Wildfire Effects on Groundwater Quality from Springs Connected to Small Public Supply Systems in a Peri-Urban Forest Area (Braga Region, NW Portugal)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrogeological Framework
2.2. Wildfire Description
2.3. Water Sampling
2.4. Laboratory Analyses
2.5. Statistical Studies
3. Results and Discussion
PAH Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chou, Y.H. Management of Wildfires with a Geographical Information-System. Int. J. Geogr. Inf. Syst. 1992, 6, 123–140. [Google Scholar] [CrossRef]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef] [PubMed]
- Salis, M.; Ager, A.A.; Alcasena, F.J.; Arca, B.; Finney, M.A.; Pellizzaro, G.; Spano, D. Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy. Environ. Monit. Assess. 2015, 187, 4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tartaglia, E.S.; Aronson, M.F.J.; Raphael, J. Does Suburban Horticulture Influence Plant Invasions in a Remnant Natural Area? Nat. Area. J. 2018, 38, 259–267. [Google Scholar] [CrossRef]
- Bardsley, D.K.; Weber, D.; Robinson, G.M.; Moskwa, E.; Bardsley, A.M. Wildfire risk, biodiversity and peri-urban planning in the Mt Lofty Ranges, South Australia. Appl. Geogr. 2015, 63, 155–165. [Google Scholar] [CrossRef]
- Esposito, G.; Parodi, A.; Lagasio, M.; Masi, R.; Nanni, G.; Russo, F.; Alfano, S.; Giannatiempo, G. Characterizing Consecutive Flooding Events after the 2017 Mt. Salto Wildfires (Southern Italy): Hazard and Emergency Management Implications. Water 2019, 11, 2663. [Google Scholar] [CrossRef] [Green Version]
- Chas-Amil, M.L.; Touza, J.; Garcia-Martinez, E. Forest fires in the wildland-urban interface: A spatial analysis of forest fragmentation and human impacts. Appl. Geogr. 2013, 43, 127–137. [Google Scholar] [CrossRef]
- Font, M.; Chauvin, S.; Plana, E.; Garcia, J.; Gladiné, J.; Serra, M. Forest Fire Risk in the Wildland-urban Interface, Elements for the Analysis of the Vulnerability of Municipalities and Homes at Risk; FIRECOM project (DG ECHO 2014/PREV/13); CTFC Editions: Solsona, Spain, 2016. [Google Scholar]
- Vyklyuk, Y.; Radovanović, M.M.; Pasichnyk, V.; Kunanets, N.; Petro, S. Forecasting of Forest Fires in Portugal Using Parallel Calculations and Machine Learning. In Recent Developments in Data Science and Intelligent Analysis of Information; Springer: Cham, Switzerland, 2018; pp. 39–49. [Google Scholar]
- JRC. Forest Fires in Europe, Middle East and North Africa 2017; Joint Research Centre (JRC): Ispra (VA), Italy, 2018. [Google Scholar]
- Tecle, A.; Neary, D. Water Quality Impacts of Forest Fires. J. Pollut. Eff. Cont. 2015, 3, 1–7. [Google Scholar] [CrossRef]
- Carignan, R.; D’Arcy, P.; Lamontagne, S. Comparative impacts of fire and forest harvesting on water quality in Boreal Shield lakes. Can. J. Fish Aquat. Sci. 2000, 57, 105–117. [Google Scholar] [CrossRef]
- Miller, M.E.; Billmire, M.; Elliot, W.J.; Endsley, K.A.; Robichaud, P.R. Rapid Response Tools and Datasets for Post-Fire Modeling: Linking Earth Observations and Process-Based Hydrological Models to Support Post-Fire Remediation. Int. Arch. Photogramm. 2015, 47, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Nyman, P.; Haydon, S. Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Yuan, H.; Tao, S.; Li, B.; Lang, C.; Cao, J.; Coveney, R.M. Emission and outflow of polycyclic aromatic hydrocarbons from wildfires in China. Atmos. Environ. 2008, 42, 6828–6835. [Google Scholar] [CrossRef]
- Nunes, B.; Silva, V.; Campos, I.; Pereira, J.L.; Pereira, P.; Keizer, J.J.; Gonçalves, F.; Abrantes, N. Off-site impacts of wildfires on aquatic systems—Biomarker responses of the mosquitofish Gambusia holbrooki. Sci. Total Environ. 2017, 581–582, 305–313. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality, Fourth Edition, Incorporating the 1st Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Zuo, J.; Brewer, D.S.; Arlt, V.M.; Cooper, C.S.; Phillips, D.H. Benzo pyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice. BMC Genom. 2014, 15, 880. [Google Scholar] [CrossRef] [Green Version]
- Albinet, A.; Leoz-Garziandia, E.; Budzinski, H.; ViIlenave, E. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): Concentrations and sources. Sci. Total. Environ. 2007, 384, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Petrol. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Keith, L.H. The Source of U.S. EPA’s Sixteen PAH Priority Pollutants. Polycycl. Aromat. Comp. 2015, 35, 147–160. [Google Scholar] [CrossRef]
- EC. Directive 2008/105/EC of the European Parliament and of the Council on Environmental Quality Standards in the Field of Water Policy, Amending and Subsequently Repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and Amending Directive 2000/60/EC of the European Parliament and of the Council; Official Journal of the European Union: Aberdeen, UK, 2008.
- Moody, J.A.; Ebel, B.A.; Nyman, P.; Martin, D.A.; Stoof, C.R.; McKinley, R. Relations between soil hydraulic properties and burn severity. Int. J. Wildland Fire 2016, 25, 279–293. [Google Scholar] [CrossRef]
- INE. Censos 2011 Resultados Definitivos-Região Norte; Instituto Nacional de Estatística, I.P.: Lisboa, Portugal, 2012. [Google Scholar]
- AEMET-IM. Atlas Climático Ibérico. Temperatura do Ar e Precipitação (1971–2000); Departamento de Producción da Agência Estatal de Meteorologia de Espanha (Área de Climatología y Aplicaciones Operativas) e Departamento de Meteorologia e Clima (Divisão de Observação Meteorológica e Clima), do Instituto de Meteorologia: Madrid, Spain, 2011. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.M.I.; Pereira, J.S.P.; Santos, L.J.C.; França da Silva, J.M. Unidades geomorfológicas de Portugal Continental. Rev. Bras. Geomorf. 2014, 15, 567–584. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.; Munhá, J.; Dias, R.; Mateus, A.; Pereira, E.; Ribeiro, L.; Fonseca, P.; Araújo, A.; Oliveira, T.; Romão, J.; et al. Geodynamic evolution of the SW Europe Variscides. Tectonics 2007, 26, TC6009. [Google Scholar] [CrossRef]
- ICNF. 9.º Relatório Provisório de Incêndios Florestais -2017; Departamento de Gestão de Áreas Públicas e de Proteção Floresta: Lisboa, Portugal, 2017. [Google Scholar]
- Guerreiro, J.; Fonseca, C.; Salgueiro, A.; Fernandes, P.; Lopez Iglésias, E.; de Neufville, R.; Mateus, F.; Castellnou Ribau, M.; Sande Silva, J.; Moura, J.M.; et al. Avaliação dos incêndios ocorridos entre 14 e 16 de outubro de 2017 em Portugal Continental. Relatório Final; Comissão Técnica Independente, Assembleia da República.: Lisboa, Portugal, 2018. [Google Scholar]
- IPMA. Boletim Climatológico; Instituto Português do Mar e da Atmosfera, I.P.: Lisboa, Portugal, 2018. [Google Scholar]
- Borges, B.; Armindo, M.; Ferreira, I.M.P.L.V.O.; Mansilha, C. Dispersive liquid–liquid microextraction for the simultaneous determination of parent and nitrated polycyclic aromatic hydrocarbons in water samples. Acta Chromatog. 2018, 30, 119–126. [Google Scholar] [CrossRef]
- Martin, D.A. At the nexus of fire, water and society. Philos. Trans. R. Soc. B 2016, 371, 20150172. [Google Scholar] [CrossRef] [Green Version]
- Andreu, V.; Rubio, J.L.; Cerni, R. Effect of Mediterranean shrub on water erosion control. Environ. Monit. Assess. 1995, 37, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Certini, G.; Nocentini, C.; Knicker, H.; Arfaioli, P.; Rumpel, C. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma 2011, 167, 148–155. [Google Scholar] [CrossRef]
- Mansilha, C.; Duarte, C.G.; Melo, A.; Ribeiro, J.; Flores, D.; Marques, J.E. Impact of wildfire on water quality in Caramulo Mountain ridge (Central Portugal). Sustain. Water Resour. Manag. 2017, 5, 319–331. [Google Scholar] [CrossRef]
- Townsend, S.A.; Douglas, M.M. The effect of a wildfire on stream water quality and catchment water yield in a tropical savanna excluded from fire for 10 years (Kakadu National Park, North Australia). Water Res. 2004, 38, 3051–3058. [Google Scholar] [CrossRef]
- Mast, M.A.; Clow, D.W. Effects of 2003 wildfires on stream chemistry in Glacier National Park, Montana. Hydrol. Process. 2008, 22, 5013–5023. [Google Scholar] [CrossRef]
- Delwiche, J. After the Fire, Follow the Nitrogen. JFSP Briefs. 2010, 80. Available online: http://digitalcommons.unl.edu/jfspbriefs/80 (accessed on 15 January 2020).
- Ranalli, A.J. A Summary of the Scientific Literature on the Effects of Fire on the Concentration of Nutrients in Surface Waters; U.S. Geological Survey: Reston, VA, USA, 2004. [Google Scholar]
- Rust, A.J.; Hogue, T.S.; Saxe, S.; McCray, J. Post-fire water-quality response in the western United States. Inter. J. Wildland Fire 2018, 27, 203–216. [Google Scholar] [CrossRef]
- Sham, C.H.; Tuccillo, M.E.; Rooke, J. Report on the Effects of Wildfire on Drinking Water Utilities and Effective Practices for Wildfire Risk Reduction and Mitigation; Water Research Foundation and U.S. Environmental Protection Agency: Waltham, MA, USA, 2013. [Google Scholar]
- EC. Commission Staff Working Document Accompanying the Report from the Commission in Accordance with Article 3.7 of the Groundwater Directive 2006/118/EC on the Establishment of Groundwater Threshold Values; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- IARC. Agents Classified by the IARC Monographs, Volumes 1 to 113; International Agency for Research on Cancer: Lyon, France, 2015; Volume 1–113. [Google Scholar]
- ATSDR. Priority List of Hazardous Substances; Agency for Toxic Substances and Disease Registry: Atlanta, Georgia, 2015. [Google Scholar]
- Hyzd’alova, M.; Pivnicka, J.; Zapletal, O.; Vazquez-Gomez, G.; Matthews, J.; Neca, J.; Pencikova, K.; Machala, M.; Vondracek, J. Aryl Hydrocarbon Receptor-Dependent Metabolism Plays a Significant Role in Estrogen-Like Effects of Polycyclic Aromatic Hydrocarbons on Cell Proliferation. Toxicol. Sci. 2018, 165, 447–461. [Google Scholar] [CrossRef]
- EC. Directive 98/83/EC on the Quality of Water Intended for Human Consumption; Official Journal of the European Union: Aberdeen, UK, 1998.
- MDH. Guidance for Evaluating the Cancer Potency of Polycyclic Aromatic Hydrocarbon (PAH) Mixtures in Environmental Samples; Minnesota Department of Health: St. Paul, MN, USA, 2016. [Google Scholar]
- Stogiannidis, E.; Laane, R. Source Characterization of Polycyclic Aromatic Hydrocarbons by Using Their Molecular Indices: An Overview of Possibilities. Rev. Environ. Contam. Toxicol. 2015, 234, 49–133. [Google Scholar]
- Denis, E.H.; Toney, J.L.; Tarozo, R.; Scott Anderson, R.; Roach, L.D.; Huang, Y. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: Validation using HPLC-fluorescence detection. Org. Geochem. 2012, 45, 7–17. [Google Scholar] [CrossRef]
- Nasher, E.; Heng, L.Y.; Zakaria, Z.; Surif, S. Concentrations and Sources of Polycyclic Aromatic Hydrocarbons in the Seawater around Langkawi Island, Malaysia. J. Chem. 2013, 2013, 975781. [Google Scholar] [CrossRef]
- Edokpayi, J.; Odiyo, J.; Popoola, O.; Msagati, T. Determination and Distribution of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
Sampling Point | Altitude (m a.s.l.) | Lithology | Soil Types | Land Cover |
---|---|---|---|---|
S1—Sta. Maria Madalena Fountain | 425 | Metasedimentary rocks | Leptosol and Regosol | Public garden with Quercus robur and Quercus suber |
S2—Sta. Marta de Leão Fountain | 415 | Granite | Leptosol and Regosol | Public garden and forest with Quercus robur, Quercus suber, Pinus pinaster and Eucalyptus globulus |
S3—Tanque de Dadim Fountain | 350 | Granite | Regosol, Cambisol and Anthrosol | Deciduous forest |
S4—Depósitos Spring | 400 | Granite (dominant) and metasedimentary rocks (residual) | Leptosol, Regosol and Cambisol | Eucalyptus globulus forest |
S5—Monte de Dadim (control point) | 390 | Granite | Regosol and Cambisol | Deciduous forest |
Sampling Point | Sampling Date | pH | COD | EC | Si | TP | HCO3− | F− | Cl− | SO42− | PO42− | NO3− | NO2− | NH4+ | Na+ | K+ | Ca2+ | Mg2+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg/L) | (µS/cm) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | |||
S1—Sta. Maria Madalena Fountain | 17 October | 6.0 | 2.5 | 37.1 | 8.5 | 0.05 | 10.1 | 0.02 | 6.6 | 0.4 | 0.067 | <LD | 0.007 | 0.006 | 5.7 | 0.6 | 1.7 | 0.5 |
18 January | 5.7 | 8.3 | 37.6 | 7.9 | 0.04 | 7.9 | 0.03 | 7.7 | 0.7 | 0.066 | 1.0 | 0.001 | <LD | 5.6 | 0.5 | 1.8 | 0.6 | |
18 April | 5.5 | 10.1 | 41.7 | 6.9 | 0.04 | 5.0 | 0.09 | 9.0 | 1.5 | <LD | 2.0 | 0.005 | 0.002 | 6.8 | 0.4 | 0.5 | 0.4 | |
18 May | 5.6 | 7.1 | 35.2 | 7.1 | 0.03 | 5.7 | 0.27 | 8.3 | 1.0 | 0.035 | 1.1 | 0.001 | <LD | 6.2 | 0.5 | 1.4 | 0.9 | |
18 September | 6.3 | 5.6 | 34.9 | 9.3 | 0.12 | 8.8 | <LD | 6.9 | 1.3 | 0.041 | 0.8 | 0.002 | <LD | 5.2 | 0.8 | 2.0 | 0.5 | |
S2—Sta. Marta de Leão Fountain | 17 October | 6.1 | 2.8 | 37.8 | 8.5 | 0.03 | 10.1 | 0.02 | 6.8 | 0.5 | 0.064 | 0.2 | 0.003 | <LD | 6.0 | 1.0 | 1.6 | 0.4 |
18 January | 5.8 | 8.6 | 37.2 | 7.8 | 0.06 | 7.3 | 0.04 | 7.7 | 0.7 | 0.070 | 1.1 | <LD | <LD | 5.6 | 0.5 | 1.8 | 0.6 | |
18 April | 5.4 | 7.8 | 40.2 | 6.8 | 0.02 | 4.4 | 0.10 | 9.0 | 1.6 | <LD | 1.8 | 0.004 | 0.003 | 6.2 | 0.4 | 0.5 | 0.4 | |
18 May | 5.6 | 5.4 | 34.2 | 7.1 | 0.24 | 5.7 | 0.28 | 8.5 | 1.1 | 0.014 | 1.6 | <LD | <LD | 5.8 | 0.5 | 1.3 | 0.7 | |
18September | 6.4 | 3.9 | 37.5 | 9.1 | 0.11 | 8.8 | <LD | 6.9 | 1.3 | 0.021 | 0.7 | 0.004 | <LD | 5.0 | 0.8 | 2.0 | 0.5 | |
S3—Tanque de Dadim Fountain | 17 October | 5.6 | 2.9 | 48.4 | 15.4 | 0.05 | 15.7 | 0.02 | 7.7 | <LD | 0.260 | 0.5 | 0.003 | <LD | 7.9 | 0.8 | 2.0 | 0.6 |
18 January | 5.8 | 7.1 | 48.2 | 16.4 | 0.25 | 17.0 | 0.04 | 7.9 | <LD | 0.266 | 1.2 | <LD | <LD | 7.7 | 0.7 | 2.3 | 0.8 | |
18 April | 6.1 | 9.1 | 47.0 | 16.3 | 0.07 | 12.6 | 0.05 | 7.7 | 0.5 | 0.118 | 0.8 | 0.004 | 0.011 | 8.5 | 0.7 | 1.8 | 0.5 | |
18 May | 6.0 | 6.9 | 42.8 | 16.0 | 0.29 | 14.0 | 0.26 | 7.6 | 0.1 | 0.124 | 0.8 | 0.001 | <LD | 7.5 | 0.9 | 2.4 | 0.8 | |
18 September | 6.3 | 5.9 | 46.7 | 17.0 | 0.19 | 15.3 | <LD | 7.4 | 0.8 | 0.146 | 0.7 | 0.002 | <LD | 6.7 | 0.8 | 2.3 | 0.7 | |
S4—Depósitos Spring | 17 October | 5.6 | 2.1 | 61.6 | 10.6 | 0.05 | 26.5 | 0.02 | 8.5 | <LD | 0.121 | 4.7 | <LD | <LD | 7.5 | 0.6 | 4.0 | 1.1 |
18 January | 5.8 | 9,.1 | 59.7 | 11.9 | 0.08 | 14.1 | 0.03 | 8.9 | <LD | 0.083 | 6.8 | <LD | <LD | 7.4 | 0.5 | 3.5 | 1.3 | |
18 April | 5.9 | 8.5 | 61.8 | 12.1 | 0.04 | 12.6 | 0.05 | 9.3 | 0.8 | 0.282 | 7.5 | 0.006 | 0.005 | 9.0 | 0.6 | 2.9 | 1.2 | |
18 May | 6.0 | 2.8 | 58.4 | 11.7 | 0.07 | 12.2 | 0.31 | 9.6 | 0.4 | 0.021 | 6.9 | 0.001 | <LD | 8.2 | 0.8 | 4.0 | 1.2 | |
18 September | 6.7 | 2.9 | 58.7 | 11.9 | 0.06 | 13.5 | <LD | 8.8 | 1.0 | 0.060 | 5.5 | 0.004 | 0.001 | 6.5 | 0.8 | 3.2 | 1.2 | |
S5—Monte de Dadim (control point, NB) | 17 October | 6.4 | 2.0 | 65.6 | 23.4 | 0.04 | 26.5 | 0.03 | 8.4 | <LD | 0.332 | 0.2 | 0.002 | <LD | 9.2 | 0.9 | 4.0 | 1.1 |
18 January | 6.7 | 7.1 | 65.0 | 23.4 | 0.36 | 28.4 | 0.06 | 8.3 | <LD | 0.337 | 0.8 | 0.001 | <LD | 8.7 | 1.0 | 4.5 | 1.2 | |
18 April | 6.6 | 10.0 | 64.0 | 23.7 | 0.11 | 26.5 | 0.07 | 8.7 | 0.2 | 0.187 | 0.6 | 0.004 | <LD | 10.1 | 1.0 | 3.8 | 1.0 | |
18 May | 6.4 | 5.8 | 59.8 | 22.6 | 0.11 | 23.6 | 0.11 | 8.4 | <LD | 0.200 | 0.6 | <LD | <LD | 7.5 | 0.6 | 3.0 | 1.5 | |
18 September | 6.5 | 8.2 | 61.1 | 23.5 | 0.15 | 25.7 | <LD | 8.0 | 0.6 | 0.196 | 0.3 | 0.001 | <LD | 7.3 | 0.9 | 3.9 | 1.1 |
S1 | S2 | S3 | S4 | S5 | ||
---|---|---|---|---|---|---|
Cd | Avg | 0.07 | 0.02 | 0.02 | 0.06 | <LD |
Min-Max | <LD–0.15 | <LD–0.1 | <LD–0.1 | <LD–0.2 | <LD | |
As | Avg | 0.3 | 0.4 | 1.9 | 1.2 | 0.7 |
Min-Max | <LD–0.8 | <LD–0.6 | 1.6–2.4 | 0.7–2.3 | 0.2–1.3 | |
Pb | Avg | 0.04 | <LD | 0.5 | <LD | <LD |
Min-Max | <LD–0.2 | <LD | <LD–2.5 | <LD | <LD | |
Ni | Avg | 0.6 | 0.1 | 1.5 | 0.1 | 0.7 |
Min-Max | <LD–3.0 | <LD–0.4 | <LD–6.7 | <LD–0.4 | <LD–3.0 | |
Cu | Avg | 3.1 | 0.8 | 2.0 | 2.3 | 2.4 |
Min-Max | <LD–7.7 | <LD–2.2 | <LD–5.6 | <LD–6.5 | <LD–8.1 | |
Zn | Avg | 0.02 | 0.05 | 0.02 | 0.1 | 0.03 |
Min-Max | <LD–0.1 | <LD–0.2 | <LD–0.1 | <LD–0.1 | <LD–0.2 | |
Cr | Avg | 0.8 | 0.26 | 0.2 | 0.2 | 0.1 |
Min-Max | <LD–2.7 | <LD–1.1 | <LD–0.7 | <LD–0.7 | <LD–0.6 | |
Fe | Avg | 19.0 | 5.8 | 13.0 | 21.8 | 11.6 |
Min-Max | 6.1–55.5 | <LD–13.5 | <LD–13.8 | <LD–56.0 | <LD–25.5 | |
Mn | Avg | 2.6 | 2.9 | 0.5 | 2.4 | 0.3 |
Min-Max | 1.7–3.7 | 1.8–4.2 | <LD–1.0 | 0.9–4.8 | <LD–0.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansilha, C.; Melo, A.; Martins, Z.E.; Ferreira, I.M.P.L.V.O.; Pereira, A.M.; Espinha Marques, J. Wildfire Effects on Groundwater Quality from Springs Connected to Small Public Supply Systems in a Peri-Urban Forest Area (Braga Region, NW Portugal). Water 2020, 12, 1146. https://doi.org/10.3390/w12041146
Mansilha C, Melo A, Martins ZE, Ferreira IMPLVO, Pereira AM, Espinha Marques J. Wildfire Effects on Groundwater Quality from Springs Connected to Small Public Supply Systems in a Peri-Urban Forest Area (Braga Region, NW Portugal). Water. 2020; 12(4):1146. https://doi.org/10.3390/w12041146
Chicago/Turabian StyleMansilha, Catarina, Armindo Melo, Zita E. Martins, Isabel M. P. L. V. O. Ferreira, Ana Maria Pereira, and Jorge Espinha Marques. 2020. "Wildfire Effects on Groundwater Quality from Springs Connected to Small Public Supply Systems in a Peri-Urban Forest Area (Braga Region, NW Portugal)" Water 12, no. 4: 1146. https://doi.org/10.3390/w12041146
APA StyleMansilha, C., Melo, A., Martins, Z. E., Ferreira, I. M. P. L. V. O., Pereira, A. M., & Espinha Marques, J. (2020). Wildfire Effects on Groundwater Quality from Springs Connected to Small Public Supply Systems in a Peri-Urban Forest Area (Braga Region, NW Portugal). Water, 12(4), 1146. https://doi.org/10.3390/w12041146