Hydrochemical Characteristics of Groundwater and Dominant Water–Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Hydrogeology
2.2. Sampling and Analysis Methods
3. Results and Discussion
3.1. Hydrochemical Characteristics
3.2. Groundwater Hydrochemical Types
3.3. Main Hydrochemical Processes
3.4. Major Ion Relations in the Groundwater
3.5. Saturation Index and Mineral Dissolution
3.6. Implication for the Groundwater Resource Management
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elgallal, M.; Fletcher, L.; Evans, B. Assessment of potential risks associated with chemicals in waste water used for irrigation in arid and semiarid zones: A review. Agric. Water Manag. 2016, 177, 419–431. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, X.; Liang, P. Influence of drip irrigation by reclaimed water on the dynamic change of the nitrogen element in soil and tomato yield and quality. J. Clean Prod. 2016, 139, 561–566. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Y.; Xie, Y.; Song, F.; Wei, Y.; Zhang, J. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower shule river basin, northwest China. Hydrogeol. J. 2016, 24, 1967–1979. [Google Scholar] [CrossRef]
- Xiao, Y.; Shao, J.L.; Cui, Y.L.; Zhang, G.; Zhang, Q.L. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, northwest China. J. Earth Syst. Sci. 2017, 126, 26. [Google Scholar] [CrossRef]
- Jiao, J.J.; Zhang, X.; Liu, Y.; Kuang, X. Increased water storage in the Qaidam Basin, the North Tibet Plateau from GRACE gravity data. PLoS ONE 2015, 1010, e0141442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Qian, H.; Howard, K.W.F.; Wu, J. Building a new and sustainable “Silk Road economic belt”. Environ. Earth Sci. 2015, 74, 7267–7270. [Google Scholar] [CrossRef]
- Moral, F.; Cruz-Sanjulian, J.J.; Olias, M. Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (BeticCordillera, southern Spain). J. Hydrol. 2008, 360, 281–296. [Google Scholar] [CrossRef]
- Gastmans, D.; Chang, H.K.; Hutcheon, I. Groundwater geochemical evolution in the northern portion of the Guarani Aquifer System (Brazil) and its relationship to diagenetic features. Appl. Geochem. 2010, 25, 16–33. [Google Scholar] [CrossRef]
- Zhu, P.; Su, X.; Zhang, S.; Huang, Y.; Yang, F. Study on the Interaction Relationship between Surface Water and Groundwater in Nalingguole River Alluvial Proluvial Fan. Yellow River 2014, 36, 60–64. (In Chinese) [Google Scholar]
- Wagh, V.M.; Panaskar, D.B.; Varade, A.M.; Mukate, S.V.; Gaikwad, S.K.; Pawar, R.S.; Muley, A.A.; Aamalawar, M.L. Major ion chemistry and quality assessment of the groundwater resources of nandedtehsil, a part of Southeast Deccan Volcanic Province, Maharashtra, India. Environ. Earth Sci. 2016, 75, 1418. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water analysis. Eos. Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Subrahmanyam, K.; Yadaiah, P. Assessment of the impact of industrial effluents on water quality in Patancheru and environs, Medak district, Andhra Pradesh, India. Hydrogeol. J. 2001, 9, 297–312. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.; Titus, R.; Pietersen, K.; Tredoux, G.; Harris, C. Hydrochemical characteristics of aquifers near Sutherland in the western Karoo, South Africa. J. Hydrol. 2001, 241, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Walraevens, K.; Bakundukize, C.; Mtoni, Y.E.; Van Camp, M. Understanding the hydrogeochemical evolution of groundwater in Precambrian basement aquifers: A case study of Bugesera region in Burundi. J. Geochem. Explor. 2018, 188, 24–42. [Google Scholar] [CrossRef]
- Kim, K. Plagioclase weathering in the groundwater system of a sandy, silicate aquifer. Hydrol. Process. 2002, 16, 1793–1806. [Google Scholar] [CrossRef]
- Li, P.; Wu, H.; Qian, H. Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environ. Earth Sci. 2013, 69, 2211–2225. [Google Scholar] [CrossRef]
- Huang, X.J.; Wang, G.C.; Liang, X.Y.; Cui, L.F.; Ma, L.; Xu, Q. Hydrochemical and stable isotope (δD and δ18O) characteristics of groundwater and hydrogeochemical processes in the Ningtiaota Coalfield, Northwest China. Mine Water Environ. 2018, 37, 119–136. [Google Scholar] [CrossRef]
- Wen, X.H.; Wu, Y.Q.; Wu, J. Hydrochemical characteristics of groundwater in the Zhangye Basin, Northwestern China. Environ. Geol. 2008, 55, 1713–1724. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2) a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations: U.S Geological Survey Water-Resources Investigations Report 99-4259. 1999. Available online: https://pubs.er.usgs.gov/publication/wri994259 (accessed on 21 October 2018).
- Zhang, X.Y.; Ma, H.Z.; Han, F.Q.; Chen, Z.H. Mineral Assemblages and Palaeo environmental Changes of Core DG03 of Gahai Lake in Delingha Basin. Acta Sedmentol. Sin. 2007, 25, 767. (In Chinese) [Google Scholar]
- Zhang, X.Y.; Qu, J.W.; Zhang, W. Age model and palaeo climatic changes of DG03 core of Gahai Lake in Delingha Basin. J. Ludong Univ. 2009, 25, 68–72. (In Chinese) [Google Scholar]
- Xing, L.; Guo, H.; Zhan, Y. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J. Asian Earth Sci. 2013, 70–71, 250–264. [Google Scholar] [CrossRef]
- Wang, Y.; Shvartsev, S.L.; Su, C. Genesis of arsenic/fluoride-enriched soda water: A case study at Datong, northern China. Appl. Geochem. 2009, 24, 641–649. [Google Scholar] [CrossRef]
Hydrochemical Components | Unconfined Groundwater | Confined Groundwater | Surface Water | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Average | Min | Max | Average | Min | Max | Average | |
K+ (mg/L) | 0.5 | 49.5 | 6.9 | 2.6 | 5.0 | 3.6 | 1.2 | 6.6 | 3.7 |
Na+(mg/L) | 10.8 | 1885.0 | 227.4 | 41.9 | 150.0 | 82.0 | 8.9 | 262.0 | 87.9 |
Ca2+(mg/L) | 26.1 | 696.0 | 112.6 | 25.2 | 74.4 | 54.1 | 6.7 | 91.4 | 64.4 |
Mg2+(mg/L) | 6.1 | 410.0 | 53.5 | 12.4 | 42.0 | 23.0 | 1.4 | 78.4 | 26.2 |
Cl−(mg/L) | 14.2 | 1887.0 | 279.1 | 47.8 | 111.0 | 67.1 | 3.5 | 325.0 | 113.8 |
SO42−(mg/L) | 12.5 | 4091.0 | 346.5 | 43.5 | 221.0 | 106.8 | 21.4 | 303.0 | 126.2 |
HCO3− (mg/L) | 97.6 | 579.0 | 267.8 | 170.0 | 335.0 | 237.2 | 17.9 | 391.0 | 198.7 |
TDS(mg/L) | 146.5 | 8954.0 | 1142.0 | 314.0 | 662.0 | 443.1 | 52.0 | 1246.0 | 514.0 |
pH | 7.00 | 8.00 | 7.97 | 8.00 | 9.00 | 8.08 | 8.00 | 8.00 | 8.00 |
Ion | TDS | |||||||
---|---|---|---|---|---|---|---|---|
1.000 | ||||||||
0.755 | 1.000 | |||||||
0.591 | 0.540 | 1.000 | ||||||
0.595 | 0.629 | 0.858 | 1.000 | |||||
0.777 | 0.974 | 0.491 | 0.585 | 1.000 | ||||
0.512 | 0.562 | 0.915 | 0.890 | 0.443 | 1.000 | |||
0.380 | 0.421 | 0.540 | 0.606 | 0.374 | 0.492 | 1.000 | ||
TDS | 0.775 | 0.937 | 0.786 | 0.841 | 0.893 | 0.798 | 0.532 | 1.000 |
Reactions | Ratio | |
---|---|---|
a 1 | NaCl(Halite) = Na+ + Cl− | Na:Cl = 1:1 |
a 2 | CaSO4(Gypsum) = Ca2+ + SO4− | Ca:SO4 = 1:1 |
c 3 | 2NaAlSi3O8(Albite) + 9H2O + 2H2CO3 = Al2Si2O5(OH)4 + 2Na+ + 2HCO3− + 4H4SiO4 | Na:HCO3− = 1:1 |
c 4 | (Na0.82Ca0.18)Al1.18Si2.82O8(Plagioclase) + 1.18CO2 + 1.77H2O = 0.82Na+ + 0.18Ca2+ + 1.18HCO3− + 0.59Al2Si2O5(OH)4 + 1.64SiO2 | Na:HCO3 − = 0.82:1.18 Ca:HCO3 = 0.18:0.59 |
b 5 | 2CaAl2Si2O8(Anorthite) + 4CO2 + 6H2O = 2Al2Si2O5(OH)4 + Ca2+ + 4HCO3− | Ca:HCO3 = 1:2 |
c 6 | CaMg0.7Fe0.3Si2O6(Pyroxene) + 3.4CO2 + 2.3H2O = Ca2+ + 0.7Mg2+ + 2SiO2 + 3.4HCO3− + 0.3H+ + 0.3Fe(OH)3 | Ca:HCO3 = 1:1.7 Mg:HCO3 = 0.7:1.7 |
b 7 | Ca2Mg5Si8O22(OH)2(Ampibole) + 14CO2 + 22H2O = 2Ca2+ + 5Mg2+ + 14HCO3− + 8H4SiO4 | Ca:HCO3 = 2:7 Mg:HCO3 = 5:7 |
b 8 | 2K(Mg2Fe)(AlSi3)O10(OH)2(Biotite) + 5H2CO3 + 7H2CO3 + 7H2O = Al2Si2O5(OH)4 + 2K+ + 4Mg2+ + 2Fe(OH)3 + 4H4SiO4 + 5HCO3− | Mg:HCO3 = 4:5 K:HCO3 = 5:2 |
b 9 | 2KAlSi3O8(K-feldspar) + 9H2O + 2H2CO3 = Al2Si2O5(OH)4 + 2K+ + 2HCO3− + 4H4SiO4 | K:HCO3 = 1:1 |
b 10 | CaCO3 + CO2 + H2O = Ca2+ + 2HCO3− | Ca:HCO3 = 1:2 |
b 11 | CaMg(CO3)2 + 2CO2 + 2H2O = Ca2+ + Mg2+ + 4HCO3− | Ca:HCO3 = 1:2 Mg:HCO3 = 1:2 |
Saturation Index of Minerals | Min | Max | Average | Standard Deviation |
---|---|---|---|---|
SIcalcite | −0.73 | 1.34 | 0.18 | 0.49 |
SIdolomite | −1.73 | 3.12 | 0.21 | 0.97 |
SIgypsum | −2.67 | 0.12 | −1.40 | 0.48 |
SIhalite | −8.35 | −3.23 | −6.44 | 0.82 |
SIquartz | −1.76 | 0.62 | −0.76 | 0.86 |
SIillite | −11.41 | 1.51 | −5.81 | 5.13 |
SIK-feldspar | −6.89 | 0.24 | −3.81 | 2.59 |
SIalbite | −7.48 | −0.89 | −4.72 | 2.57 |
SIgibbsite | −3.32 | 0.58 | −1.64 | 1.74 |
SIkaolinite | −9.19 | 2.90 | −3.98 | 5.19 |
SImontmorillonite | −14.21 | 1.80 | −7.31 | 6.62 |
Mineral Content | Quartz | Plagioclase | Microcline | Illite | Chlorite | Calcite | Dolomite | Gypsum | Halite |
---|---|---|---|---|---|---|---|---|---|
Mean (%) | 44.22 | 11.70 | 6.08 | 7.03 | 6.07 | 18.02 | 2.73 | 2.90 | 1.09 |
Max (%) | 77.41 | 32.53 | 18.38 | 23.22 | 23.62 | 52.31 | 9.49 | 83.44 | 4.62 |
Min (%) | 0.50 | 1.92 | 0.00 | 0.98 | 0.02 | 3.08 | 0.00 | 0.00 | 0.00 |
SD | 13.10 | 5.07 | 3.66 | 5.02 | 4.28 | 7.03 | 1.62 | 12.80 | 1.28 |
CV (%) | 30.70 | 43.38 | 60.14 | 71.45 | 70.53 | 39.01 | 59.13 | 441.31 | 118.21 |
Sampling Point Location | Groundwater Age (ka) |
---|---|
Delingha City Water Source Well (DCWSW) | 5.165 ± 0.04 |
BK3 | 5.17 ± 0.17 |
QZ2 | 5.38 ± 0.2 |
QZ4 | 7.05 ± 0.17 |
Confined Groundwater of Gahai Lake | 5.385 ± 0.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Zhao, D.; Zhou, P.; Qu, S.; Liao, F.; Wang, G. Hydrochemical Characteristics of Groundwater and Dominant Water–Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China. Water 2020, 12, 836. https://doi.org/10.3390/w12030836
Zhang B, Zhao D, Zhou P, Qu S, Liao F, Wang G. Hydrochemical Characteristics of Groundwater and Dominant Water–Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China. Water. 2020; 12(3):836. https://doi.org/10.3390/w12030836
Chicago/Turabian StyleZhang, Biao, Dan Zhao, Pengpeng Zhou, Shen Qu, Fu Liao, and Guangcai Wang. 2020. "Hydrochemical Characteristics of Groundwater and Dominant Water–Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China" Water 12, no. 3: 836. https://doi.org/10.3390/w12030836
APA StyleZhang, B., Zhao, D., Zhou, P., Qu, S., Liao, F., & Wang, G. (2020). Hydrochemical Characteristics of Groundwater and Dominant Water–Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China. Water, 12(3), 836. https://doi.org/10.3390/w12030836