Assessment of the Dnieper Alluvial Riverbed Stability Affected by Intervention Discharge Downstream of Kaniv Dam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Investigations
2.3. River Channel Stability
3. Results and Discussion
3.1. Monitoring of Channel Processes (MCP)
3.2. Water Masses Propagation
3.3. Channel Stability
4. Conclusions
- Thick deposits of alluvial sediments (‘unlimited’ thickness) composing the riverbed allow for unrestricted vertical and horizontal development.
- The operations of the Kaniv HPP cause frequent changes in water levels and flows (peak-capacity regime), resulting in intervention water discharges and flow fluctuation in the range of 500–7680 m3·s−1. We observed water level fluctuation of max. 1.3 m over a distance of more than 40 km (e.g., 25 July, 2015). Despite the change in the HPP regime in 1990 from hydropeaking to run-of-river operation, large fluctuations in flows (water discharges carried out in the evening) are still observed. However, these fluctuations are reported in the daily data time series (collecting 7.00 a.m. by the Ukrainian Hydrometeorogical Center service, peak-capacity operations are conducted in the afternoon and in the evening).
- A new coefficient pertaining to the wave height transformation (kh) was developed and employed in the assessment of the wave’s propagation rate.
- The velocity of artificial wave propagation at the study river section may reach up to 74.4 km·h−1 (20 m·s−1) near Kaniv town. The wave reaches Sokyrna village (a distance of approx. 45 km) within 65 min at a velocity of 37.4 km·h−1.
- The Dnieper river has a large number of islands, and numerous lateral and inactive channels that represent good conditions for the propagation of artificial waves (lower value kh coefficient), as compared to river sections with a single channel (higher value kh coefficient).
- There is a tendency towards the reduction in bottom sediment grain size with distance from the dam. Samples collected in 2003 indicate that the overall fractional composition of sediments have changed, and their inhomogeneity has increased. This is a direct result of the reduction in maximum annual flows and the channels’ tendency to adapt to the new conditions.
- The channel morphology stability indicators used in this work, including Lohtin’s number (L), Makkaveev’s (Kc) factor of stability, and the washing out indicator (Mx) by Grishanin allowed to identify dependencies in channel stability below the Kaniv HPP. During low water discharges (approx. 1000 m3·s−1), the investigated riverbed segment does not deformed and sediment accumulation appears to be unobstructed (values L, Kc, and Mx). When water discharge increases (e.g., during typical peak-capacity operation 2250–3500 m3·s−1, sometimes up to 6000–7600 m3·s−1), the channel becomes unstable and sediments are subject to erosion processes. The riverbed stability indicators Kc, L, and Mx indicate that the stability of the study section varies and the decrease or increase in parameter values is not dependent on the distance to the dam. For example, cross-sections closer to the dam can still be relatively stable during high flow, when erosion occurs in distant cross-sections. The indices employed in this work are commonly used in hydrological and geomorphological studies, particularly in post-USSR countries, and allow for a prognosis of the intensity of channel deformation.
- The nature of channel deformations within the study reach is a consequence of the intervention regime of the HPP operations and of additional phenomena triggered by the subsequent reservoir located downstream. Furthermore, due to cascade flow regulations, the study river reach shows reverse (directed) channel deformations, such as the formation of the so-called inner deltas, in the backwaters of the further downstream reservoir. At the same time, the unsteady conditions of the HPP provoke a complex discontinuous channel regime that results in changes compared to a natural hydrological regime.
- A thorough analysis of the aspects presented above provides information about current tendencies in the dynamics of the river processes in the investigated section of the Dnieper River. The analysis helps to understand channel deformation dynamics and their triggering elements induced by significant anthropogenic modifications. Moreover, the study yields valuable information to assess and predict further deformations and their evolution. Our research may contribute to the development of new water management guidelines for the Dnieper cascade and help to increase the economic and ecological efficiency of HPP.
Author Contributions
Funding
Conflicts of Interest
References
- Montgomery, D.R.; Buffington, J.M. Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 1997, 109, 596–611. [Google Scholar] [CrossRef]
- Church, M. Channel Stability: Morphodynamics and the Morphology of Rivers. In Rivers—Physical, Fluvial and Environmental Processes; GeoPlanet: Earth and Planetary Sciences; Rowiński, P., Radecki-Pawlik, A., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Knighton, D. Fluvial Forms and Processes: A New Perspective; Taylor & Francis: New York, NY, USA, 1998; p. 377. [Google Scholar]
- Lokhtin, V.M. O mehanizmah rechnogo rusla (River channel processes), Ministry of Internal Waterways, Sankt-Peterburg, USSR. 1948, pp. 15–16. Available online: https://scholar.google.com/scholar_lookup?title=River%20Channel%20Processes&publication_year=1897&author=V.M.%20Lokhtin (accessed on 11 April 2020).
- Makkaveev, N.I. Ruslo reki i eroziya v ee basseine (The River Channel and Erosion in its Basin), Izd-vo AN SSSR; Moscow, USSR. 1955, pp. 138–145. Available online: http://makkaveev-lab.narod.ru/Makk55.htm (accessed on 11 April 2020).
- Grishanin, K.V. Ustoychivost’ rusel rek i kanalov (Stability of channels in rivers and canals); Hydrometeoizdat: Leningrad, Russia, 1974; p. 144. Available online: https://b-ok.cc/book/5232236/1b12e1 (accessed on 11 April 2020).
- Schumm, S.A. Effect of Sediment Characteristics on Erosion and Deposition in Ephemeral-Stream Channels; Professional Paper; U.S. Government Printing Office: Washington, DC, USA, 1961. [CrossRef]
- Lane, E.W. The importance of fluvial morphology in hydraulic engineering. Proc. Am. Soc. Civ. Eng. 1955, 81, 745. [Google Scholar]
- Dust, D.; Wohl, E. Conceptual model for complex river responses using an expanded Lane’s relation. Geomorphology 2011, 139–140, 109–121. [Google Scholar] [CrossRef]
- Rosgen, D.L. Applied River Morphology; Wildland Hydrology: Pagoda Springs, CO, USA, 1996; p. 7. [Google Scholar]
- Schumm, S.A. Geomorphic thresholds: The concept and its applications. Trans. Inst. Br. Geogr. 1979, 4, 485–515. [Google Scholar] [CrossRef]
- Leopold, L.B.; Wolman, M.G.; Miller, J.P. Fluvial Processes in Geomorphology; WH Freeman and Company: San Francisco, CA, USA, 1964. [Google Scholar]
- Rosgen, D.L. A Stream Channel Stability Assessment Methodology. A Practical Method of Computing Streambank Erosion Rate. In Proceedings of the 7th Federal Interagency Sedimentation Conference, Reno, NV, USA, 25–29 March 2001. [Google Scholar]
- Sukhodolov, A.N.; Nikora, V.I.; Katolikov, V.M. Flow dynamics in alluvial channels: The legacy of Kirill V. Grishanin. J. Hydraul. Res. 2011, 49, 285–292. [Google Scholar] [CrossRef]
- Nikora, N.F.; Nikora, V.I. Self-regulation effects in open-channel flows: Application to vegetated channels. In Proceedings of the 33rd IAHR Congress, Vancouver, BC, Canada, 9–14 August 2009. [Google Scholar]
- Kaganov, Y.I. Hydrologic and morphometric model of a mountain river. Hydrotech. Constr. 1994, 28, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Vaikasas, S.; Ždankus, N. Analysis of Lithuanian river channels bed stability (Referring to Grishanin Number). Water Manag. Eng. 2005, 2, 107–112. [Google Scholar]
- Paige, A.D.; Hickin, E.J. Annual bed-elevation regime in the alluvial channel of Squamish River, Southwestern British Columbia, Canada. Earth Surf. Process. Landf. 2000, 25, 991–1009. [Google Scholar] [CrossRef]
- Babiński, Z. Fluvial Processes of Lower Fragment of the Vistula River; IGiPZ PAN Warszawa: Warszawa, Poland, 1992; p. 237 , in Polish.
- Brandt, S.A. Classification of geomorphological effects downstream of dams. Catena 2000, 40, 375–401. [Google Scholar] [CrossRef]
- Gierszewski, P.; Habel, M.; Szmańda, J.; Luc, M. Evaluating effects of dam operation on flow regimes and riverbed adaptation to those changes. Sci. Total Environ. 2020, 136202. [Google Scholar] [CrossRef]
- Szatten, D.; Habel, M.; Pellegrini, L.; Maerker, M. Assessment of Siltation Processes of the Koronowski Reservoir in the Northern Polish Lowland Based on Bathymetry and Empirical Formulas. Water 2018, 10, 1681. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.P.; Wolman, M.G. Downstream Effects of Dams on Alluvial Rivers; United States Geological Survey Professional Paper 1286; US Government Printing Office: Washington, DC, USA, 1984. [Google Scholar]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; Sharma, K.P.; Fekete, B.M.; Copeland, A.H.; Holden, J.; Marble, J.; Lough, J.A. The storage and aging of continental runoff in large reservoir systems of the world. Ambio 1997, 26, 210–219. [Google Scholar]
- Pegg, M.A.; Pierce, C.L.; Roy, A. Hydrological alteration along the Missouri River Basin: A time series approach. Aquat. Sci. 2003, 65, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, C.; Berggren, K. Alterations of Riparian Ecosystems Caused by River Regulation: Dam operations have caused global-scale ecological changes in riparian ecosystems. How to protect river environments and human needs of rivers remains one of the most important questions of our time. BioScience 2000, 50, 783–792. [Google Scholar] [CrossRef]
- Suen, J.P. Determining the ecological flow regime for existing reservoir operation. Water Resour. Manag. 2011, 25, 817–835. [Google Scholar] [CrossRef]
- Gao, B.; Yang, D.; Zhao, T.; Yang, H. Changes in the eco-flow metrics of the upper Yangtze River from 1961 to 2008. J. Hydrol. 2012, 448–449, 30–38. [Google Scholar] [CrossRef]
- Eng, K.; Wolock, D.M.; Carlisle, D.M. River flow changes related to land and water management practices across the conterminous United States. Sci. Total Environ. 2013, 463, 414–422. [Google Scholar] [CrossRef]
- Fantin-Cruza, I.; Pedrollob, O.; Girardc, P.; Zeilhoferd, P.; Hamiltone, S.K. Effects of a diversion hydropower facility on the hydrological regime of the Correntes River, a tributary to the Pantanal floodplain, Brazil. J. Hydrol. 2015, 531, 810–820. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Singh, V.P.; Xu, C.Y.; Kong, D.; Xiao, M.; Chen, X. Homogenization of precipitation and flow regimes across China: Changing properties, causes and implications. J. Hydrol. 2015, 530, 462–475. [Google Scholar] [CrossRef]
- Obodovskyi, O.G. Ruslovi protsesy (Riverbed processes); Taras Shevchenko National University of Kiev: Kiev, Ukraine, 2017; p. 495. Available online: http://www.library.univ.kiev.ua/ukr/elcat/new/detail.php3?doc_id=1852053 (accessed on 11 April 2020).
- Habel, M. Effects of flow regulation and river channelization on sandbar bird nesting availability at the Lower Vistula River. Ecol. Quest. 2018, 29, 1–18. [Google Scholar] [CrossRef]
- Mailhot, A.; Talbot, G.; Ricard, S.; Turcotte, R.; Guinard, K. Assessing the potential impacts of dam operation on daily flow at ungauged river reaches. J. Hydrol. 2018, 18, 156–167. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.C.; Piman, T. Hydropower dams of the Mekong River basin: A review of their hydrological impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Andrews, E.D. Downstream effects of Flaming Gorge Reservoir on the Green River, Colorado and Utah. GSA Bull. 1986, 97, 1012–1023. [Google Scholar] [CrossRef]
- Kondolf, M. Hungry water: Effects of dams and gravel mining on river channel. Environ. Manag. 1997, 21, 4. [Google Scholar] [CrossRef] [PubMed]
- Grams, P.E.; Schmidt, J.C.; Topping, D.J. The rate and pattern of bed incision and bank adjustment on the Colorado River in Glen Canyon downstream from Glen Canyon Dam, 1956–2000. GSA Bull. 2007, 119, 556–575. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.C.; Wilcock, P.R. Metrics for assessing the downstream effects of dams. Water Resour. Res. 2008, 44, W04404. [Google Scholar] [CrossRef] [Green Version]
- Draut, A.E.; Logan, J.B.; Mastin, M.C. Channel evolution on the dammed Elwha River. Washington, USA. Geomorphology 2011, 127, 71–87. [Google Scholar] [CrossRef]
- Babiński, Z.; Habel, M. Impact of a single dam on sediment transport continuity in large lowland rivers, Terheiden. In River Sedimentation; Wieprecht, S., Haun, S., Weber, K., Noack, M., Terheiden, K., Eds.; Taylor & Francis Group: London, UK, 2017. [Google Scholar]
- Guo, C.; Jin, Z.; Guo, L.; Lu, J.; Ren, S.; Zhou, Y. On the cumulative dam impact in the upper Changjiang River: Streamflow and sediment load changes. Catena 2020, 184, 104250. [Google Scholar] [CrossRef]
- Babiński, Z.; Habel, M.; Chalov, S.R. Prediction of the Vistula Channel development between Wloclawek and Toruń: Evaluation with regard to the new geological survey. Quaest. Geogr. 2014, 33, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Szatten, D.; Babiński, Z.; Habel, M. Reducing of Water Turbidity by Hydrotechnical Structures on the Example of the Wloclawek Reservoir. J. Ecol. Eng. 2018, 19, 197–205. [Google Scholar] [CrossRef]
- Wang, Y.; Rhoads, B.L.; Wang, D.; Wu, J.; Zhang, X. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River. J. Hydrol. 2018, 558, 184–195. [Google Scholar] [CrossRef]
- Słowik, M.; Dezső, J.; Marciniak, A.; Tóth, G.; Kovács, J. Evolution of river planforms downstream of dams: Effect of dam construction or earlier human-induced changes? Earth Surf. Process. Landf. 2018, 43, 2045–2063. [Google Scholar] [CrossRef]
- Starodubtsev, V.; Fedorenko, O. Evaluation of the Effect of Dnipro River Reservoirs on Coastal Landscapes. In Equidosimetry—Ecological Standardization and Equidosimetry for Radioecology and Environmental Ecology; NATO Security through Science Series (Series C: Environmental Security); Bréchignac, F., Desmet, G., Eds.; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Obodovskyi, O.G. Deyaki aspekty doslidzhen ruslovykh protsesiv u nyzhnikh byefakh (na prykladi Dniprovsʹkykh hidrovuzliv) (Some aspects of studies of channel processes below dams, for example Dnieper hydroelectric power plants). Hidrolohiya hidrokhimiya i hidro ekolohiya 2002, 4, 106–111. [Google Scholar]
- Osadchyy, V.; Nabyvanets, I.; Linnik, P.; Osadcha, N.; Nabyvanets, Y. Processes Determining Surface Water Chemistry; Springer Book: Cham, Switzerland, 2016; p. 291. [Google Scholar]
- Shevchuk, V.Y.; Bilyavsky, G.O.; Navrotsky, V.M.; Mazurkevich, O.O. Preserving the Dnipro River: Harmony, History, and Rehabilitation; Mosaic Press/IDRC: Ottawa, Canada, 2005; ISBN 1-55250-138-9. [Google Scholar]
- Grubrin, Y.L.; Palienko, E.T. Recent Geomorphological Processes of the Middle Dnieper Area; Ukrainian Academy of Science: Kiev, Ukraine, 1976. [Google Scholar]
- Dubnyak, S.; Timchenko, V. Ecological role of hydrodynamic processes in the Dnieper reservoirs. Ecol. Eng. 2000, 16, 181–188. [Google Scholar] [CrossRef]
- Timchenko, V.M. Water exchange processes as an energy flux forming factor in the Dnieper reservoir ecosystem (Vodoobmennye protsessy kak factor formirovaniya potokov energii v ekosistemakh dneprovskikh vodokhranilisch). J. Hydrobiol. 2010, 46, 105–120. [Google Scholar] [CrossRef]
- Ukrainian Hydrometeorological Center—Information Server On-line. Available online: https://meteo.gov.ua/en/33345/services/ (accessed on 20 June 2019).
- Milliman, J.D.; Meade, R.H. World-wide delivery of river sediment to the oceans. J. Geol. 1983, 91, 1–21. [Google Scholar] [CrossRef]
- Gozhik, P.; Komar, M.; Łanczont, M.; Fedorowicz, S.; Bogucki, A.; Mroczek, P.; Prylypko, S.; Kusiak, J. Paleoenvironmental history of the Middle Dnieper Area from the Dnieper to Weichselian Glaciation: A case study of the Maksymivka loess profile. Quat. Int. 2014, 334–335, 94–111. [Google Scholar] [CrossRef]
- Bondarchuk, V.G. Geomorfolohiya URSR (Geomorphology of the Ukrainian Soviet Socialist Republic); Taras Shevchenko National University of Kiev: Kiev, Ukraine, 1949; pp. 13–15. Available online: http://www.geokniga.org/bookfiles/geokniga-bondarchukvggeomorfologiyaursrgeologichniyrozvitokrel.pdf (accessed on 11 April 2020).
- Obodovskyi, O.G.; Grebin, V.V.; Onischuk, V.V.; Pogorilchuk, N.M.; Rozlach, Z.V. Monitorynh ruslovykh protsesiv u nyzhnomu byefi Kanivskoyi HES (Monitoring of river bed processes below the hydroelectric power station). Hidrolohiya hidrokhimiya i hidro ekolohiya 2004, 5, 47–60. [Google Scholar]
- Lagrange, J.L. Mécanique analytique, nouvelle édition (Analytical mechanics, new edition); Courcier: Paris, France, 1811; p. 134. Available online: https://books.google.pl/books?hl=pl&lr=&id=gmY_AAAAcAAJ&oi=fnd&pg=PR18&dq=Lagrange,+J.L.+M%C3%A9canique+analytique,+nouvelle+%C3%A9dition&ots=pel7kbLXaz&sig=THnRz0ra2QpOOVpt_97huMx0rSc&redir_esc=y#v=onepage&q&f=false (accessed on 11 April 2020).
- Krumbein, W.C. Size Frequency Distribution of Sediments. J. Sediment. Petrol. 1934, 4, 65–77. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River Bar A Study of Significante of Grain Size Parameters. J. Sedimentol. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Hazen, A. The Filtration of Public Water-Supplies; Wiley and Sons: New York, NY, USA, 1895. [Google Scholar]
- Shields, A. Anwendung der Aehnlichkeits mechanik und der Turbulenz forschung auf die Geschiebebewegung (Application of Similarity Mechanics and Turbulence Research on Shear Flow); Mitteilungen der Preußischen Versuchsanstalt für Wasserbau. 26; Preußische Versuchsanstalt für Wasserbau: Berlin, Germany, 1936. [Google Scholar]
- Obodovskyi, O.G.; Grebin, V.V. Osoblyvosti hidrolohichnoho rezhymu i ruslovykh protsesiv u nyzhnʹomu byefi Kanivs’koyi HES (Peculiarities of hydrological regime and channel processes in the lower channel of the Kaniv HPP). Hidrolohiya hidrokhimiya i hidro ekolohiya 1998, 44, 40–45. [Google Scholar]
- Roccati, A.; Faccini, F.; Luino, F.; De Graff, J.; Torconi, L. Morphological changes and human impact in the Entella River floodplain (Northern Italy) from the 17th century. Catena 2019, 182. [Google Scholar] [CrossRef]
- Pellegrini, L.; Maraga, F.; Turitto, O.; Audisio, C.; Duci, G. Evoluzione morfologica di alvei fluviali mobili nel settore occidentale del bacino padano. Il Quat. 2008, 21, 251–266. [Google Scholar]
- Smith, N.D.; Morozovab, G.S.; Pérez-Arluceac, M.; Giblingd, M.R. Dam-induced and natural channel changes in the Saskatchewan River below the E.B. Campbell Dam, Canada. Geomorphology 2016, 269, 186–202. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.D. Geomorphic responses to changes in instream flows: The flow-channel fitness model. River Res. Appl. 2013, 29, 1175–1194. [Google Scholar] [CrossRef]
- Habel, M. Dynamics of the Vistula River Channel Deformations Downstream of Włocławek eeservoir; Kazimierz Wielki University Press: Bydgoszcz, Poland, 2013; p. 138. [Google Scholar]
- Schuman, S.A. The Fluvial System; John Willey and Sons: New York, NY, USA, 1977; p. 338. [Google Scholar]
- Surian, N.; Rinaldi, M. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 2003, 50, 307–326. [Google Scholar] [CrossRef]
- Kuo, C.W.; Chen, C.F.; Chen, S.C.; Yang, T.C.; Chen, C.W. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan. Water 2017, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- López, P.; López-Tarazón, J.; Casas-Ruize, J.P.; Pompeo, M.; Ordoñeza, J.; Muñoza, I. Sediment size distribution and composition in a reservoir affected by severe water level fluctuations. Sci. Total Environ. 2016, 540, 158–167. [Google Scholar] [CrossRef]
No. | Distance From Dam (km) | Area A (m2) | Width W (m) | Av. Depth H (m) | Max Depth hmax (m) | W/H Ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2003 | 2015 | 2003 | 2015 | 2003 | 2015 | 2003 | 2015 | 2003 | 2015 | ||
1 | 3.93 | 3936 | 3250 | 507 | 459 | 7.8 | 7.1 | 11.8 | 11.0 | 65 | 65 |
2 | 6.30 | 3503 | 3260 | 505 | 528 | 6.9 | 6.2 | 11.2 | 9.6 | 73 | 85 |
3 | 13.08 | 2223 | 2115 | 377 | 368 | 5.9 | 5.7 | 8.6 | 8.2 | 64 | 65 |
4 | 17.55 | 4013 | 2984 | 708 | 603 | 5.7 | 5.0 | 9.9 | 7.7 | 124 | 121 |
5 | 19.07 | 3039 | 3252 | 524 | 661 | 5.8 | 4.9 | 9.0 | 8.3 | 90 | 134 |
6 | 30.07 | 3224 | 2746 | 664 | 602 | 4.9 | 4.6 | 13.8 | 8.1 | 136 | 131 |
7 | 43.60 | 4325 | 3503 | 910 | 828 | 4.75 | 4.2 | 11.0 | 11.2 | 191 | 197 |
Range of Wave Velocity | Peak Flow | Base Flow | ||||
---|---|---|---|---|---|---|
Time to Distance (t) (s) | Velocity | Time to Distance (t) (s) | Velocity | |||
(m·s−1) | (km·h−1) | (m·s−1) | (km·h−1) | |||
Reach between Kaniv HPP—KSNR (distance from the dam 6.3 km) | ||||||
Av. | 650 | 9.54 | 34.34 | 700 | 8.86 | 31.89 |
Min. | 900 | 6.89 | 24.80 | 1200 | 5.17 | 18.61 |
Max. | 300 | 20.67 | 74.41 | 300 | 20.67 | 74.41 |
Reach between Kaniv HPP—Sokyrna village (distance from the dam 43.6 km) | ||||||
Av. | 5500 | 7.92 | 28.54 | 6500 | 6.71 | 24.17 |
Min. | 7200 | 6.06 | 21.80 | 9000 | 4.84 | 17.42 |
Max. | 4000 | 10.38 | 37.37 | 4800 | 9.08 | 32.70 |
No. Cross-Profile | Distance from the Dam (km) | d10% (mm) | d50% (mm) | d90% (mm) | Median (Dm) (mm) | Sorting (n) |
---|---|---|---|---|---|---|
1 | 3.93 | 0.08 | 0.24 | 0.26 | 0.25 | 3.75 |
2 | 6.30 | 0.09 | 0.22 | 0.40 | 0.23 | 2.44 |
3 | 13.08 | - | - | - | - | - |
4 | 17.55 | 0.20 | 0.26 | 0.50 | 0.27 | 1.25 |
5 | 19.07 | 0.08 | 0.18 | 0.24 | 0.18 | 2.50 |
6 | 30.07 | 0.12 | 0.21 | 0.30 | 0.22 | 1.92 |
7 | 43.60 | 0.04 | 0.11 | 0.22 | 0.12 | 2.75 |
Q (m3·s−1) | Water Surface Slope (‰) | Lothin’s Number (L) | Makkaveyev’s Factor (KC) | Gryshanin’s Parameter (Mx) |
---|---|---|---|---|
Cross section no. 2. KSNR | ||||
960 | 0.020 | 12.00 | 23.70 | 1.697 |
1400 | 0.046 | 5.20 | 10.20 | 1.431 |
2250 | 0.064 | 3.75 | 7.21 | 1.132 |
3500 | 0.101 | 2.38 | 4.44 | 0.985 |
5000 | 0.433 | 1.80 | 3.21 | 0.867 |
Cross section no. 4. Oil pipeline | ||||
960 | 0.018 | 14.44 | 24.87 | 1.415 |
1400 | 0.044 | 5.91 | 10.14 | 1.245 |
2250 | 0.062 | 4.19 | 7.13 | 1.039 |
3500 | 0.094 | 2.77 | 4.63 | 0.879 |
5000 | 0.128 | 2.03 | 3.38 | 0.744 |
Cross section no. 7. Sokyrna village | ||||
960 | 0.016 | 7.50 | 9.00 | 1.287 |
1400 | 0.040 | 3.00 | 3.63 | 1.118 |
2250 | 0.054 | 2.22 | 2.68 | 0.923 |
3500 | 0.080 | 1.50 | 1.81 | 0.757 |
5000 | 0.098 | 1.22 | 1.48 | 0.677 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obodovskyi, O.; Habel, M.; Szatten, D.; Rozlach, Z.; Babiński, Z.; Maerker, M. Assessment of the Dnieper Alluvial Riverbed Stability Affected by Intervention Discharge Downstream of Kaniv Dam. Water 2020, 12, 1104. https://doi.org/10.3390/w12041104
Obodovskyi O, Habel M, Szatten D, Rozlach Z, Babiński Z, Maerker M. Assessment of the Dnieper Alluvial Riverbed Stability Affected by Intervention Discharge Downstream of Kaniv Dam. Water. 2020; 12(4):1104. https://doi.org/10.3390/w12041104
Chicago/Turabian StyleObodovskyi, Oleksandr, Michał Habel, Dawid Szatten, Zakhar Rozlach, Zygmunt Babiński, and Michael Maerker. 2020. "Assessment of the Dnieper Alluvial Riverbed Stability Affected by Intervention Discharge Downstream of Kaniv Dam" Water 12, no. 4: 1104. https://doi.org/10.3390/w12041104
APA StyleObodovskyi, O., Habel, M., Szatten, D., Rozlach, Z., Babiński, Z., & Maerker, M. (2020). Assessment of the Dnieper Alluvial Riverbed Stability Affected by Intervention Discharge Downstream of Kaniv Dam. Water, 12(4), 1104. https://doi.org/10.3390/w12041104