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Abstract: Artificial reservoirs have an important role in water management of river systems in terms
of flood control, water supply and sediment budgeting. Therefore, it is important to maximize
the time of their effective functioning. Sediment budgeting mainly depends on sediment transport
dynamics. This article illustrates the impact of the Koronowski Reservoir on suspended sediments
transported by the Brda River. The river system and the reservoir represent a typical lowland river
environment. Our research is based on hydrological and sedimentological investigations on the
reservoir and the river system. Field measurements were used to create the respective hydrological
and sediment budgets. Moreover, we carried out bathymetric measurements to generate present day
bathymetry and to calculate the reservoir’s capacity. We assessed the silting of the reservoir following
the approaches proposed by Goncarov and Stonawski. We show that the size and dynamics of
suspended sediments are mainly determined by the hydrological conditions. Moreover, we illustrate
that the suspended sediment measurements made with the filtration method correlate with the
nephelometric results. Generally, we show that the Koronowski Reservoir is mainly filled up by
suspended sediments. We further illustrate that the level of siltation estimated with the empirical
formulas deviates significantly from calculations made by bathymetric measurements.

Keywords: sediment transport; suspended sediments; reservoir silting; artificial reservoirs;
Koronowski Reservoir; lowland rivers

1. Introduction

The creation of artificial reservoirs not only results in water retention by inhibiting water outflows,
but also has serious implications on qualitative and quantitative changes in the circulation of matter
and energy in the whole river system. One of the processes disturbed by human interference
is sediment transport. Rivers play a significant role in the global hydrological cycle, providing
about 20 billion t year−1 of sediments to the world’s oceans. Moreover, the hydrological cycle also
reflects climate change occurring as a result of human activity [1]. Therefore, artificial reservoirs
are filled with sediments and thus can no longer fulfill the main functions they were created for,
for example, hydropower generation, water retention, flood control, recreational purposes, etc.
Dams accumulate transported sediments, which results in a decrease of their operating capacity
and water storage [2]. The impact of reservoirs on the dynamics of sediment transport are quite
significant, as documented in various studies in the last decades, for example, Van Rijn [3], Kondolf [4],
Łajczak [5], Vörösmarty et al. [6], Shotbolt et al. [7], Babiński [8], Gierszewski [9], Hu et al. [10],
Magnuszewski et al. [11] and Habel et al. [12]. However, these studies mainly focused on bed load
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sediment transport or erosion processes further downstream of a reservoir. Instead, the dynamics of
suspended sediment transport were not tackled. Studies conducted on the Koronowski Reservoir,
which has been functioning for over 50 years, offer insights into sediment dynamics on the long term.
Due to the location of the reservoir in the Polish lowland area, the sediment budget is dominated by
suspended sediments. In artificial reservoirs, generally 100% of the bed load material is deposited,
as shown by research conducted in the Brda River catchment [13] and the Vistula River basin [8].
The Polish Energy Strategy [14] is aiming at receiving 20% of the energy from renewable sources by
2020. This will most likely force the necessity to increase hydropower generation along Polish rivers.
The impact of artificial reservoirs functioning, that is, changes in total supply of sediment, can affect
the river network down to the estuary areas [6], which results in transformations of the delta areas and
related deposits [15,16]. This study will support future planning and investments. Moreover, this study
will contribute to the sustainable development strategy, namely, leaving the natural environment for
future generations at the present-day status. Consequently, the main objective of this study is to assess
the influence of artificial reservoirs located in Polish lowland areas on suspended sediment dynamics.
We established the suspended sediment balance for the Koronowski Reservoir for 2015, taking into
account available archive material and monitoring data, dating back to the construction of the dam in
1961. Potential sources of sediment delivery were identified using a soil erosion modeling approach
based on the Universal Soil Loss Equation (USLE) [17]. In this paper we compare different methods to
calculate reservoir siltation, looking at two traditional empirical formulas and modern bathymetric
measurements. Moreover, we used two different methods to establish sediment concentrations.

2. Materials and Methods

2.1. Study Area

The study area is located in Northern Poland. It is drained by the Brda River which is a left
tributary of the Vistula River. We focus our research on the Koronowski Reservoir, sited on the lower
Brda River 20 km north of Bydgoszcz (Figure 1).
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Figure 1. Location of measurement stations of suspended sediments of the Koronowski Reservoir
catchment in the Polish lowlands [18,19]; 01–15 measurement stations (in grey on reservoir; in white
on inflows and outflows), along with morphometric data: (A) Comparing surface area and capacity
volume with depth; (B) longitudinal profile; and (C) bathymetry of the Koronowski Reservoir.
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The first plans to use the water resources of the Brda River for hydroelectric purposes around the
town of Koronowo came up in the early twentieth century [20]. However, it was only in the 1960s that
a project under the direction of Józef Dębowski [21] was conducted to study the impacts of a reservoir
on sediment dynamics. The Koronowski Reservoir itself was created in 1961. The dam, situated close
to the village of Pieczyska (Figure 1), is damming water to a height of 15 m. An additional 10 m of
hydraulic gradient was obtained by locating the hydroelectric power station further downstream.
The water was directed through a gallery at the bottom of the lakes Lipkusz and Białe to the city
of Samociążek (lateral canal), where the hydroelectric power station is located. The total capacity
of the two installed turbines is 26 MW, which allows an average annual production of electricity
of 40.841 GWh. The Koronowski Reservoir has a normal water level height of 81.5 m a.s.l. and a
capacity volume of 81.0 million m3. However, about 73% of the volume consists of so-called “dead”
(not used) storage, which significantly affects the water circulation system [22]. According to the
physical and geographical description of Kondracki [19] the reservoir is a part of the South-Pomeranian
Lake District. The Koronowski Reservoir is located in the lower part of the Brda Valley, which is
formed of glacial outwash sands. The sander formation is flanked in the east by the Świecie Upland
and in the west by the Krajna Lake District area, mainly consisting of clay rich postglacial formations.
The catchment area of the Koronowski Reservoir amounts to 4299 km2, with 65% of it belonging to
the upper Brda River, which is its main tributary. Other tributaries draining the remaining 35% of the
total catchment area provide considerably smaller amounts of water [23]. The average discharge of the
Brda River flowing into the Koronowski Reservoir amounts to 23.7 m3 s−1 in the period 1962–2015 [24].
We present detailed hydrological data for all small inflows of the Koronowski Reservoir only for
2015 (only existing data). Detailed hydrological characteristics of the Brda River catchment (reservoir
inflows) are presented in Table 1.

Table 1. Discharge of the main Koronowski Reservoir tributaries (1962–2015) ([24] and own
research [25]).

Discharge
m3 s−1

River

Brda River Piła Młyn 01 Kamionka Leontynowo 02 Sęplona Motyl 03 Krówka Lucim 04 Kręgiel Kregiel 05

Min 4.6 0.6 0.2 0.0 0.0
Max 84.4 4.4 3.0 2.5 0.4
Av. 23.7 2.3 0.9 0.5 0.1

The Brda River is one of the Polish rivers with the most balanced ratio of flow irregularity
(λ), given as the ratio between maximum and average discharge. The value of λ for the period
1974–1983 is 1.54 [26]. This has a decisive impact on the balance of suspended sediments of the
Koronowski Reservoir. Moreover, the fact that 3.41% of the upper Brda River basin is a lake [23]
is profoundly influencing the sediment balance and dynamics of the reservoir. The land cover of
the Koronowski Reservoir catchment area is dominated by forests and agricultural land, covering
46.1% and 48.0% of the surface, respectively [27]. Land use has changed over recent decades, with a
systematic reduction of forest areas and an increase of arable land and urban areas. This is a result
of strong anthropogenic pressures, especially on the lower part of the Brda River catchment area.
Land use and land cover significantly influence sediment delivery to the catchment [28]. As shown
by Ciupa [29], intensively urbanized areas have a significant impact on the dynamics and quantity
of fluvial transport. Nevertheless, sediment concentration is usually higher in agriculture areas,
such as large parts of the Brda basin. However, artificial reservoirs reduce downstream sediment
concentration significantly. The Koronowski Reservoir is the first and uppermost of three artificial
reservoirs (Koronowski, Tryszczyn and Smukała), forming the Lower Brda River Dams system.

2.2. Hydrological Data

Discharges of the Brda River are measured at Samociążek Hydropower Plant, Piła Młyn (Figure 1C,
location 01) and Samociążek (Figure 1C, location 07). Daily discharge data are calculated using local
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rating curves available from 1962 to 2015 [24]. Gauging station measurements are complemented by
field measurements (Figure 1C, stations 02–06) using the method described by Pasławski [30]. On the
main tributaries of the Koronowski Reservoir, monthly observations of the flow rate were carried out
using an acoustic current meter (OTT GmbH C20).

2.3. Suspended Sediment Data

Sampling of suspended sediments (total suspension in mg L−1, and turbidity in Formazin
Nephelometric Unit—FNU) took place at the main tributary inflows (Figure 1C, locations 01–05) and
at the outflow (Figure 1C, locations 06–07) of the Koronowski Reservoir. Moreover, six locations
(Figure 1C, locations 10–15) were measured within the reservoir in order to identify the internal
dynamics of sediment transport. Measurements were taken on a monthly basis using a slowly filling
bathometer, which is comparable to commonly used methods [31,32]. The concentration of suspended
sediments in each sample was determined by two methods: (i) through a traditional filtration using
paper filters with a porosity of 0.45 µm and a subsequent drying procedure (in mg L−1) as well as (ii),
by means of a nephelometric turbidimeter method (Hach Lange 2100QIS) (in FNU). Turbidimeters are
widely used to monitor suspended sediments [33].

The capacity to retain suspended sediments is given by the balance of the material delivered to,
and flushed off the reservoir (β):

β =
RZ

∑ R
(1)

where RZ is the amount of suspended sediments retained in reservoir (t) and ΣR is the amount of
suspended sediments delivered into reservoir (t).

We calculated the silting progress of the Koronowski Reservoir using two empirical methods.
On the one hand, we applied the Goncarov’s method, which is generally used [34–39] and suitable for
our study area [40,41]:

Zt = Vp

[
1 − (1 − R1

Vp
)

t]
(2)

where Zt is the volume of sediments (in m3) after “t” years, Vp is the initial volume of the reservoir
(m3), R1 is the volume of sediments after the first year of functioning (m3), t is the years of functioning.

We estimated the volume of accumulated sediments after the first year of exploitation using the
following formula:

R1 =
βRu

ρ0
(3)

where Ru represents average annual weight of sediments delivered to the reservoir (t), β is the
reservoir’s ability to retain suspended sediments, ρ0 is bulk density of sediments—2.7 (t m−3) [35].

The second method to calculate the silting progress of the Koronowski Reservoir is based on the
Stonawski formula [42], which was developed using five large reservoirs in Poland [43]:

ZR = 0.01Vp × exp
(

0.12 − 0.17
Vp

SSQ

)
(4)

where ZR is the volume of sediments (million m3 year−1), Vp is the initial volume of the reservoir
(million m3) and SSQ is the average discharge flowing into the Koronowski Reservoir (m3 s−1).

2.4. Batyhymetric Measurements

In order to determine the volume changes of the Koronowski Reservoir during 54 years of
functioning, we performed depth measurements with a single beam sonar (LOWRANCE HDS-5
Gen2) and a GPS positioning device (16-channels). The dual-band sonar frequency (50/200 kHz)
allowed us to adjust the appropriate signal beam to a specific depth and type of bottom substrate.
In total, we conduced 340 sounding sections. Due to the large area of the reservoir (14.4 km2),
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measurements were carried out in cross-sections at approximately 100–150 m intervals. The total length
of the Koronowski Reservoir’s soundings was about 254 km. We used the open source Geographic
Information System software QGIS (version 2.16.3) to interpolate the bathymetry and the capacity
volume of the reservoir. The final bathymetry was interpolated using a thin plate spline method
implemented in QGIS.

2.5. Soil Erosion and Sediment Delivery

In order to get information about the sediments washed into the reservoir we applied the USLE
soil erosion model, [17] given as

A = R × K × LS × C × P (5)

where A is soil loss per unit area (t km−2 year−1), R is rainfall and runoff factor, K is the soil erodibility
factor, LS is the slope-length factor, C is the cover and management factor and P is the support
practice factor.

The model was applied in the Brda River catchment, showing the spatial distribution of soil
erosion and sediment production at 20 m resolution. Input data are based on the work of the Institute
of Meteorology and Water Management (R factor) [44], the Soil map of Poland (K factor) [45], a Digital
Elevation Model of the Brda River catchment (LS factor) [46], and Corine Land Cover (C and P
factors) [27]. Sediment delivery was derived using archive data of the National Environmental
Monitoring Programme [47] and own research (2015) [25].

3. Results

3.1. Discharge

The average discharge of the Brda River (01) flowing into the Koronowski Reservoir in the
hydrological year 2015 was 15.2 m3 s−1 (Figure 2). The highest flows occurred in February (21.7 m3 s−1),
followed by one of the most extreme dry periods in the history of observation, which also had an
impact on the suspended sediment budget. The lowest recorded flow rate (month VII–IX) oscillated
around 10.0 m3 s−1, which is close to the lowest recorded discharge value of 9.79 m3 s−1 at the Tuchola
gauge [48]. Low flow rates are also registered for the other tributaries of the Koronowski Reservoir.
Moreover, the amount of water discharged from the reservoir to the Koronowo hydroelectric power
plant decreased and thus, hydroelectric energy production was also reduced.
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Water flowing into the reservoir comes from tributaries of different size. The Brda River delivered
477.9 million m3 of water to the Koronowski Reservoir in the analyzed hydrological year. The inflow
of the Kamionka River (Figure 1C, location 02) contributed 62.7 million m3, Sępolna River (Figure 1C,
location 03) 27.1 million m3, Krówka River (Figure 1C, location 04) 5.7 million m3 and Kręgiel
(Figure 1C, location 05) 3.2 million m3. Dividing the total volume of water flowing into the Koronowski
Reservoir by its current capacity (76 million m3), we calculated the potential time of water exchange
amounting to 7 days. The total discharge from the Koronowski Reservoir (Figure 1C, location 07) was
514.8 million m3 in 2015.

3.2. Sediment Distribution

The concentration of total suspended material in the main tributary to the Koronowski Reservoir
(Figure 1C, station 01) oscillated between 2.0 mg L−1 and 7.2 mg L−1, with an average of 3.8 mg L−1 in
2015 (Table 2). The concentration of total suspended material for the same inflow oscillated between
1.8 mg L−1 and 46.0 mg L−1 (VI. 1987), with an average of 5.8 mg L−1 in the period from 1980 to
2013 [47]. The values of total suspended material on the outflow of the reservoir (Figure1C, station 07)
in 2015 oscillated at quite low levels (1.8–4.0 mg L−1), averaging 2.6 mg L−1. The concentration of total
suspended material in the same outflow oscillated between 1.0 mg L−1 and 23.0 mg L−1 (VIII. 1988)
with an average of 4.2 mg L−1 in the period from 1980 to 2013 [47]. Other monitored tributaries might
have higher concentrations of suspended sediments. However, these values represent characteristic
suspended sediment concentrations of the Polish lowland areas [49].

In 2015, the turbidity of the Brda River at the inflow to the Koronowski Reservoir ranged from
1.29 FNU to 5.32 FNU, averaging 2.95 FNU. Similar values were measured at the outflow of the
reservoir. The average turbidity of the other tributaries shows values twice as high (Table 2).

Table 2. Characteristic values of total suspended material (mg L−1) and turbidity (FNU) for inflows
and the outflow of Koronowski Reservoir in the hydrological year 2015.

Value

Stations

Brda River Piła
Młyn 01

Kamionka
Leontynowo 02

Sęplona
Motyl 03

Krówka
Lucim 04

Kręgiel
Kregiel 05

Brda River
Samociążek 07

Min 2.0/1.29 2.4/3.04 4.0/3.64 1.8/1.36 2.0/2.46 1.8/1.34
Max 7.2/5.32 10.0/7.47 22.0/15.50 12.0/14.70 10.4/9.96 4.0/4.51
Av. 3.8/2.95 5.3/5.05 8.0/6.95 6.0/5.55 5.3/4.70 2.6/2.27

The delivery of sediments of the Brda River to the Koronowski Reservoir in the hydrological year
2015 fluctuated between 81 t (August) and 383 t (April) (Figure 3). The total load supplied from the
upper basin of the Brda River amounted to 2439 t. In comparison, the average total load supplied to
the Koronowski Reservoir in the period 1980 to 2015 amounted to 6110 t year−1 [47]. Hence, due to the
very dry conditions in 2015, the values of suspended load are less than half than the mean values in the
period 1980 to 2015. However, the seasonal dynamics are preserved in the time series, which shows
high concentrations in spring (April) and relatively low values in summer (August). Differences are
illustrated in Figure 3 for the average values between 1980–2015, especially in December and January,
which are much higher than in the dry year of 2015, with very low precipitation in the corresponding
months. The supply of sediments from other tributaries of the reservoir oscillated throughout the year,
ranging from 0.1 t (Krówka River) to 75.3 t (Sępolna River), amounting to a total of 631.6 t. In the
analyzed period, the outflow of sediments from the Koronowski Reservoir ranged between 83.6 t and
240.0 t and totaled to 1742.9 t. In almost all months (except August) there is a prevailing accumulation
of suspended sediments in Koronowski Reservoir (Figure 3). Only in August there is a slightly negative
balance, meaning that there are more outflowing suspended sediments than inflowing. The negative
balance is very small and might be related to resuspension of sediments or biologic activity. As Figure 3
illustrates, there is a general accumulation in all other months. The period characterized by a maximum
supply of sediments (II–VI) was accompanied by the largest accumulation of sediments in the reservoir.
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Given the volume of the flow rate, the main portion of suspended sediment load flowing to the
Koronowski Reservoir is delivered by the Brda River. The other tributaries supplied about a quarter of
the sediment load. The contribution of the small tributaries of the Koronowski Reservoir (excluding
Brda River) to the total balance of suspended sediments should be emphasized. The relatively high
sediment supply rates are conditioned by the morphometric features of these tributary catchments
(e.g., soil erodibility, not many lakes).
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Figure 3. Total suspended sediment budget of Koronowski Reservoir during the hydrological year 2015.
Explanations: inflowing suspended sediments (dark blue—2015; light blue—average 1980–2015 [47]);
outflowing suspended sediments (orange) and suspended sediment balance (light blue columns).

3.3. Capacity of Koronowski Reservoir

The most precise method to determine the loss of reservoir capacity due to silting is a comparison
of bathymetric volumes over time. Geodetic measurements, made for the technical project of the
reservoir for the hydroelectric power plant Koronowo [22], assumed that the initial capacity in 1961
at normal water level (81.5 m a.s.l.) amounted to 81.0 million m3. The bathymetric map, made in
1988 [18], indicates that the volume had already decreased to a level of 77.5 million m3 (loss of 4.3%).
Bathymetric measurements, made by the authors in 2015, allowed us to calculate the current water
retention volume of the Koronowski Reservoir. Referring the results to the same water level at the
dam as in the earlier measurements, we calculated a current retention capacity of 76.0 million m3.
Compared with the bathymetric map made in 1988 [18], the volume decreased an additional 1.9%,
yielding a capacity loss of 5.0 million m3 (6.2% in 54 years) in respect to the initial capacity of the
Koronowski Reservoir.

4. Discussion

The sediment concentration in the discharge of the main tributaries of the Koronowski Reservoir
is relatively low. This is mainly due to the typical hydrological and morphological characteristics of
lowland river basins. Aligned supply of water, reduced by a significant component of underground
outflow and a large retention capacity of the upper part of the catchment [50], results in a low intensity
of erosion processes. Furthermore, anthropogenic impacts and effects such as point source pollutions
are relatively small in the Brda River basin [26]. The annual distribution of sediment supply to the
Koronowski Reservoir corresponds to the regime of the Brda River, where the highest flows (spring
season) represent the largest delivery of material. This is a typical situation for Polish lowland areas,
also found in other studies by Zwoliński [51] on the Pilica River or Jaworska [52] on the Wieprz River.
Higher values of suspended load and turbidity of the Koronowski Reservoir tributaries and respective
lower concentrations in its outflow, enable the calculation of the sediment load balance (Figure 3),
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indicating an accumulation of sediments within the reservoir. Sediment accumulation and hence
trapping of the supplied suspended sediments washed into the Koronowski Reservoir, proves that the
reservoir is filling up and thus, fulfilling one of its major functions. Following Hartung’s criterion [53],
reservoirs that show a reduction in capacity by 80% lose their functionality. Globally, according to the
assessment of the International Commission on Large Dams (ICOLD), operational artificial reservoirs
are losing annually about 1400 million m3 of their capacity [54]. In most river systems around the
world decreasing sediment loads are actually observed, mainly because of trapping by upstream
dams [55]. On the basis of depth soundings and analysis of archival bathymetric maps, it was shown
that the volume of the Koronowski Reservoir was reduced in 54 years by only 6.2%. The areas of the
Koronowski Reservoir in which accumulation of sediments normally occurs were included in the
assessment, such as: (i) the backwater zone, where runoff and energy and hence transport capacity
is dropping; (ii) the dam zone, which is the main accumulation area; and (iii) the zones of bays
and estuary of inflows that have a limnetic character. The average value of sediment concentration
(mg L−1) along the longitudinal profile of the Koronowski Reservoir shows a general downward trend
of sediment concentration towards the hydroelectric power plant at Samociążek (Table 3). This pattern
is disturbed at two locations (11 and 13), which are characterized by limnetic conditions. The increase
in sediment concentration may result from the resuspension of sediments as a result of wave activity.
Higher values in these zones may be due to a high biological production in isolated bays, especially
during the summer. This might be the reason for the negative balance of suspended sediments in the
Koronowski Reservoir (Figure 1C, location 13) in August 2015, where a higher outflow than inflow of
suspended sediments was registered.

Table 3. Average values of total suspended material (mg L−1) along the longitudinal profile of
Koronowski Reservoir in the hydrological year 2015.

Value
Stations

Zamrzenica 10 Sokole Kuźnica 11 Sokole Kuźnica 12 Pieczyska 13 Lipkusz 14 Samociążek 15

Av. 2.50 2.72 2.10 2.33 2.10 2.21

The extent of mechanical denudation in the catchment area depends on land use, soils,
geomorphology, management methods, climate and hydrological parameters [56]. The total supply
of soil material by water erosion estimated with the USLE model [17] for the total catchment area
of the Brda River amounts to 36.4 t km−2 year−1 [57]. Figure 4A illustrates the spatial differences of
the delivery ratio in lowland Brda River and in turn, the source areas of suspended sediment supply
within the catchment. Moreover, it is also shown that suspended sediment transport is significant in
the sediment budget of the Brda River basin. Catchments characterized by a potential higher supply of
sediment are located in the upper part of Brda River. However, due to the significant amount of lake
surfaces and artificial reservoirs, those are not reflected in the total sediment balance. The analysis
of the suspended sediments data of the Koronowski Reservoir, collected by field measurements
and retrieved from the archive of the National Environmental Monitoring Programme [47], indicate
fluctuations in the annual supply, varying between 26607 t (1980 year) and 1593 t (2000) (Figure 4B).
The denudation rate, calculated based on actual measurements of suspended sediments for the years
1987–1999, amounted to 1.66 t km−2 year−1. In 2015, this value is lower, at about 0.87 t km−2 year−1.
Moreover, the data reveal a characteristic feature related to the reduction of supply volumes in the
1990s, which are due to the decrease of point source pollutions [58,59] (Figure 4B). During this period,
many water management and environmental programs were started in Poland, limiting the supply
of pollutants, including suspended sediments. Hence, they contribute to the improvement of water
quality [26]. Finally, most of the suspended material delivered from the catchment area accumulates
in artificial reservoirs. In the analyzed period, only a few years show a negative sediment budget.
The year 2015 was characterized by positive values of the retention potential with β = 28.5%. However,
based on the analysis of this parameter, the degree of capacity loss of the Koronowski Reservoir
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cannot be unambiguously defined. Hence, we utilized empirical equations taking into account silting
dynamics. Following Goncarov’s method [34], reservoir retention capacity β was assumed to be 37%.
This value of β results from the actual measurements of suspended sediments in the framework of the
National Environmental Monitoring (1987–1999) [47]. Generally, data used to calculate the value of β
for a longer period better reflect silting dynamics. Silting of the reservoir basin amounts to 18.9 million
m3, which corresponds to a 23.3% reduction of volume in 54 years. Calculations of the capacity
loss of the Koronowski Reservoir using the second method, the Stonawski formula [42], indicate a
decrease of its volume in the analyzed period by approximately 33%. The discrepancies in the results
of the capacity loss of the Koronowski Reservoir by the aforementioned methods are primarily due to
the incomplete set of monitoring data taken into account in the budgeting of suspended sediments,
especially in the initial phase of dam operation, when the circulation of material was most intense.
However, the results allow us to compare the silting rate of the reservoir calculated using empirical
methods (Goncarov, Stonawski) with the measured bathymetric volumes over time.Water 2018, 10, x FOR PEER REVIEW  10 of 14 
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Our results for the continuity of suspended sediments on the rivers with artificial reservoirs are
confirmed by various authors. Research by Babiński [8] and Babiński and Habel [60] found that the
Wlocławek Reservoir, which is the biggest in the Polish lowlands, reduced suspended sediments of the
Vistula River by 42%. Similar dynamics of suspended sediment transport were found in research on
the Sulejow Reservoir (Pilica River), showing a 45% reduction of sediments [61,62], and on the Danube
River in Serbia, where the sediment accumulation is estimated at 66% [63].

One of the objectives of the project was to compare benchmarks of sediment concentrations by two
methods: (i) traditional (in mg L−1) and (ii) nephelometric (in FNU). The coefficient of determination of
the monthly series range from 0.822 to 0.964, showing a strong positive correlation. Similar results are
reported in research by Lewis [64], IAEA report [65], Felix et al. [66] and Haimann et al. [67]. Only one
measurement period (March 2015), showed no correlation (0.656). The results confirm the usefulness of
the nephelometric method in determining the quantity of suspended sediment, which is characterized
by a greater ease in obtaining qualitative data. This fact has also been confirmed by studies on the
degree of mechanical denudation in other catchment areas, for examply, by Szewrański et al. [68].

5. Conclusions

We carried out a detailed study of the suspended sediment dynamics in the Koronowski Reservoir
system. The results obtained show that the average annual values of suspended sediments (total
suspension in mg L−1; turbidity in FNU) in the tributaries are higher than in the outflow of the reservoir,
indicating sedimentation processes. This emphasizes the accumulation character of the Koronowski
Reservoir, especially for the dynamics of suspended sediments. The Brda River is the main source
of suspended sediments transported into the Koronowski Reservoir, which in turn is conditioned by
the hydrological characteristics and especially by the size of its tributaries. The suspended sediment
budgets for the hydrological year 2015, and for most of the years in the period 1980 to 2013, indicate
that the Koronowski Reservoir is filling with sediments. Bathymetric soundings, conducted by the
authors, showed a volume loss of water retention in the Koronowski Reservoir of 6.2% over 54 years,
with respect to the initial capacity. The degree of siltation, calculated based on Goncarov’s formula,
showed a much higher loss of 23.3%. Calculations of the capacity loss of the Koronowski Reservoir
using the Stonawski formula showed an even higher decrease of its volume (33%). These differences are
mainly due to the different input factors used in the empirical formulas. However, the results obtained
by depth soundings are more reliable. This study confirms that due to the location of the reservoir
in the Polish lowland area, the sediment budget is generally dominated by suspended sediments.
Moreover, the project result will support future planning and investments, fulfilling one of the basic
requirements of the sustainable development strategy, namely, leaving the natural environment for
future generations at the present-day status.
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