Assessing Groundwater Vulnerability: DRASTIC and DRASTIC-Like Methods: A Review
Abstract
:1. Introduction
- Based on the extent of their use:
- With general applicability—DRASTIC, GOD
- For specific regions—SINTACS, DRAMIC, DRIST, DRAV
- That considers the land use—DRASTIC-LU, DRASIC-LU, SINTACS-LU
- For urban area—DRAMIC, DRASTICA
- Based on the specific vulnerabilities assessed:
2. DRASTIC
- The pollutants are produced at the surface of the Earth;
- The pollutants are transported into the soil by precipitation;
- The pollutants’ travel velocity is that of the water;
- The affected area must be big enough.
3. Modified DRASTIC (DRASTICM)
4. DRIST and Modified DRASTIC
5. DRAV
6. DRAMIC
- Aquifer thickness (m): 0–6 (9), 6–15 (7), 15–25 (5), 25–32 (4), 32–40 (3), 40–50 (2), >50 (1);
- Contaminant’s characteristics:
- ▪
- Stability, infiltration easiness (9)
- ▪
- Stability, infiltration relative easiness (7)
- ▪
- Stability, infiltration uneasiness, and Relative stability, infiltration easiness (5)
- ▪
- Relative stability, infiltration relative easiness (4)
- ▪
- Relative stability, infiltration uneasiness, and Instability, infiltration easiness (3)
- ▪
- Instability, infiltration relative easiness (2)
- ▪
- Instability, infiltration uneasiness (1)
7. DRASTICA
8. DRASTIC-LU
9. DRASIC-LU
- The ratings for D (depth to the water table) are 2, 3 and 5, while the weighting factor is 5;
- The rating for net recharge (R) is 9, and the weight scale is 4;
- The rating for aquifer media (A) is 8, and the weight scale is 3;
- The ratings for soil media (S) are 5 and 6, and the weight scale is 2;
- The ratings for vadose zone impact (I) are 1 and 2, while the weight scale is 5;
- The ratings for hydraulic conductivity (C) are 4, 8 and 10, while the weight scale is 3;
- The ratings for land use (L) are 8, 9, and 10, and the weight scale is 5.
10. SI Index
- 90—Paddy fields, Irrigated perimeters irrigated,
- 80—Shipyard and quarry,
- 75—Green and continuous urban zones, and artificially covered zones
- 70—Discontinuous urban zones, and Permanent cultures
- 50—Aquatic media, agro-forest zones, pastures.
11. DRARCH
- (1)
- Build a series of contaminant transport models employing Hydrus1D and use each model index in the simulations of the contaminant transport.
- (2)
- Increase the accepted index value and compute the associated migration distance of the contaminant.
- (3)
- Analyze the relationship between the index values and the pollutant’ simulated migration distances and determine the indexes’ ratings.
- (4)
- Use the factorial analysis to determine the weighting of each index.
- (5)
- Apply the ordinary kriging for estimating the vulnerability spatial variation over the basin.
- Aquifer thickness (A);
- The ratio of the clay layers’ thickness to the vadose zone thickness (R), introduced for emphasizing that the clay has a specific surface area and an adsorption capacity greater than other sediments;
- The coefficient of pollutant’s adsorption by the sediment in the vadose zone (C);
- Aquifer hydraulic conductivity (H).
12. SINTACS
- The soil action is isolated from the action of the embedding system.
- The climatic factors and their influence on the water system is not considered
- Most methods have only a local application
- The use of vulnerability maps for the prevention of the groundwater quality deterioration should be supported by a deep insight into the mechanism of the contaminant production and its risk level [21].
- Select the factors used in the study
- Divide the factors into types or subintervals containing the factors’ values
- Assign a rating, P, between 1 and 10, to each subinterval, in concordance with its importance in the last step of the algorithm (Figure 2)
- Choose the strings of weights, W, and multiply the factor ratings (Table 4).
13. Groundwater Vulnerability Assessment to Specific Pollutants
14. Other Approaches
15. Models’ Validation
16. Conclusions
- Development of analytical methods for choosing and validating the ratings and weightings attached to each parameter in the models
- Integrating the models of water flow and pollutants’ transport in different soils types in the methodology of choosing the weighting values of different parameters
- Detecting the relationships between the parameters used in the models by statistical methods and removing the effect of this correlation by adjustment of the ratings and weightings attached to the corresponding parameters
- Development of unified models that should include the soil and geological characteristics
- Development of hybrid models to reduce the influence of subjectivity in the parameters’ settings and use the statistical methods for the results’ validation.
- Improvement of the databases containing hydro-chemical elements and their integration into GIS software
- Improvement of GIS software by integrating analytical methods with groundwater vulnerability methods
- Development of spatio-temporal methods for the groundwater vulnerability assessment.
Funding
Conflicts of Interest
References
- World Wildlife Fund. Available online: https://www.worldwildlife.org/initiatives/fresh-water (accessed on 15 March 2019).
- Margat, J. Ground Water Vulnerability to Contamination; Bases de la Cartographie, Doc. 68 SGC198 HYD; BRGM: Orleans, France, 1968. (In French) [Google Scholar]
- Hirata, R.; Bertolo, R. Groundwater Vulnerability in Different Climatic Zones. In Encyclopedia of Life Support Systems (EOLSS), Groundwater—Vol. II; Available online: https://www.eolss.net/Sample-Chapters/C07/E2-09-04-06.pdf (accessed on 20 March 2020).
- Ground Water Vulnerability Assessment: Contamination Potential under Conditions of Uncertainty; National Research Council National Academy Press: Washington, DC, USA, 1993; Available online: https://www.nap.edu/read/2050/chapter/3#17 (accessed on 4 September 2019).
- Doerfliger, N.; Jeannin, P.Y.; Zwahlen, F. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol. 1999, 39, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Gogu, R.C.; Dassargues, A. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ. Geol. 2000, 39, 549–559. [Google Scholar] [CrossRef]
- Adams, B.; Foster, S.S.D. Land-surface zoning for groundwater protection. Water Environ. J. 1992, 6, 312–319. [Google Scholar] [CrossRef]
- Derouane, J.; Dassargue, A. Delineation of groundwater protection zones based on traces tests and transport modelling in alluvial sediments. Environ. Geol. 1998, 36, 27–32. [Google Scholar] [CrossRef]
- Albinet, M.; Margat, J. Groundwater Pollution Vulnerability Mapping. Bull. Bur. Res. Geol. Min. Bull BRGM 2nd Ser. 1970, 3, 13–22. [Google Scholar]
- Goossens, M.; Van Damme, M. Vulnerability mapping in Flanders, Belgium. In Vulnerability of Soil and Groundwater to Pollutants International Conference; van Duijvenbooden, W., van Waegeningh, G.H., Eds.; Proceedings and Information 38; TNO Committee on Hydrological Research: The Hague, The Netherlands, 1987; pp. 355–360. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&lang=en&idt=7424922 (accessed on 23 March 2020).
- Civita, M.; De Regibus, C. Sperimentazione di alcune metodologie per la valutazione della vulnerabilità degli aquiferi. Q Geol. Appl. Pitagora Bologna 1995, 3, 63–71. [Google Scholar]
- Foster, S.S.D. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. Hydrol. Resour. Proc. Inf. 1987, 38, 69–86. [Google Scholar]
- Van Stempvoort, D.L.; Evert, L.W. Aquifer vulnerability index: A GIS compatible method for groundwater vulnerability mapping. Can. Water Resour. J. 1993, 18, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Eckhardt, D.A.V.; Stackelberg, P.E. Relation of ground-water quality to land use on Long Island, New York. Ground Water 1995, 33, 1019–1033. [Google Scholar] [CrossRef]
- Masetti, M.; Sterlacchini, S.; Ballabio, C.; Sorichetta, A.; Poli, S. Influence of threshold value in the use of statistical methods for groundwater vulnerability assessment. Sci. Total Environ. 2009, 407, 3836–3846. [Google Scholar] [CrossRef]
- Yen, S.T.; Liu, S.; Kolpin, D.W. Analysis of nitrate in near surface aquifers in the midcontinental United States: An application of the inverse hyperbolic sine tobit model. Water Resour. Res. 1996, 32, 3003–3011. [Google Scholar] [CrossRef]
- Neukum, C.; Hotzl, H.; Himmelsbach, T. Validation of vulnerability mapping methods by field investigations and numerical modelling. Hydrogeol. J. 2008, 16, 641–658. [Google Scholar] [CrossRef]
- Pineros Garcet, J.D.; Ordoñez, A.; Roosen, J.; Vanclooster, M. Metamodelling: Theory, concepts, and application to nitrate leaching modelling. Ecol. Model. 2006, 193, 629–644. [Google Scholar] [CrossRef]
- Singhal, V.; Goyal, R. Development of conceptual groundwater flow model for Pali Area, India. Afr. J. Environ. Sci. Technol. 2011, 5, 1085–1092. [Google Scholar] [CrossRef]
- Fusco, F.; Alloca, V.; Coda, S.; Cusano, D.; Tufano, R.; De Vita, P. Quantitative Assessment of Specific Vulnerability to Nitrate Pollution of Shallow Alluvial Aquifers by Process-Based and Empirical Approaches. Water 2020, 12, 269. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Bansod, K.S.; Debnath, K.S.; Thakur, P.K.; Ghanshyam, C. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation. Environ. Impact Assess. Rev. 2015, 51, 38–49. [Google Scholar] [CrossRef]
- Rao, P.S.C.; Alley, W.M. Pesticides. In Regional Groundwater Quality; Alley, W.M., Ed.; Van Nostrand: Reinhold, NY, USA, 1993; pp. 345–382. [Google Scholar]
- Aller, L.; Bennet, T.; Lehr, J.H.; Petty, R.J. DRASTIC: Standardized System for Evaluating Ground Water Pollution Potential using Hydrogeologic Settings; Office of Research Development, US EPA: Ada, OK, USA, 1985. [Google Scholar]
- Ray, I.A.; Odell, P.W. DIVERSITY: A new method for evaluating sensitivity of groundwater to contamination. Environ. Geol. 1993, 22, 344–352. [Google Scholar] [CrossRef]
- Civita, M. Le Carte Della Vulnerabilita Degli Acquiferi all Inquinamento: Teoria e Pratica; Pitagora Editrice: Bologna, Italy, 1994; pp. 325–333. [Google Scholar]
- Civita, M. Legenda Unificata per le Carte Della Vulnerabilita’ dei Corpi Idrici Sotterranei/Unified Legend for the Aquifer Pollution Vulnerability Maps. Studi sulla Vulnerabilita’ degli Acquiferi, 1 (Append.); Pitagora: Bologna, Italy, 1990; p. 13. [Google Scholar]
- Civita, M.; De Maio, M. SINTACS. Un Sistema Parametrico per la Valutazione e la Cartografia Della Vulnerabilita’ Degli Acquiferi All’inquinamento. Metodologia and Automatizzazione; Pitagora: Bologna, Italy, 1997. [Google Scholar]
- Civita, M.; de Maio, M. SINTACS R5-Valutazione e Cartografia Automatica Della Vulnerabilità Degli Acquiferi All’inquinamento con il Sistema Parametrico; Pitagora: Bologna, Italy, 2000; pp. 226–232. [Google Scholar]
- Civita, M. The combined approach when assessing and mapping groundwater vulnerability to contamination. J. Water Resour. Prot. 2010, 2, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Malik, P.; Svasta, J. REKS: An alternative method of Karst groundwater vulnerability estimation. In Proceedings of the XXIX Congress of the International Association of Hydrogeologists, Bratislava, Slovakia, 6–10 September 1999; pp. 79–85. [Google Scholar] [CrossRef]
- Pételet-Giraud, E.; Dörfliger, N.; Crochet, P. RISKE: Méthode d’évaluation multicritère de la vulnérabilité des aquifers karstiques. Application aux systèmes des Fontanilles et Cent-Fonts (Hérault, Sud de la France). Hydrogéol 2000, 4, 71–88. [Google Scholar]
- Plagnes, V.; Théry, S.; Fontaine, L.; Bakalowicz, M.; Dörfliger, N. Karst vulnerability mapping: Improvement of the RISKE method. In Proceedings of the KARST 2005, Water Resources and Environmental Problems in Karst, Belgrade, Serbia, 14–19 September 2005. [Google Scholar]
- Andreo, B.; Ravbar, N.; Vias, J.M. Source vulnerability mapping, in carbonate (karst) aquifers by extension of the COP method: Application to pilot sites. Hydrogeol. J. 2009, 17, 749–758. [Google Scholar] [CrossRef]
- Vías, J.M.; Andreo, B.; Perles, M.J.; Carrasco, F.; Vadillo, I.; Jiménez, P. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: The COP method. Hydrogeol. J. 2006, 14, 912–927. [Google Scholar] [CrossRef]
- Kavouri, K.; Plagnes, V.; Tremoulet, J.; Dörfliger, N.; Rejiba, F.; Marchet, P. PaPRIKa: A method for estimating karst resource and source vulnerability—Application to the Ouysse karst system (southwest France). Hydrogeol. J. 2011, 19, 339–353. [Google Scholar] [CrossRef]
- Goldscheider, N. Karst groundwater vulnerability mapping: Application of a new method in the Swabian Alb, Germany. Hydrogeol. J. 2005, 13, 555–564. [Google Scholar] [CrossRef]
- Ravbar, N.; Goldscheider, N. Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsologica 2007, 36, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.J.; Hackett, G. DRASTIC: A Standardized System for Evaluating Groundwater Potential Using Hydrogeologic Settings; EPA/600/2-85/018; U.S. Environmental Protection Agency: Washington, DC, USA, 1987.
- Fan, J.; Oestergaard, K.T.; Guyot, A.; Lockington, D.A. Estimating groundwater recharge and evapotranspiration from water table fluctuations under three vegetation covers in a coastal sandy aquifer of subtropical Australia. J. Hydrol. 2014, 519, 1120–1129. [Google Scholar] [CrossRef] [Green Version]
- Chenini, I.; Zghibi, A.; Kouzana, L. Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: State of the art and a case study. J. Afr. Earth Sci. 2015, 109, 11–26. [Google Scholar] [CrossRef]
- Kalinski, R.J.; Kelly, W.E.; Bogardi, I.; Ehrman, R.L.; Yamamoto, P.O. Correlation between DRASTIC vulnerabilities and incidents of VOC contamination of municipal wells in Nebraska. Groundwater 1994, 32, 31–34. [Google Scholar] [CrossRef]
- McLay, C.D.A.; Dragden, R.; Sparling, G.; Selvarajah, N. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: A comparison of three approaches. Environ. Pollut. 2001, 115, 191–204. [Google Scholar] [CrossRef]
- Akhavan, S.; Mousavi, S.; Abedi-Koupai, J.; Abbaspour, K.C. Conditioning DRASTIC model to simulate nitrate pollution case study: Hamadan-Bahar plain. Environ. Earth Sci. 2011, 63, 1155–1167. [Google Scholar] [CrossRef] [Green Version]
- Barbash, J.E.; Resek, E.A. Pesticides in Ground Water: Distribution, Trends, and Governing Factors; Ann Arbor Press Inc.: Ann Arbor, MI, USA, 1996. [Google Scholar]
- Jang, W.S.; Engel, B.; Harbor, J.; Theller, L. Aquifer Vulnerability Assessment for Sustainable Groundwater Management Using DRASTIC. Water 2017, 9, 792. [Google Scholar] [CrossRef] [Green Version]
- Neshat, A.; Pradhan, B.; Pirastehm, S.; Shafri, H.Z.M. Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ. Earth Sci. 2014, 71, 3119–3131. [Google Scholar] [CrossRef]
- Holden, L.R.; Graham, J.A.; Whitmore, R.W.; Alexander, W.J.; Pratt, R.W.; Liddle, S.F.; Piper, L.L. Results of the national Alachlor well water survey. Environ. Sci. Technol. 1992, 26, 936–943. [Google Scholar] [CrossRef]
- Maas, R.P.; Kucken, D.J.; Patch, S.C.; Peek, B.T.; Van Engelen, D.L. Pesticides in eastern North Caroline rural supply wells: Landuse factors and persistence. J. Environ. Qual. 1995, 24, 426–431. [Google Scholar] [CrossRef]
- Wang, Y.; Merkel, B.J.; Li, Y.; Ye, H.; Fu, S.; Ihm, D. Vulnerability of groundwater in Quaternary aquifers to organic contaminants: A case study in Wuhan City, China. Environ. Geol. 2007, 53, 479–484. [Google Scholar] [CrossRef]
- Merchant, J.W. GIS-Based Groundwater Pollution Hazard Assessment: A Critical Review of the DRASTIC model. Photogramm. Eng. Remote Sens. 1994, 60, 1117–1127. [Google Scholar]
- Alam, F.; Umar, R.; Ahmad, S.; Dar, A.F. A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of Central Ganga plain, India. Arab. J. Geosci. 2012, 7, 927–937. [Google Scholar] [CrossRef]
- Merchant, J.W.; Whittemore, D.; Whistler, O.J.L.; McElwee, C.D.; Woods, J.J. Groundwater Pollution Hazard Assessment: A GIS Approach. In Proceedings of the International Geographic Information Systems (IGIS) Symposium, Association of American Geographers, Washington, DC, USA, 15–18 November 1987; Volume 3, pp. 103–115. [Google Scholar]
- Hrkal, Z. Vulnerability of groundwater to acid deposition, Jizerske Mountains, northern Czech Republic: Construction and reliability of a GIS-based vulnerability map. Hydrogeol. J. 2001, 9, 348–357. [Google Scholar] [CrossRef]
- Rupert, M.G. Calibration of the DRASTIC ground water vulnerability mapping method. Ground Water 2001, 39, 625–630. [Google Scholar] [CrossRef]
- Lake, I.R.; Lovett, A.A.; Hiscock, K.M. Evaluating factors influencing groundwater vulnerability to nitrate pollution: Developing the potential of GIS. J. Environ. Manag. 2003, 68, 315–328. [Google Scholar] [CrossRef]
- Babiker, I.S.; Mohammed, M.A.A.; Hiyama, T.; Kato, K. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci. Total Environ. 2005, 345, 127–140. [Google Scholar] [CrossRef]
- Dixon, B. Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool. Appl. Geogr. 2005, 25, 327–347. [Google Scholar] [CrossRef]
- Rahman, A. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl. Geogr. 2008, 28, 32–53. [Google Scholar] [CrossRef]
- Shirazi, S.M.; Imran, H.M.; Akib, S.; Yusop, Z.; Harun, Z.B. Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environ. Earth Sci. 2013, 70, 2293–2304. [Google Scholar] [CrossRef]
- Thirumalaivasan, D.; Karmegam, M.; Venugopal, K. AHP-DRASTIC: Software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ. Model. Softw. 2003, 18, 645–656. [Google Scholar] [CrossRef]
- Sener, E.; Sener, S.; Davraz, A. Assessment of aquifer vulnerability based on GIS and DRASTIC methods: A case study of the Senirkent-Uluborlu Basin (Isparta, Turkey). Hydrogeol. J. 2009, 17, 2023. [Google Scholar] [CrossRef]
- Ariffin, S.M.; Zawawi, M.A.M.; Man, H.C. Evaluation of groundwater pollution risk (GPR) from agricultural activities using DRASTIC model and GIS. In IOP Conference Series: Earth and Environment Science; IOP Publishing: Bristol, UK, 2016; Volume 37, p. 012078. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, J.A.; Barmen, G. Assessment of groundwater vulnerability in the Rıo Artiguas basin, Nicaragua. Environ. Geol. 2006, 50, 569–580. [Google Scholar] [CrossRef]
- Saidi, S.; Bouri, S.; Dhia, H.B. Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ. Earth Sci. 2010, 59, 1579–1588. [Google Scholar] [CrossRef]
- Castany, G. Principe et Methodes de L’hydrogeologie; Dunod: Paris, France, 1982. [Google Scholar]
- Sakala, E.; Fourie, F.; Gomo, M.; Coetzee, H.; Magadaza, L. Specific groundwater vulnerability mapping: Case study of acid mine drainage in the Witbank coalfield, South Africa. In Proceedings of the Sixth IASTED International Conference, Gaborone, Botswana, 5–7 September 2016. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, G.; Liu, F.; Wang, Y.; Guo, X. DRAV model and its application in assessing groundwater vulnerability in arid area: A case study of pore phreatic water in Tarim Basin, Xinjiang, Northwest China. Environ. Earth Sci. 2010, 60, 1055–1063. [Google Scholar] [CrossRef]
- Singh, A.; Srivastav, S.K.; Kumar, S.; Chakrapani, G.J. A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environ. Earth Sci. 2015, 74, 5475–5490. [Google Scholar] [CrossRef]
- Amadi, N.; Olasehinde, P.I.; Nwankwoala, H.O.; Dan-Hassan, M.A.; Okoye, N.O. Aquifer vulnerability studies using DRASTICA Model. Int. J. Eng. Sci. Invent. 2014, 3, 1–10. [Google Scholar]
- Hussain, M.H.; Singhai, D.C.; Joshi, H.; Kumar, S. Assessment of groundwater vulnerability in tropical alluvial interfluves, India. Bhu-Jal News J. 2006, 1–4, 31–43. [Google Scholar]
- Khan, M.M.A.; Umar, R.; Lateh, H. Assessment of aquifer vulnerability in parts of Indo Gangetic plain, India. Int. J. Phys. Sci. 2010, 5, 1711–1720. [Google Scholar]
- Kumar, A.; Khrisma, A.K. Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto Int. 2019. [Google Scholar] [CrossRef]
- Sinha, M.K.; Verma, M.K.; Ahmad, I.; Baier, K.; Jha, R.; Azzam, R. Assessment of groundwater vulnerability using modified DRASTIC model in Kharun Basin, Chhattisgarh, India. Arab. J. Geosci. 2016, 9, 11–22. [Google Scholar] [CrossRef]
- Umar, R.; Ahmed, I.; Alam, F. Mapping Groundwater Vulnerable Zones Using Modified DRASTIC Approach of an Alluvial Aquifer in Parts of Central Ganga Plain, Western Uttar Pradesh. J. Geol. Soc. India 2009, 73, 193–201. [Google Scholar] [CrossRef]
- Qinghai, G.; Yanxin, W.; Xubo, G.; Teng, M. A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale: A case study in Taiyuan basin, northern China. Environ. Geol. 2007, 52, 923–932. [Google Scholar] [CrossRef]
- Ribeiro, L. SI: A New Index of Aquifer Susceptibility to Agricultural Pollution; ERSHA/CVRM, Instituto Superior Técnico: Lisboa, Portugal, 2000. [Google Scholar]
- Stigter, T.Y.; Riberio, L.; Dill, A.M.M.C. Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinization and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol. J. 2006, 14, 79–99. [Google Scholar] [CrossRef]
- Ribeiro, L.; Pindo, J.C.; Dominguez-Granda, L. Assessment of groundwater vulnerability in the Daule aquifer, Ecuador, using the susceptibility index method. Sci. Total Environ. 2017, 574, 1674–1683. [Google Scholar] [CrossRef]
- Anane, M.; Abidi, B.; Lachaal, F.; Limam, A.; Jellali, S. GIS-based DRASTIC, Pesticide DRASTIC and the Susceptibility Index (SI): Comparative study for evaluation of pollution. Hydrogeol. J. 2013, 21, 715–731. [Google Scholar] [CrossRef]
- Brindha, K.L.E. Cross comparison of five popular groundwater pollution vulnerability index approaches. J. Hydrol. 2015, 524, 597–613. [Google Scholar] [CrossRef]
- El Himer, H.; Fakir, Y.; Stigter, T.Y.; Lepage, M.; El Mandour, A.; Ribeiro, L. Assessment of the vulnerability to pollution of a wetland watershed. The case study of Oualidia-Sidi Moussa wetland, Morocco. Aquat. Ecosyst. Health 2013, 16, 205–215. [Google Scholar] [CrossRef]
- Hamza, M.H.; Added, A. Validity of DRASTIC and SI vulnerability methods. In GeoSpatial Visual Analytics: Geographical Information Processing and Visual Analytics for Environmental Security; De Amicis, R., Stojanovic, R., Conti, G., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 395–407. [Google Scholar]
- Hamza, M.H.; Added, A.; Francés, A.; Rodríguez, R. Validité de l’application des méthodes de vulnérabilité DRASTIC, SINTACS et SI à l’étude de la pollution par les nitrates dans la nappe phréatique de Metline–Ras Jebel–Raf Raf (Nord-Est tunisien). Comptes Rendus Geosci. 2007, 339, 493–505. [Google Scholar] [CrossRef]
- Teixeira, J.; Chaminé, H.I.; Marques, J.E.; Carvalho, J.M.; Pereira, A.J.S.C.; Carvalho, M.R.; Fonseca, P.E.; Pérez-Alberti, A.; Rocha, F. A comprehensive analysis of groundwater resources using GIS and multicriteria tools (Caldas da Cavaca, Central). Environ. Earth Sci. 2014, 73. [Google Scholar] [CrossRef]
- Rana, S.; Kumar, P.; Puri, S.; Bansod, B.K.; Debnath, S.; Ghanshyam, C.; Kapur, P. Localization of Arsenic Contaminated Zone of Domkal Block in Murshidabad, West Bengal using GIS-based DRASTIC model. In Proceedings of the International Conference on Communication and Computing (ICC-2014), Bangalore, India, 10–14 June 2014. [Google Scholar] [CrossRef]
- Narany, T.; Ramli, M.F.; Aris, A.Z.; Sulaiman, W.N.A.; Fakharian, K. Spatial assessment of groundwater quality monitoring wells using indicator kriging and risk mapping, Amol-Babol Plain, Iran. Water 2013, 6, 68–85. [Google Scholar] [CrossRef] [Green Version]
- Boufekane, A.; Saighi, O. Assessment of groundwater pollution by nitrates using intrinsic vulnerability methods: A case study of the Nil valley groundwater (Jijel, North-East Algeria). Afr. J. Environ. Sci. Technol. 2013, 7, 949–960. [Google Scholar] [CrossRef]
- Al Kuisi, M.; El-Naqa, A.; Hammouri, N. Vulnerability mapping of shallow groundwater aquifer using SINTACS model in the Jordan Valley area, Jordan. Environ. Geol. 2006, 50, 651–667. [Google Scholar] [CrossRef]
- Corniello, A.; Ducci, D.; Monti, G.M. Aquifer pollution vulnerability in the Sorrento Peninsula, Southern Italy, evaluated by SINTACS Method. Geofís. Int. 2004, 43, 575–581. [Google Scholar]
- Draoui, M.; Vias, J.; Andreo, B.; Targuisti, K.; El Messari, J.S. A Comparative Study of Four Vulnerability Mapping Methods in a Detritic Aquifer under Mediterranean Climatic Conditions. Environ. Geol. 2008, 54, 455–463. [Google Scholar] [CrossRef]
- Kaddour, K.; Houcine, B.; Smail, M. Assessment of the vulnerability of an aquifer by DRASTIC and SYNTACS methods: Aquifer of Bazer—Geult Zerga area (northeast Algeria). E3 J. Environ. Res. Manag. 2014, 5, 0169–0179. [Google Scholar]
- Majandang, J.; Sarapirome, S. Groundwater vulnerability assessment and sensitivity analysis in Nong Rua, Khon Kaen, Thailand, using a GIS-Based SINTACS Model. Environ. Earth Sci. 2013, 68, 2025–2039. [Google Scholar] [CrossRef]
- Gogu, R.C.; Pandele, A.; Ionita, A.; Ionescu, C. Groundwater vulnerability analysis using a low-cost Geographical Information System. In Proceedings of the MIS/UDMS Conference WELL-GIS WORKSHOP’s Environmental Information Systems for Regional and Municipal Planning, Prague, Czech Republic, 20 November 1996; pp. 35–49. [Google Scholar]
- Secunda, S.; Collin, M.; Melloul, A.J. Groundwater Vulnerability Assessment Using a Composite Model Combining DRASTIC with Extensive Land Use in Israel’s Sharon Region. J. Environ. Manag. 1998, 54, 39–57. [Google Scholar] [CrossRef]
- Noori, R.; Ghahremanzadeh, H.; Kløve, B.; Adamowski, F.J.; Baghvand, A. Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. J. Environ. Sci. Health 2019, 54, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Alam, F. Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intense agriculture area of the Gangetic plains, India. Environ. Monit. Assess. 2014, 186, 8741–8763. [Google Scholar] [CrossRef]
- Kazakis, N.; Voudouris, K.S. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. J. Hydrol. 2015, 525, 13–25. [Google Scholar] [CrossRef]
- Antonakos, K.; Lambrakis, N.L. Development and testing of three hybrid methods for assessment of aquifer vulnerability to nitrates, based on the DRASTIC model, an example from NE Korinthia, Greece. J. Hydrol. 2007, 333, 288–304. [Google Scholar] [CrossRef]
- Huan, H.; Wang, J.; Teng, Y. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China. Sci. Total Environ. 2012, 440, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Javadi, S.; Kavehkar, N.; Mohammadi, K.; Khodadadi, A.; Kahawita, R. Calibrating DRASTIC using field measurements sensitivity analysis and statistical methods to assess groundwater vulnerability. Water Int. 2011, 36, 719–732. [Google Scholar] [CrossRef]
- Harmel, D.; Knisel, W.; Leonard, R.; Davis, F. Groundwater Loading Effects of Agricultural Management Systems. Available online: https://www.ars.usda.gov/plains-area/temple-tx/grassland-soil-and-water-research-laboratory/docs/gleams/ (accessed on 26 April 2020).
- Davis, A.D.; Long, A.J.; Wireman, M. KARSTIC: A sensitivity method for carbonate aquifers in karst terrain. Environ. Geol. 2002, 42, 65–72. [Google Scholar] [CrossRef]
- Witkowski, A.J.; Rubin, K.; Kowalczyk, A.; Różkowski, A.; Wróbel, J. Groundwater vulnerability map of the Chrzanów karst-fissured Triassic aquifer (Poland). Environ. Geol. 2003, 44, 59–67. [Google Scholar] [CrossRef]
- Różkowski, J. Evaluation of intrinsic vulnerability of an Upper Jurassic karst-fissured aquifer in the Jura Krakowska (southern Poland) to anthropogenic pollution using the DRASTIC method. Geol. Q. 2007, 51, 17–26. Available online: https://gq.pgi.gov.pl/article/view/7434 (accessed on 13 January 2020).
- Denny, S.C.; Allen, D.M.; Journeay, J.M. DRASTIC-Fm: A modified vulnerability mapping method for structurally-controlled aquifers. Hydrogeol. J. 2007, 15, 483–494. [Google Scholar] [CrossRef]
- Jiménez-Madrid, A.; Carrasco, F.; Martínez, C.; Gogu, R.C. DRISTPI, A new groundwater vulnerability mapping method for use in karstic and non-karstic aquifers. Q. J. Eng. Geol. Hydroeol. 2013, 46, 245–255. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Pires, L.M.G.R.; Santos, R.M.B.; Sanches Fernandes, L.F. Factor weighting in DRASTIC modeling. Sci. Total Environ. 2015, 505, 474–486. [Google Scholar] [CrossRef]
- Hailin, Y.; Ligang, X.; Chang, Y.; Jiaxing, X. Evaluation of groundwater vulnerability with improved DRASTIC method. Procedia Environ. Sci. 2011, 10, 2690–2695. [Google Scholar] [CrossRef] [Green Version]
- Sener, E.; Davraz, A. Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: The case of Egirdir Lake basin (Isparta, Turkey). Hydrogeol. J. 2013, 21, 701–714. [Google Scholar] [CrossRef]
- Shouyu, C.; Guangtao, F. A DRASTIC-based fuzzy pattern recognition methodology for groundwater vulnerability evaluation. Hydrol. Sci. J. 2003, 48, 211–220. [Google Scholar] [CrossRef]
- Afshar, A.I.; Marino, M.A.; Asce, H.M.; Ebtehaj, M.; Moosa Vi, J. Rule-based fuzzy system for assessing groundwater vulnerability. J. Environ. Eng. 2007, 133, 532–540. [Google Scholar] [CrossRef]
- Bojórquez-Tapia, L.A.; Cruz-Bello, G.M.; Luna-González, L.; Juárez, L.; Ortiz-Pérez, M.A. V-DRASTIC: Using visualization to engage policymakers in groundwater vulnerability assessment. J. Hydrol. 2009, 373, 242–255. [Google Scholar] [CrossRef]
- Pathak, D.R.; Hiratsuka, A. An integrated GIS based fuzzy pattern recognition model to compute the groundwater vulnerability index for decision making. J. Hydro-Environ. Res. 2011, 5, 63–77. [Google Scholar] [CrossRef]
- Rezaei, F.; Safavi, H.R.; Ahmadi, A. Groundwater vulnerability assessment using fuzzy logic: A case study in the Zayandehrood Aquifers, Iran. Environ. Manag. 2013, 51, 267–277. [Google Scholar] [CrossRef]
- Fijani, E.; Nadiri, A.; Moghaddam, A.A.; Dixon, B. Optimization of DRASTIC Method by Supervised Committee Machine Artificial Intelligence to Assess Groundwater Vulnerability for Maragheh-Bonab Plain Aquifer, Iran. J. Hydrol. 2013, 503, 89–101. [Google Scholar] [CrossRef]
- Barzegar, R.; Moghaddam, A.A. Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction. Model. Earth Sys. Environ. 2016, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Barzegar, R.; Moghaddam, A.A.; Baghban, H. A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: A case study from Tabriz plain aquifer, Iran. Stoch. Environ. Res. Risk Assess. 2016, 30, 883–899. [Google Scholar] [CrossRef]
- Panagopoulos, G.P.; Antonakos, A.K.; Lambrakis, N.J. Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol. J. 2006, 14, 894–911. [Google Scholar] [CrossRef]
- Neshat, A.; Pradhan, B.; Shafri, H.Z.M. An integrated GIS based statistical model to compute groundwater vulnerability index for decision maker in agricultural area. J. Indian Soc. Remote Sens. 2014, 42, 777–788. [Google Scholar] [CrossRef]
- Ghazavi, R.; Ebrahimi, Z. Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. Int. J. Environ. Sci. Technol. 2015, 12, 2909–2918. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, F.A.L.; Sanches Fernandes, L.F. The multivariate statistical structure of DRASTIC model. J. Hydrol. 2013, 476, 442–459. [Google Scholar] [CrossRef]
- Napolitano, P.; Fabbri, A.G. Single parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In Proceedings of the HydroGIS: Application of Geographical Information Systems in Hydrology and Water Resources Management; Kovar, K., Nachtnebel, H.P., Eds.; IAHS Publication no. 235; IAHS: Wallingford, UK, 1996; pp. 559–566. [Google Scholar]
- Neshat, A.; Pradhan, B.; Dadras, M. Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resour. Conserv. Recycl. 2014, 86, 74–86. [Google Scholar] [CrossRef]
- Al-Hanbali, A.; Kondoh, A. Groundwater vulnerability assessment and evaluation of human activity impact (HAI) within the Dead Sea groundwater basin, Jordan. Hydrogeol. J. 2008, 16, 499–510. [Google Scholar] [CrossRef]
- Almasri, M.N. Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine. J. Environ. Manag. 2008, 88, 577–593. [Google Scholar] [CrossRef]
- Hasiniaina, F.; Zhou, J.; Guoyi, L. Regional assessment of groundwater vulnerability in Tamtsag basin, Mongolia using drastic model. J. Am. Sci. 2010, 6, 65–78. [Google Scholar]
- Samake, M.; Tang, Z.; Hlaing, W.; M’Bue, I.; Kasereka, K. Assessment of groundwater pollution potential of the Datong Basin, Northern China. J. Sustain. Dev. 2010, 3, 140–152. [Google Scholar] [CrossRef] [Green Version]
- Lodwik, W.A.; Monson, W.; Svoboda, L. Attribute error and sensitivity analysis of maps operation in geographical information systems-sustainability analysis. Int. J. Geogr. Inf. Syst. 1990, 4, 413–428. [Google Scholar] [CrossRef]
Parameter/Method | Depth to the Water Table | Net Recharge | Hydrogeological Features | Soil Characteristics | Topographic Slope | Characteristics of Unsaturated Zone | Aquifer Hydraulic Conductivity | Liniment Density | Stream Network | Aquifer Tickness | Landuse # | Anthropogenic ## Impact (LU) | Pesticides | Specific Region |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DRASTIC | x | x | x | x | x | x | x | |||||||
DRASTICM | x | x | x | x | x | x | x | x | ||||||
DRIST | x | x | x | x | x | x | ||||||||
DRAV | x | x | x | * | ||||||||||
DRAMIC | x | x | x | x | ** | x | x | |||||||
DRASTICA | x | x | x | x | x | x | x | |||||||
DRASTIC-LU | x | x | x | x | x | x | x | x | ||||||
DRASIC-LU | x | x | x | x | x | x | x | |||||||
SI | x | x | x | x | x | x | ||||||||
DRARCH | x | x | *** | x | x | x | ||||||||
SINTACS | x | x | x | x | x | x | x | x | x | x | ||||
SINTACS-LU | x | x | x | x | x | x | x | x | x | x | x | |||
Pesticide DRASTIC | x | x | x | x | x | x | x | x | ||||||
Pesticide DRASTIC LU | x | x | x | x | x | x | x | x | x |
Depth to Water (mm) − weight = 5 | |||||||
range | 0–1.5 | 1.5–4.6 | 4.6–9.1 | 9.1–15.2 | 15.2–22.8 | 22.8–30.4 | >30.4 |
rating | 10 | 9 | 7 | 5 | 3 | 2 | 1 |
Net Recharge (mm) − weight = 4 | |||||||
range | 0–50.8 | 50.8–101.6 | 101.6–177.8 | 177.8–254 | >254 | ||
rating | 1 | 3 | 7 | 8 | 9 | ||
Hydraulic Conductivity of the Aquifer (m/day) − weight = 3 | |||||||
range | 0.04–4.1 | 4.1–12.3 | 12.3–28.7 | 28.7–41 | 41–82 | >82 | |
rating | 1 | 2 | 4 | 6 | 8 | 10 | |
Topography (slope %) − weight = 1 | |||||||
range | 0–2 | 2–6 | 6–12 | 12–18 | >18 | ||
rating | 10 | 9 | 5 | 3 | 1 |
Aquifer Media | Vadose Zone Material | Soil Media | |||
---|---|---|---|---|---|
weight = 3 | rating | weight = 5 | rating | weight = 2 | rating |
Massive shale | 2 | Silt/clay | 1 | Non-srinking and non-aggregated clay | 1 |
Metamorphic/igneous | 3 | Shale | 3 | Muck | 2 |
Weathered metamorphic/igneous | 4 | Metamorphic/igneous | 4 | Clay loam | 3 |
Thin-bedded sandstone, limestone, shale sequences | 6 | Limestone | 6 | Silty loam | 4 |
Massive sandstone | 6 | Sandstone | 6 | Loam | 5 |
Massive limestone | 8 | Bedded limestone, Sandstone, shale | 6 | Sandy loam | 6 |
Sand and gravel | 8 | Sand and gravel with significant silt and clay | 6 | Shrinking and/or aggregated clay | 7 |
Basalt | 9 | Sand and gravel | 8 | Peat | 8 |
Karst limestone | 10 | Basalt | 9 | Sand | 9 |
Karst limestone | 10 | Gravel | 10 | ||
Thin or absent | 10 |
Parameter | S | I | N | T | A | C | S |
---|---|---|---|---|---|---|---|
Normal | 5 | 4 | 5 | 3 | 3 | 3 | 3 |
Severe | 5 | 5 | 4 | 5 | 3 | 2 | 2 |
Seepage | 4 | 4 | 4 | 2 | 5 | 5 | 2 |
Karst | 2 | 5 | 1 | 3 | 5 | 5 | 5 |
Fissured | 3 | 3 | 3 | 4 | 4 | 5 | 4 |
Nitrates | 5 | 5 | 4 | 5 | 2 | 2 | 3 |
Parameter | D | R | A | S | T | I | C | LU |
---|---|---|---|---|---|---|---|---|
Pesticide DRASTIC | 5 | 4 | 3 | 5 | 3 | 4 | 2 | - |
Pesticide DRASTIC-LU | 5 | 4 | 3 | 5 | 3 | 4 | 2 | 5 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbulescu, A. Assessing Groundwater Vulnerability: DRASTIC and DRASTIC-Like Methods: A Review. Water 2020, 12, 1356. https://doi.org/10.3390/w12051356
Barbulescu A. Assessing Groundwater Vulnerability: DRASTIC and DRASTIC-Like Methods: A Review. Water. 2020; 12(5):1356. https://doi.org/10.3390/w12051356
Chicago/Turabian StyleBarbulescu, Alina. 2020. "Assessing Groundwater Vulnerability: DRASTIC and DRASTIC-Like Methods: A Review" Water 12, no. 5: 1356. https://doi.org/10.3390/w12051356