristics and the Coverage of Tsunami Wave Using 2D Numerical Modeling in the South Coast of Bali, Indonesia. Int. J. Oceans Oceanogr.
**2019**, 13, 237–250. [Google Scholar] - Papadopoulos, G.A.; Fokaefs, A. Strong tsunamis in the Mediterranean Sea: A re-evaluation. ISET J. Earthq. Technol.
**2005**, 42, 159–170. [Google Scholar] - DISS Working Group. Database of Individual Seismogenic Sources (DISS). In A Compilation of Potential Sources for Earthquakes Larger than M 5.5 in Italy and Surrounding Areas; Istituto Nazionale di Geofisica e Vulcanologia: Rome, Italy, 2018. [Google Scholar] [CrossRef]
- Caputo, R.; Pavlides, S. The Greek Database of Seismogenic Sources (GreDaSS), version 2.0.0: A Compilation of Potential Seismogenic Sources (Mw > 5.5) in the Aegean Region; University of Ferrara: Ferrara, Italy, 2013. [Google Scholar] [CrossRef]
- Gutscher, M.A.; Roger, J.; Baptista, M.A.; Miranda, J.M.; Tinti, S. Source of the 1693 Catania earthquake and tsunami (southern Italy): New evidence from tsunami modeling of a locked subduction fault plane. Geophys. Res. Lett.
**2006**, 33, L08309. [Google Scholar] [CrossRef] [Green Version] - Catalano, R.; Doglioni, C.; Merlini, S. On the mesozoic Ionian basin. Geophys. J. Int.
**2001**, 144, 49–64. [Google Scholar] [CrossRef] [Green Version] - Papadopoulos, G.A.; Daskalaki, E.; Fokaefs, A.; Giraleas, N. Tsunami hazard in the Eastern Mediterranean sea: Strong earthquakes and tsunamis in the west Hellenic arc and trench system. J. Earthq. Tsunami
**2010**, 4, 145–179. [Google Scholar] [CrossRef] - LeVeque, R.J. Numerical Methods for Conservation Laws; Birkhäuser Boston: Basel, Switzerland, 2013. [Google Scholar]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Stelling, G.S.; Duinmeijer, S.P.A. A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Methods Fluids
**2003**, 43, 1329–1354. [Google Scholar] [CrossRef] - Carrier, G.; Greenspan, H. Water waves of finite amplitude on a sloping beach. J. Fluid Mech.
**1958**, 4, 97–109. [Google Scholar] [CrossRef] - Roeber, V. Boussinesq-Type Model for Nearshore Wave Processes in Fringing Reef Environment. Ph.D. Thesis, University of Hawaii at Manoa, Honolulu, HI, USA, December 2010. [Google Scholar]
- Engwirda, D. Locally-Optimal Delaunay-Refinement and Optimisation-Based Mesh Generation. Ph.D. Thesis, The University of Sydney, Sydney, Australia, 2014. [Google Scholar]
- Basili, R.; Brizuela, B.; Herrero, A.; Iqbal, S.; Lorito, S.; Maesano, F.E.; Murphy, S.; Perfetti, P.; Romano, F.; Scala, A.; et al. NEAM Tsunami Hazard Model 2018 (NEAMTHM18): Online Data of the Probabilistic Tsunami Hazard Model for the NEAM Region from the TSUMAPS-NEAM Project; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Roma, Italy, 2018. [Google Scholar] [CrossRef]

**Figure 2.**The case study area. The red rectangle shows the Marzamemi promontory, the yellow dash-dot line highlights the boundaries of the numerical model.

**Figure 4.**(

**a**) Envelope of free surface of sine wave run-up on a planar beach. Comparison between the weakly dispersive model (blue dotted lines) and Carrier and Greenspan [28] analytical solution (continuous red lines). (

**b**) A zoom of the surface elevation near the planar beach at an intermediate time step.

**Figure 5.**Shoreline vertical motion R of sine wave run-up on a planar beach. Comparison between adopted model (blue dotted lines) and the analytical solution by Carrier and Greenspan [28] (continuous red lines).

**Figure 6.**Shoreline velocity of monochromatic wave run-up on a planar beach. Comparison between adopted model (blue dotted lines) and the analytical solution by Carrier and Greenspan [28] (continuous red lines).

**Figure 7.**The numerical domain and the triangular equilateral mesh used in the flat reef run-up test. The red box highit a magnified area of the mesh. The surface elevation correspond to ${t}^{*}=55.1$.

**Figure 8.**Surface elevations of solitary wave over a flat reef with $H/{h}_{0}=0.5$ and 1:5 slope. Solid blue lines are the weakly dispersive model results and the red triangles are measured data. Each subplot shows the results at a dimensionaless time step.

**Figure 9.**Time series of the surface elevation at edge of the reef. The blue line is the numerical model results the red circles are the measurements by [29].

**Figure 10.**The Marzamemi numerical domain. (

**a**) The used triangular mesh, (

**b**) the bathymethry of the studied area, the color bar shows the elevation in meters above mean water level. In the subplots the coordinate origin are E = 510,569 m; N = 4,066,207 m; WGS84-UTM33N reference system.

**Figure 11.**Water surface elevation. The origin of coordinate axis is E = 510,569 m; N = 4,066,207 m; WGS84 UTM33N reference system.

**Figure 12.**Magnification of subplot (f) of Figure 11. The red lines shows the MWL the color bar shows the water level above the MWL.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lo Re, C.; Manno, G.; Ciraolo, G.
Tsunami Propagation and Flooding in Sicilian Coastal Areas by Means of a Weakly Dispersive Boussinesq Model. *Water* **2020**, *12*, 1448.
https://doi.org/10.3390/w12051448

**AMA Style**

Lo Re C, Manno G, Ciraolo G.
Tsunami Propagation and Flooding in Sicilian Coastal Areas by Means of a Weakly Dispersive Boussinesq Model. *Water*. 2020; 12(5):1448.
https://doi.org/10.3390/w12051448

**Chicago/Turabian Style**

Lo Re, Carlo, Giorgio Manno, and Giuseppe Ciraolo.
2020. "Tsunami Propagation and Flooding in Sicilian Coastal Areas by Means of a Weakly Dispersive Boussinesq Model" *Water* 12, no. 5: 1448.
https://doi.org/10.3390/w12051448