Detecting Patterns of Changes in River Water Temperature in Poland
Abstract
:1. Introduction
2. Materials and Methods
- -
- 12 monthly M–K test results,
- -
- 16 correlation coefficients (R) of average annual water temperature in 30-year sub-periods of the multi-annual period of 1971–2015 with the one-year shift.
3. Results
3.1. Tendencies of River Water Temperature (RWT) Change
3.2. Spatial Patterns in Monthly Water Temperature Trends
3.3. Tendencies of Change of Average Annual River Water Temperature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC; SRCCL. Climate Change and Land. IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems. Summary for Policymakers. 2018. Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Microsite_FINAL.pdf (accessed on 10 March 2020).
- Webb, B.W. Trends in stream and river temperature. Hydrol. Process. 1996, 10, 205–226. [Google Scholar] [CrossRef]
- Webb, B.W.; Nobilis, F. Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrol. Sci. J. 2007, 52, 74–85. [Google Scholar] [CrossRef]
- Delpla, I.; Jung, A.-V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef]
- Van Vliet, M.T.H.; Ludwig, F.; Zwolsman, J.J.G.; Weedon, G.P.; Kabat, P. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resour. Res. 2011, 47, W02544. [Google Scholar] [CrossRef]
- Dokulil, M.T. Impact of climate warming on European inland waters. Inland Waters 2014, 4, 27–40. [Google Scholar] [CrossRef]
- O#x2019;Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar]
- Reid, P.C.; Hari, R.E.; Beaugrand, G.; Livingstone, D.M.; Marty, C.; Straile, D.; Barichivich, J.; Goberville, E.; Adrian, R.; Aono, Y.; et al. Global impacts of the 1980s regime shift. Global Change Biol. 2016, 22, 682–703. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.S.; Likens, G.E.; Jaworski, N.A.; Pace, M.L.; Sides, A.M.; Seekell, D.; Wingate, R.L. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 2010, 8, 461–466. [Google Scholar] [CrossRef]
- Luo, Y.; Ficklin, D.L.; Liu, X.; Zhang, M. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Sci. Total Environ. 2013, 450–451, 72–82. [Google Scholar] [CrossRef]
- Caldwell, P.; Segura, C.; Laird, S.G.; Sun, G.; McNulty, S.G.; Sandercock, M.; Boggs, J.; Vose, J.M. Short-term stream water temperature observations permit rapid assessment of potential climate change impacts. Hydrol. Process 2015, 29, 2196–2211. [Google Scholar] [CrossRef]
- Olsson, T.; Jakkila, J.; Veijalainen, N.; Backman, L.; Kaurola, J.; Vehviläinen, B. Impacts of climate change on temperature, precipitation and hydrology in Finland—Studies using bias corrected regional climate model data. Hydrol. Earth. Syst. Sci. 2015, 19, 3217–3238. [Google Scholar] [CrossRef] [Green Version]
- Taniwaki, R.H.; Piggott, J.J.; Ferraz, S.F.; Matthaei, C.D. Climate change and multiple stressors in small tropical streams. Hydrobiologia 2017, 793, 41–53. [Google Scholar] [CrossRef]
- Van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Global Environ. Change 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Jones, L.A.; Muhlfeld, C.C.; Marshall, L.A.; McGlynn, B.L.; Kershner, J.L. Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats. River Res. Applic. 2014, 30, 204–216. [Google Scholar] [CrossRef]
- Lee, K.H.; Cho, H.Y. Projection of climate-induced future water temperature for the aquatic environment. J. Environ. Eng. 2015, 141, 06015004. [Google Scholar] [CrossRef]
- Isaak, D.J.; Wollrab, S.; Horan, D.; Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Change 2012, 113, 499–524. [Google Scholar] [CrossRef] [Green Version]
- Arora, R.; Tockner, K.; Venohr, M. Changing river temperatures in northern Germany: Trends and drivers of change. Hydrol. Processes 2016, 30, 17–3084. [Google Scholar] [CrossRef]
- Zhang, Y.; Cabilio, P.; Nadeem, K. Improved Seasonal Mann–Kendall Tests for Trend Analysis in Water Resources. Time Series Adv. Time Series Methods Applic. 2016, 78, 215. [Google Scholar]
- EEA Report No 12/2012, Climate Change, Impacts and Vulnerability in Europe 2012en. 2012. Available online: http://www.eea.europa.eu/pl/themes (accessed on 15 March 2020).
- CBS; PBL; RIVM; WUR. Temperatuur Oppervlaktewater, 1910–2017 [18] (Indicator 0566, Versie 04, 13 December 2018); Bureau voor de Statistiek (CBS): The Hague, The Netherlands; PBL Planbureau voor de Leefomgeving: The Hague, The Netherlands; RIVM Rijksinstituut voor Volksgezondheid en Milieu: Bilthoven, The Netherlands; Wageningen University and Research: Wageningen, The Netherlands, 2018; Available online: www.clo.nl (accessed on 10 March 2020).
- Orr, H.G.; Simpson, G.L.; Clers, S.; Watts, G.; Hughes, M.; Hannaford, J.; Evans, R. Detecting changing river temperatures in England and Wales. Hydrol. Process. 2015, 29, 752–766. [Google Scholar] [CrossRef] [Green Version]
- Webb, B.W.; Walling, D.E. Long term water temperature behaviour and trends in a Devon, UK, river system. Hydrol. Sci. J. 1992, 37, 567–580. [Google Scholar] [CrossRef]
- Webb, B.W.; Nobilis, F. Long term water temperature trends in Austrian rivers. Hydrol. Sci. J. 1995, 40, 83–96. [Google Scholar] [CrossRef]
- Pekarova, P.; Halmova, D.; Miklanek, P.; Onderka, M.; Pekar, J.; Skoda, P. Is the water temperature of the Danube River at Bratislava, Slovakia, rising? J. Hydrometeorol. 2008, 9, 1115–1122. [Google Scholar] [CrossRef]
- Basarin, B.; Lukić, T.; Pavić, D.; Wilby, R.L. Trends and multi-annual variability of water temperatures in the river Danube, Serbia. Hydrol. Processes 2016, 30, 3315. [Google Scholar] [CrossRef] [Green Version]
- Michel, A.; Brauchli, T.; Lehning, M.; Schaefli, B.; Huwald, H. Stream temperature and discharge evolution in Switzerland over the last 50 years: Annual and seasonal behaviour. Hydrol. Earth Syst. Sci. 2020, 24, 115–142. [Google Scholar] [CrossRef] [Green Version]
- Marszelewski, W.; Pius, B. Long-term changes in temperature of river waters in the transitional zone of the temperate climate: A case study of Polish rivers. Hydrol. Sci. J. 2016, 61, 1430–1442. [Google Scholar] [CrossRef]
- Graf, R. Variations of the thermal conditions of the Warta in the profile connecting the Urstromtal and gorge sections of the valley (Nowa Wieś Podgórna—Śrem—Poznań). In Nowoczesne Metody i Rozwiązania w Hydrologii i Gospodarce Wodnej; Absalon, D., Matysik, M., Ruman, M., Eds.; Komisja Hydrologiczna PTG, PTG Oddział Katowice: Katowice, Poland, 2015; pp. 177–194. (In Polish) [Google Scholar]
- Graf, R.; Łukaszewicz, J.T.; Jawgiel, K. The analysis of the structure and duration of ice phenomena on the Warta river in relation to thermic conditions in the years 1991–2010. Woda Środowisko Obszary Wiejskie 2018, 18, 5–28. (In Polish) [Google Scholar]
- Ptak, M. Changes in water temperature and ice phenomena in the Ner River (Central Poland) in the years 1965–2014. Pol. J. Sustain. Dev. 2017, 21, 49–56. (In Polish) [Google Scholar] [CrossRef]
- Ptak, M.; Nowak, B. Changes in water temperature in Prosna river in 1965–2014. Woda-Środowisko-Obszary Wiejskie 2017, 17, 101–112. (In Polish) [Google Scholar]
- Kędra, M. Regional response to global warming: Water temperature trends in semi-natural mountain river systems. Water 2020, 12, 283. [Google Scholar] [CrossRef] [Green Version]
- Woolway, R.I.; Jones, I.D.; Maberly, S.C.; French, J.R.; Livingstone, D.M.; Monteith, D.T.; Simpson, G.L.; Thackeray, S.J.; Andersen, M.R.; Battarbee, R.W.; et al. Diel surface temperature range scales with lake size. PLoS ONE 2016, 11, e0152466. [Google Scholar] [CrossRef] [Green Version]
- Wrzesiński, D. Use of entropy in the assessment of uncertainty of river runoff regime in Poland. Acta Geophysica 2016, 64, 1825–1839. [Google Scholar] [CrossRef] [Green Version]
- Wrzesiński, D.; Marsz, A.A.; Styszyńska, A.; Sobkowiak, L. Effect of the North Atlantic Thermohaline Circulation on Changes in Climatic Conditions and River Flow in Poland. Water 2019, 11, 1622. [Google Scholar] [CrossRef] [Green Version]
- Wrzesiński, D.; Sobkowiak, L. Detection of changes in flow regime of rivers in Poland. J. Hydrol. Hydromech. 2018, 66, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Wrzesiński, D.; Sobkowiak, L. Transformation of the Flow Regime of a Large Allochthonous River in Central Europe—An Example of the Vistula River in Poland. Water 2020, 12, 507. [Google Scholar] [CrossRef] [Green Version]
- Salmi, T.; Määttä, A.; Anttila, P.; Ruoho-Airola, T.; Amell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by Mann-Kendall Test and Sen’s Slope Estimates—The Excel Template Application MAKESENS; Publication on Air Quality; Finnish Meteorological Institute: Helsinki, Finland, 2002; p. 35, Number 31. [Google Scholar]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Isik, S.; Singh, V.P. Hydrologic regionalization of watersheds in Turkey. J. Hydrol. Eng. 2008, 13, 824–834. [Google Scholar] [CrossRef]
- Zhang, Y.; Arthington, A.H.; Bunn, S.E.; Mackay, S.; Xia, J.; Kennard, M. Classification of flow regimes for environmental flow assessment in regulated rivers: The Huai River Basin, China. River Res. Applic. 2012, 28, 989–1005. [Google Scholar] [CrossRef]
- Berhanu, B.; Seleshi, Y.; Demisse, S.; Melesse, A. Flow regime classification and hydrological characterization: A case study of Ethiopian rivers. Water 2015, 7, 3149–3165. [Google Scholar] [CrossRef] [Green Version]
- Wrzesiński, D.; Ptak, M.; Plewa, K. Effect of the North Atlantic Oscillation on water level fluctuations in lakes of northern Poland. Geographia Polonica 2018, 91, 243–259. [Google Scholar] [CrossRef]
- Plewa, K.; Perz, A.; Wrzesiński, D. Links between Teleconnection Patterns and Water Level Regime of Selected Polish Lakes. Water 2019, 11, 1330. [Google Scholar] [CrossRef] [Green Version]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.; Kuusisto, E.; et al. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartholow, J.M. Recent water temperature trends in the lower Klamath River, California. N. Am. J. Fish. Manag. 2005, 25, 152–162. [Google Scholar] [CrossRef]
- Graf, R.; Tomczyk, A.M. The Impact of Cumulative Negative Air Temperature Degree-Days on the Appearance of Ice Cover on a River in Relation to Atmospheric Circulation. Atmosphere 2018, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Graf, R.; Wrzesiński, D. Relationship between Water Temperature of Polish Rivers and Large-Scale Atmospheric Circulation. Water 2019, 11, 1690. [Google Scholar] [CrossRef] [Green Version]
- Łukaszewicz, J.; Graf, R. The variability of ice phenomena on the rivers of the Baltic coastal zone in the Northern Poland. J. Hydrol. Hydromech. 2020, 68, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Hannah, D.M.; Garner, G. River water temperature in the United Kingdom: Changes over the 20th century and possible changes over the 21st century. Progress Phys. Geography 2015, 39, 68–92. [Google Scholar] [CrossRef] [Green Version]
- Wollway, R.I.; Dokulil, M.T.; Marszelewski, W.; Schmid, M.; Bouffard, D.; Merchant, C.J. Warming of Central European lakes and their response to the 1980s climate regime shift. Clim. Change 2017, 142, 505–520. [Google Scholar] [CrossRef]
- Schneider, P.; Hook, S.J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res Lett. 2010, 37, L22405. [Google Scholar] [CrossRef] [Green Version]
- North, R.P.; Livingstone, D.M.; Hari, R.E.; Köster, O.; Niederhauser, P.; Kipfer, R. The physical impact of the late 1980s climate regime shift on Swiss rivers and lakes. Inland Waters 2013, 3, 341–350. [Google Scholar] [CrossRef]
- Torbick, N.; Ziniti, B.; Wu, S.; Linder, E. Spatiotemporal lake skin summer temperature trends in the northeast United States. Earth Interact 2016, 20, 1–21. [Google Scholar] [CrossRef]
- Younus, M.; Hondzo, M.; Engel, B.A. Stream Temperature Dynamics in Upland Agricultural Watersheds. J. Environ. Eng. 2000, 126, 518–526. [Google Scholar] [CrossRef]
- Poole, G.C.; Berman, C.H. An ecological perspective on in-stream temperature: Natural heat dynamics and mechanisms of human-caused thermal degradation. Environ. Manag. 2001, 27, 787–802. [Google Scholar] [CrossRef] [PubMed]
- Caissie, D. The thermal regime of rivers: A review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Gallice, A.; Schaefli, B.; Lehning, M.; Parlange, M.P.; Huwald, H. Stream temperature prediction in ungauged basins: Review of recent approaches and description of a new physically—Based analytical model. Hydrol. Earth Syst Sci. 2015, 19, 3727–3753. [Google Scholar] [CrossRef] [Green Version]
- Lisi, P.J.; Schindler, D.E.; Cline, T.J.; Scheuerell, M.D.; Walsh, P.B. Watershed geomorphology and snowmelt control stream thermal sensitivity to air temperature. Geophys. Res. Lett. 2015, 42, 3380–3388. [Google Scholar] [CrossRef]
- Graf, R. Distribution Properties of a Measurement Series of River Water Temperature at Different Time Resolution Levels (Based on the Example of the Lowland River Noteć, Poland). Water 2018, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Gorączko, M.; Pawłowski, B. Changing of ice phenomena on Warta River in vicinity of Uniejów. Biuletyn Uniejowski 2014, 3, 23–33. (In Polish) [Google Scholar]
- Kornaś, M. Ice phenomena in the Warta River in Poznań in 1961–2010. Questiones Geographice 2014, 33, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Graf, R.; Zhu, S.; Sivakumar, B. Forecasting river water temperature time series using a wavelet–neural network hybrid modelling approach. J. Hydrol. 2019, 578, 124115. [Google Scholar] [CrossRef]
- Ciupa, T. Temperature of waters and icing phenomena in the rivers. Draining river catchments of Silnica and Sufraganiec (the Świętokrzyskie Mountains). Probl. Ekol. Krajobr. 2006, 16, 381–390. (In Polish) [Google Scholar]
- Matysik, M. The Impact of Mine Water Discharges on the Runoff of the Rivers of the Upper Silesian Coal Basin; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2018; p. 166. (In Polish) [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graf, R.; Wrzesiński, D. Detecting Patterns of Changes in River Water Temperature in Poland. Water 2020, 12, 1327. https://doi.org/10.3390/w12051327
Graf R, Wrzesiński D. Detecting Patterns of Changes in River Water Temperature in Poland. Water. 2020; 12(5):1327. https://doi.org/10.3390/w12051327
Chicago/Turabian StyleGraf, Renata, and Dariusz Wrzesiński. 2020. "Detecting Patterns of Changes in River Water Temperature in Poland" Water 12, no. 5: 1327. https://doi.org/10.3390/w12051327