The Effect of Feed Composition on the Structure of Zooplankton Communities in Fishponds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collection.
2.3. Diversity Evaluation
2.4. Statistics
3. Results
3.1. Abundance
3.2. Biomass
3.3. Rotifera Assemblage
3.4. Cladocera Assemblage
3.5. Copepoda Assemblage
3.6. Diversity Evaluation
3.7. Zooplankton—Environment Relationships
4. Discussion and Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the sustainable development goals; Food and Agriculture Organisation: Rome, Italy, 2018; Available online: http://www.fao.org/3/i9540en/I9540EN.pdf (accessed on 3 May 2020).
- Naeem, S.; Duffy, J.E.; Zavaleta, E. The functions of biological diversity in an age of extinction. Science 2012, 336, 1401–1406. [Google Scholar] [CrossRef] [Green Version]
- Pechar, L. Impacts of long-term changes in fishery management on the trophic level water quality in Czech fishponds. Fish. Manag. Ecol. 2000, 7, 23–31. [Google Scholar] [CrossRef]
- Potužák, J.; Hůda, J.; Pechar, L. Changes in fish production effectivity in eutrophic fishponds—Impact of zooplankton structure. Aquac. Int. 2007, 15, 201–210. [Google Scholar] [CrossRef]
- Kiss, G. Statistical Reports—Catch Report—Year 2018; NAIK Research Institute of Agricultural Economics: Budapest, Hungary, 2019. (In Hungarian) [Google Scholar]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on worldfish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [Green Version]
- Wahab, M.A.; Rahman, M.M.; Milstein, A. Environmental effects of common carp (Cyprinus carpio L.) and mrigal Cirrhinus mrigala (Hamilton) as bottom feeders in major Indian carp polycultures. Aquac. Res. 2002, 33, 1103–1117. [Google Scholar] [CrossRef]
- Ćirić, M.; Subakov-Simić, G.; Dulić, Z.; Bjelanović, K.; Čičovački, S.; Marković, Z. Effect of supplemental feed type on water quality, plankton and benthos availability and carp (Cyprinus carpio L.) growth in semi-intensive monoculture ponds. Aquac. Res. 2015, 46, 777–788. [Google Scholar] [CrossRef]
- Davidson, J.; Barrows, F.T.; Kenney, P.B.; Good, C.; Schroyer, K.; Summerfelt, S.T. Effects of feeding a fishmeal-free versus a fishmeal-based diet on post-smolt Atlantic salmon Salmo salar performance, water quality, and waste production in recirculation aquaculture systems. Aquac. Eng. 2016, 74, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Z.; Havasi, M.; Gál, D.; Hancz, C. Effects of different European catfish feeds on production parameters and water quality in limnocorrals. Acta Agrar. Kaposváriensis 2017, 21, 15–27. [Google Scholar]
- Kaushik, S.J. Nutrient requirements, supply and utilization in the context of carp culture. Aquaculture 1995, 129, 225–241. [Google Scholar] [CrossRef]
- Tacon, A.G.J. Feed formulation and evaluation for semi-intensive culture of fishes and shrimps in the tropics. In Feeds for Small-Scale Aquaculture, Proceedings of the National Seminar-Workshop on Fish Nutrition and Feeds, Iloilo, Philippines, 1–2 June 1994; Santiago, C.B., Coloso, R.M., Millamena, O.M., Borlongan, I.G., Eds.; SEAFDEC Aquaculture Department: Iloilo, Philippines, 1996; pp. 29–43. [Google Scholar]
- Dickson, M.; Nasr-Allah, A.; Kenawy, D.; Kruijssen, F. Increasing fish farm profitability through aquaculture best management practice training in Egypt. Aquaculture 2016, 465, 172–178. [Google Scholar] [CrossRef]
- Marković, Z.; Stanković, M.; Rašković, B.; Dulić, Z.; Živić, I.; Poleksić, V. Comparative analysis of using cereal grains and compound feed in semi-intensive common carp pond production. Aquac. Int. 2016, 24, 1699–1723. [Google Scholar] [CrossRef]
- Stoycheska, A.M.; Stamenkovska, I.J. Profitability of carp production on Macedonia and Serbia. Biotechnol. Anim. Husb. 2017, 33, 103–113. [Google Scholar] [CrossRef]
- Welker, T.L.; Lim, C.; Barrows, F.T.; Liu, K. Use of distiller’s dried grains with solubles (DDGS) in rainbow trout feeds. Anim. Feed Sci. Technol. 2014, 195, 47–57. [Google Scholar] [CrossRef]
- Searchinger, T.; Hanson, C.; Ranganathan, J.; Lipinski, B.; Waite, R.; Winterbottom, R.; Dinshaw, A.; Heimlich, R.; Boval, M.; Chemineau, P.; et al. Creating A Sustainable Food Future. A Menu of Solutions to Sustainably Feed More than 9 Billion People by 2050. World Resources Report 2013-14: Interim Findings; World Resources Institute: Washington, DC, USA, 2014. [Google Scholar]
- Waite, R.; Beveridge, M.; Brummett, R.; Castine, S.; Chaiyawannakarn, N.; Kaushik, S.; Mungkung, R.; Nawapakpilan, S.; Philips, M. Improving Productivity and Environmental Performance of Aquaculture. Working Paper, Installment 5 of Creating a Sustainable FoodFuture; World Resources Institute: Washington, DC, USA, 2014. [Google Scholar]
- Tacon, A.G.; Metian, M. Feedmatters: Satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 2015, 23, 1–10. [Google Scholar] [CrossRef]
- Mráz, J.; Máchová, J.; Kozák, P.; Pickova, J. Lipid content and composition in common carp–optimization of n-3 fatty acids in different pond production systems. J. Appl. Ichthyol. 2012, 28, 238–244. [Google Scholar] [CrossRef]
- Steffens, W.; Wirth, M. Influence of nutrition on the lipid quality of pond fish: Common carp (Cyprinus carpio) and tench (Tinca tinca). Aquac. Int. 2007, 15, 313–319. [Google Scholar] [CrossRef]
- Trbović, D.; Marković, Z.; Milojković-Opsenica, D.; Petronijević, R.; Spirić, D.; Djinović-Stojanović, J.; Spirić, A. Influence of diet on proximate composition and fatty acid profile in common carp (Cyprinus carpio). J. Food Compos. Anal. 2013, 31, 75–81. [Google Scholar] [CrossRef]
- Hardy, R.W. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquac. Res. 2010, 41, 770–776. [Google Scholar] [CrossRef]
- Balon, E.K. Origin and domestication of the wild carp, Cyprinus carpio: From Roman gourmets to the swimming flowers. Aquaculture 1995, 129, 3–48. [Google Scholar] [CrossRef]
- Balon, E.K. The common carp, Cyprinus carpio: Its wild origin, domestication in aquaculture, and selection as colored nishikigoi. Guelph Ichthyol. Rev. 1995, 3, 1–55. [Google Scholar]
- Szűcs, I.; Stündl, L.; Váradi, L. Carp farming in Central and Eastern Europe and a case study in multifunctional aquaculture. In Species and System Selection for Sustainable Aquaculture; Leung, P.S., Lee, C.S., O’Bryan, P.J., Eds.; Blackwell Publishing: Ames, Iowa, 2007; pp. 389–413. [Google Scholar]
- Horváth, L.; Béres, B.; Urbányi, B. Ecological Pond Management, Fish Farming Based on Hydrobiology; Szent István University, Department of Aquaculture: Gödöllő, Hungary, 2011. (In Hungarian) [Google Scholar]
- Kestemont, P. Different systems of carp production and their impacts on the environment. Aquaculture 1995, 129, 347–372. [Google Scholar] [CrossRef]
- Das, D.; Pathak, A.; Pal, S. Diversity of phytoplankton in some domestic wastewater-fed urban fish pond ecosystems of the Chota Nagpur Plateau in Bankura, India. Appl. Water Sci. 2018, 8, 84. [Google Scholar] [CrossRef] [Green Version]
- Kopp, R.; Řezníčková, P.; Hadašová, L.; Petrek, R.; Brabec, T. Water quality and phytoplankton communities in newly created fishponds. Acta Univ. Agric. Silvic. Mendel. Brun. 2016, 64, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.J.; Cooper, W.E.; Werner, E.E. An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol. Oceanogr. 1970, 15, 839–928. [Google Scholar] [CrossRef]
- Howick, G.L. Zooplankton and Benthic Microinvertebrates in Lake Carl Blackwell. Proc. Okla. Acad. Sci. 1984, 64, 63–65. [Google Scholar]
- Watanabe, T.; Kitajima, C.; Fujita, S. Nutritional values of live organisms used in Japan for mass propagation of fish: A review. Aquaculture 1983, 34, 115–143. [Google Scholar] [CrossRef]
- Millamena, O.M.; Peñaflorida, V.D.; Subosa, P.F. The macronutrient composition of natural food organisms mass cultured as larval feed for fish and prawns. Isr. J. Aquac. 1990, 42, 77–83. [Google Scholar]
- Ruttkay, A. Ecological study of carp nutrition. Kísérletügyi közlemények 1975, 67, 133–156. (In Hungarian) [Google Scholar]
- Ruttkay, A. Fish growth rate and the food. Halászat 1973, 19, 131. (In Hungarian) [Google Scholar]
- Bhuiyan, A.S.; Nessa, Q. Seasonal variation in the occurrence of some zooplankton in a fish pond. Bangladesh J. Fish. Res. 1998, 2, 201–203. [Google Scholar]
- Jhingran, V.G. Fish and Fisheries of India; Hindustan Publishing Corporation (India): New Delhi, India, 1975. [Google Scholar]
- Marbà, N.; Krause-Jensen, D.; Alcoverro, T.; Birk, S.; Pedersen, A.; Neto, J.M.; Orfanidis, S.; Garmendia, J.M.; Muxika, I.; Borja, A.; et al. Diversity of European seagras indicators: Patterns within and across regions. Hydrobiologia 2013, 704, 265–278. [Google Scholar] [CrossRef]
- Pechar, L.; Prikryl, I.; Faina, R. Hydrobiological evaluation of trebon fishponds since the end of the nineteenth century. In Freshwater Wetlands and Their Sustainable Future: A Case Study of Trebon Basin Biosphere Reserve; Kvet, J., Jneík, J., Soukopová, L., Eds.; The Parthenon Publishing Group: New York, NY, USA, 2002; Volume 28, p. 31. [Google Scholar]
- Ruttkay, A. Interactions between carp and zooplankton. XX. Halászati Tudományos Tanácskozás Halászatfejlesztés 1996, 19, 151–170. (In Hungarian) [Google Scholar]
- Ruttkay, A. Polyculture, or the skeleton of a long research process. XXVII. Halászati Tudományos Tanácskozás, Halászatfejlesztés 2003, 2, 187–194. (In Hungarian) [Google Scholar]
- Donászy, E. A Zooplankton in Fishponds in Hungary; Országos Mezőgazdasági Minőségvizsgáló Intézet Vízélettani Osztály: Budapest, Hungary, 1965; pp. 71–103. (In Hungarian) [Google Scholar]
- Körmendi, S. Dél-Dunántúli halastavak kerekesféreg (Rotatoria) faunája. Nat. Som. 2010, 17, 77–82. [Google Scholar]
- Koste, W. Rotatoria Die Radertiere Mitteleuropas; Gebruder Borntraeger: Stuttgart, Germany, 1978. [Google Scholar]
- Bancsi, I. Identification keys for Rotifera, I. In Vízügyi Hidrobiológia; Országos Vízügyi Hivatal: Budapest, Hungary, 1986; Volume 15. (In Hungarian) [Google Scholar]
- Bancsi, I. Identification keys for Rotifera II. In Vízügyi Hidrobiológia; Országos Vízügyi Hivatal: Budapest, Hungary, 1988; Volume 17. (In Hungarian) [Google Scholar]
- Gulyás, P. Identification keys for Cladocera. In Vízügyi Hidrobiológia; Országos Vízügyi Hivatal: Budapest, Hungary, 1974; Volume 2. (In Hungarian) [Google Scholar]
- Gulyás, P.; Forró, L. Identification keys for Cladocera Vízi Természet- és Környezetvédelem 9; Környezetgazdálkodási Intézet, TOI Környezetvédelmi Tájékoztató Szolgálat: Budapest, Hungary, 1999. (In Hungarian) [Google Scholar]
- Flössner, D. Krebstiere, Crustacea: Kiemen- und Blattfüsser, Branchiopoda, Fischläuse, Branchiura, Die Tierwelt Deutschlands 60; VEB Gustav Fischer Verlag: Jena, Germany, 1972. [Google Scholar]
- Dévai, I. Identification keys for Copepoda (Calanoida and Cyclopoida). In Vízügyi Hidrobiológia; Országos Vízügyi Hivatal: Budapest, Hungary, 1977; Volume 5. (In Hungarian) [Google Scholar]
- Gulyás, P.; Forró, L. Identification keys for Copepoda (Calanoida and Cyclopoida). Vízi Természet- és Környezetvédelem 14; Környezetgazdálkodási Intézet, TOI Környezetvédelmi Tájékoztató Szolgálat: Budapest, Hungary, 2001. (In Hungarian) [Google Scholar]
- Németh, J. Methods of biological water classification. In Vízi Természet- és Környezetvédelem 7; Környezetgazdálkodási Intézet, TOI Környezetvédelmi Tájékoztató Szolgálat: Budapest, Hungary, 1998; pp. 139–143. (In Hungarian) [Google Scholar]
- ISO. Water Quality—Determination of Nitrogen—Part 1: Method Using Oxidative Digestion with Peroxodisulfate; International Organization for Standardization: Geneva, Switzerland, 1997. [Google Scholar]
- ISO. Water Quality—Determination of Ammonium Nitrogen—Method by Flow Analysis (CFA and FIA) and Spectrometric Detection; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- ISO. Water quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- ISO. Water Quality—Determination of Suspended Solids by Fltration through Glass-Fibre Filters; International Organization for Standardization: Geneva, Switzerland, 1997. [Google Scholar]
- ISO. Water Quality—Measurement of Biochemical Parameters—Spectrometric Determination of the Chlorophyll-a Concentration; International Organization for Standardization: Geneva, Switzerland, 1992. [Google Scholar]
- ISO. Water Quality—Determination of Electrical Conductivity; International Organization for Standardization: Geneva, Switzerland, 1985. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R.project.org/ (accessed on 18 March 2020).
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.; Wagner, H. Vegan: Community Ecology Package. R package Version 1.17-2. 2012. Available online: https://cran.r-project.org, http://vegan.r-forge.r-project.org/ (accessed on 18 March 2020).
- Zsuga, K. Unpublished data of Daphnia ambigua. 2015. [Google Scholar]
- Bledzki, L.A.; Rybak, J.I. Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida) Key to Species Identification, with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis; Springer International Publishing AG: Cham, Switzerland, 2016. [Google Scholar]
- Ördög, V. Zooplankton—Nutrition, reproduction and ecological demand In Halbiológia és haltenyésztés; Horváth, L., Ed.; Mezőgazda Kiadó: Budapest, Hungary, 2000; pp. 373–376. (In Hungarian) [Google Scholar]
- Körmendi, S.; Hancz, C. Qualitative and quantitative investigation of the zooplankton in fish ponds. Acta Agrar. Kvar. 2000, 4, 95–107. [Google Scholar]
- Gulyás, P.; Bancsi, I.; Zsuga, K. Rotatoria and Crustacea fauna of the Hungarian watercourses. Misc. Zool. Hung. 1995, 10, 21–47. [Google Scholar]
- Invasive Species Compendium—Daphnia Ambigua. Available online: https://www.cabi.org/isc/datasheet/113794 (accessed on 18 March 2020).
- Invasive Species Compendium—Daphnia Parvula. Available online: https://www.cabi.org/isc/datasheet/113798 (accessed on 18 March 2020).
- Crispim, M.C.; Watanabe, T. What can dry reservoir sediments in a semi-arid region in Brazil tell us about cladocera? Hydrobiologia 2001, 442, 101–105. [Google Scholar] [CrossRef]
- Havens, K.E. Zooplankton structure and potential food web interactions in the plankton of a subtropical chain-of-lakes. Sci. World J. 2002, 2, 926–942. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Jeronimo, F.; Ventura-Lopez, C. Population dynamics of the tropical cladoceran Ceriodaphnia rigaudi Richard, 1894 (Crustacea: Anomopoda). Effect of food type and temperature. J. Environ. Biol. 2011, 32, 513–521. [Google Scholar]
- Riato, L.; Van Ginkel, C.; Taylor, J.C. Zooplankton and diatoms of temporary and permanent freshwater pans in the Mpumalanga Highveld region, South Africa. Afr. Zool. 2014, 49, 113–127. [Google Scholar] [CrossRef]
- Sendacz, S.; Caleffi, S.; Santos-Soares, J. Zooplankton biomass of reservoirs in different trophic conditions in the state of São Paulo, Brazil. Braz. J. Biol. 2006, 66, 337–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fishmeal-Based Feed (FF) (Conventional and Commercial Feed) | Plant Meal-Based Feed (PF) (Experimental Feed) | ||
---|---|---|---|
Ingredient | % | Ingredient | % |
Fishmeal 60 | 14.0 | Fishmeal 60 | 0.0 |
Winter wheat | 20.5 | Winter wheat | 16.5 |
Maize | 27.5 | Maize | 27.5 |
Full-fat soy | 6.5 | Full-fat soy | 9.5 |
Extruded soy | 17.5 | Extruded soy | 29.5 |
Blood meal | 5.0 | Blood meal | 8.0 |
Fish oil | 2.0 | Linseed oil | 2.0 |
Other | 7.0 | Other | 7.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, F.; Zsuga, K.; Kerepeczki, É.; Berzi-Nagy, L.; Jakabné Sándor, Z.; Körmöczi, L. The Effect of Feed Composition on the Structure of Zooplankton Communities in Fishponds. Water 2020, 12, 1338. https://doi.org/10.3390/w12051338
Tóth F, Zsuga K, Kerepeczki É, Berzi-Nagy L, Jakabné Sándor Z, Körmöczi L. The Effect of Feed Composition on the Structure of Zooplankton Communities in Fishponds. Water. 2020; 12(5):1338. https://doi.org/10.3390/w12051338
Chicago/Turabian StyleTóth, Flórián, Katalin Zsuga, Éva Kerepeczki, László Berzi-Nagy, Zsuzsanna Jakabné Sándor, and László Körmöczi. 2020. "The Effect of Feed Composition on the Structure of Zooplankton Communities in Fishponds" Water 12, no. 5: 1338. https://doi.org/10.3390/w12051338