Numerical Approaches for Estimating Daily River Leakage from Arid Ephemeral Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Simulation of River Water and Groundwater Interactions
2.2.1. Simulation Domain and Boundary Conditions
2.2.2. Field Observations and Model Parameterization
2.2.3. Numerical Simulations
2.2.4. Model Calibration
3. Results
3.1. Groundwater Budget
3.2. Daily River Leakage
3.3. Parameter Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wang, P. Progress and prospect of research on water exchange between intermittent rivers and aquifers in arid regions of northwestern China. Prog. Geogr. 2018, 37, 183–197, (In Chinese with English abstract). [Google Scholar]
- Datry, T.; Larned, S.T.; Tockner, K. Intermittent Rivers: A Challenge for Freshwater Ecology. BioScience 2014, 64, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Brunner, P.; Therrien, R.; Renard, P.; Simmons, C.T.; Franssen, H.-J.H. Advances in understanding river-groundwater interactions. Rev. Geophys. 2017, 55, 818–854. [Google Scholar] [CrossRef]
- Filimonova, E.A.; Baldenkov, M.G. A combined-water-system approach for tackling water scarcity: Application to the Permilovo groundwater basin, Russia. Hydrogeol. J. 2016, 24, 489–502. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418. [Google Scholar] [CrossRef]
- Partington, D.; Therrien, R.; Simmons, C.T.; Brunner, P. Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds. Rev. Geophys. 2017, 55, 287–309. [Google Scholar] [CrossRef]
- Constantz, J. Streambeds merit recognition as a scientific discipline. Wiley Interdiscip. Rev. Water 2016, 3, 13–18. [Google Scholar] [CrossRef]
- Filimonova, E.; Shtengelov, R. The dependence of stream depletion by seasonal pumping on various hydraulic characteristics and engineering factors. Hydrogeol. J. 2013, 21, 1821–1832. [Google Scholar] [CrossRef]
- Song, J.; Chen, X.; Cheng, C.; Summerside, S.; Wen, F. Effects of hyporheic processes on streambed vertical hydraulic conductivity in three rivers of Nebraska. Geophys. Res. Lett. 2007, 34, L07409. [Google Scholar] [CrossRef]
- Xian, Y.; Jin, M.; Zhan, H. Buffer effect on identifying transient streambed hydraulic conductivity with inversion of flood wave responses. J. Hydrol. 2020, 580, 124261. [Google Scholar] [CrossRef]
- Tang, Q.; Kurtz, W.; Schilling, O.S.; Brunner, P.; Vereecken, H.; Hendricks Franssen, H.J. The influence of riverbed heterogeneity patterns on river-aquifer exchange fluxes under different connection regimes. J. Hydrol. 2017, 554, 383–396. [Google Scholar] [CrossRef]
- Min, L.; Yu, J.; Liu, C.; Zhu, J.; Wang, P. The spatial variability of streambed vertical hydraulic conductivity in an intermittent river, northwestern China. Environ. Earth Sci. 2013, 69, 873–883. [Google Scholar] [CrossRef]
- Chen, X.; Song, J.; Wang, W. Spatial variability of specific yield and vertical hydraulic conductivity in a highly permeable alluvial aquifer. J. Hydrol. 2010, 388, 379–388. [Google Scholar] [CrossRef]
- Wu, G.; Shu, L.; Lu, C.; Chen, X.; Zhang, X.; Appiah-Adjei, E.; Zhu, J. Variations of streambed vertical hydraulic conductivity before and after a flood season. Hydrogeol. J. 2015, 23, 1603–1615. [Google Scholar] [CrossRef]
- Wang, P.; Pozdniakov, S.P.; Vasilevskiy, P.Y. Estimating groundwater-ephemeral stream exchange in hyper-arid environments: Field experiments and numerical simulations. J. Hydrol. 2017, 555, 68–79. [Google Scholar] [CrossRef]
- Hatch, C.E.; Fisher, A.T.; Revenaugh, J.S.; Constantz, J.; Ruehl, C. Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development. Water Resour. Res. 2006, 42, W10410. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.D.; Booth, E.G.; Loheide, S.P. Dynamic ice formation in channels as a driver for stream-aquifer interactions. Geophys. Res. Lett. 2013, 40, 3408–3412. [Google Scholar] [CrossRef]
- Tooth, S. Process, form and change in dryland rivers: A review of recent research. Earth Sci. Rev. 2000, 51, 67–107. [Google Scholar] [CrossRef]
- Xian, Y.; Jin, M.; Liu, Y.; Si, A. Impact of lateral flow on the transition from connected to disconnected stream–aquifer systems. J. Hydrol. 2017, 548, 353–367. [Google Scholar] [CrossRef]
- Phogat, V.; Potter, N.J.; Cox, J.W.; Šimůnek, J. Long-Term Quantification of Stream-Aquifer Exchange in a Variably-Saturated Heterogeneous Environment. Water Resour. Manag. 2017, 31, 4353–4366. [Google Scholar] [CrossRef] [Green Version]
- Brunner, P.; Cook, P.G.; Simmons, C.T. Disconnected Surface Water and Groundwater: From Theory to Practice. Ground Water 2011, 49, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Brunner, P.; Cook, P.G.; Simmons, C.T. Hydrogeologic controls on disconnection between surface water and groundwater. Water Resour. Res. 2009, 45, W01422. [Google Scholar] [CrossRef] [Green Version]
- Cook, P.G. Quantifying river gain and loss at regional scales. J. Hydrol. 2015, 531 Pt 3, 749–758. [Google Scholar] [CrossRef]
- Kalbus, E.; Reinstorf, F.; Schirmer, M. Measuring methods for groundwater-surface water interactions: A review. Hydrol. Earth Syst. Sci. 2006, 10, 873–887. [Google Scholar] [CrossRef] [Green Version]
- Landon, M.K.; Rus, D.L.; Harvey, F.E. Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds. Ground Water 2001, 39, 870–885. [Google Scholar] [CrossRef] [Green Version]
- Shanafield, M.; Cook, P.G. Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review of applied methods. J. Hydrol. 2014, 511, 518–529. [Google Scholar] [CrossRef]
- Pozdniakov, S.P.; Wang, P.; Lekhov, M.V. A semi-analytical generalized Hvorslev formula for estimating riverbed hydraulic conductivity with an open-ended standpipe permeameter. J. Hydrol. 2016, 540, 736–743. [Google Scholar] [CrossRef]
- Caissie, D.; Luce, C.H. Quantifying streambed advection and conduction heat fluxes. Water Resour. Res. 2017, 53, 1595–1624. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, Y.; Gianni, G.; Lichtner, P.; Engelhardt, I. Numerical modelling of stream–aquifer interaction: Quantifying the impact of transient streambed permeability and aquifer heterogeneity. Hydrol. Process. 2018, 32, 2279–2292. [Google Scholar] [CrossRef]
- Rau, G.C.; Halloran, L.J.S.; Cuthbert, M.O.; Andersen, M.S.; Acworth, R.I.; Tellam, J.H. Characterising the dynamics of surface water-groundwater interactions in intermittent and ephemeral streams using streambed thermal signatures. Adv. Water Resour. 2017, 107, 354–369. [Google Scholar] [CrossRef] [Green Version]
- Batlle-Aguilar, J.; Cook, P.G. Transient infiltration from ephemeral streams: A field experiment at the reach scale. Water Res. Res. 2012, 48, W11518. [Google Scholar] [CrossRef]
- Niswonger, R.G.; Prudic, D.E.; Fogg, G.E.; Stonestrom, D.A.; Buckland, E.M. Method for estimating spatially variable seepage loss and hydraulic conductivity in intermittent and ephemeral streams. Water Resour. Res. 2008, 44, 1–14. [Google Scholar] [CrossRef]
- Reid, M.E.; Dreiss, S.J. Modeling the effects of unsaturated, stratified sediments on groundwater recharge from intermittent streams. J. Hydrol. 1990, 114, 149–174. [Google Scholar] [CrossRef]
- Leake, S.A.; Gungle, B. Evaluation of Simulations to Understand Effects of Groundwater Development and Artificial Recharge on the Surface Water and Riparian Vegetation Sierra Vista Subwatershed, Upper San Pedro Basin, Arizona; 2012-1206; U.S. Geological Survey: Reston, VA, USA, 2012.
- Wang, P.; Pozdniakov, S.P.; Shestakov, V.M. Optimum experimental design of a monitoring network for parameter identification at riverbank well fields. J. Hydrol. 2015, 523, 531–541. [Google Scholar] [CrossRef]
- Doppler, T.; Franssen, H.-J.H.; Kaiser, H.-P.; Kuhlman, U.; Stauffer, F. Field evidence of a dynamic leakage coefficient for modelling river–aquifer interactions. J. Hydrol. 2007, 347, 177–187. [Google Scholar] [CrossRef]
- Du, C.; Yu, J.; Wang, P.; Zhang, Y. Reference Evapotranspiration Changes: Sensitivities to and Contributions of Meteorological Factors in the Heihe River Basin of Northwestern China (1961–2013; 2014). Adv. Meteorol. 2016, 2016, 4143580. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yu, J.; Pozdniakov, S.P.; Grinevsky, S.O.; Liu, C. Shallow groundwater dynamics and its driving forces in extremely arid areas: A case study of the lower Heihe River in northwestern China. Hydrol. Process. 2014, 28, 1539–1553. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Wang, P.; Zhang, Y.; Du, C. Lake Evaporation in a Hyper-Arid Environment, Northwest of China—Measurement and Estimation. Water 2016, 8, 527. [Google Scholar] [CrossRef] [Green Version]
- Vasilevskiy, P.Y.; Wang, P.; Pozdniakov, S.P.; Davis, P. Revisiting the modified Hvorslev formula to account for the dynamic process of streambed clogging: Field validation. J. Hydrol. 2019, 568, 862–866. [Google Scholar] [CrossRef]
- Yao, Y.; Zheng, C.; Liu, J.; Cao, G.; Xiao, H.; Li, H.; Li, W. Conceptual and numerical models for groundwater flow in an arid inland river basin. Hydrol. Process. 2015, 29, 1480–1492. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, J.; Zhang, Y.; Wang, P.; Wang, D. Groundwater dynamic numerical simulation in the Ejina Oasis in an ecological water conveyance period. Hydrogeol. Eng. Geol. 2014, 41, 11–18, (In Chinese with English abstract). [Google Scholar]
- Akiyama, T.; Sakai, A.; Yamazaki, Y.; Wang, G.; Fujita, K.; Nakawo, M.; Masayoshi, A.; Jurhpei, A.; Yuki, G. Surface water-groundwater interaction in the Heihe River basin, Northwestern China. Bull. Glaciol. Res. 2007, 24, 87–94. [Google Scholar]
- Wang, P.; Yu, J.; Zhang, Y.; Fu, G.; Min, L.; Ao, F. Impacts of environmental flow controls on the water table and groundwater chemistry in the Ejina Delta, northwestern China. Environ. Earth Sci. 2011, 64, 15–24. [Google Scholar] [CrossRef]
- Wu, X.; Shi, S.; Li, Z.; Hao, A.; Qiao, W.; Yu, Z.; Zhang, S. The study on the groundwater flow system of Ejina basin in lower reaches of the Heihe River in Northwest China (Part 1). Hydrogeol. Eng. Geol. 2002, 1, 16–20, (In Chinese with English abstract). [Google Scholar]
- Xie, Q. Regional Hydrogeological Survey Report of the People’s Republic of China (1:200,000): Ejina K-47-[24] [R]; Chinese People’s Liberation Army: Jiuquan, China, 1980. (In Chinese) [Google Scholar]
- Wang, P.; Yu, J.; Zhang, Y.; Liu, C. Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, northwest China. J. Hydrol. 2013, 476, 72–86. [Google Scholar] [CrossRef]
- Qin, D.; Zhao, Z.; Han, L.; Qian, Y.; Ou, L.; Wu, Z.; Wang, M. Determination of groundwater recharge regime and flowpath in the Lower Heihe River basin in an arid area of Northwest China by using environmental tracers: Implications for vegetation degradation in the Ejina Oasis. Appl. Geochem. 2012, 27, 1133–1145. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Y.; Yu, J.; Fu, G.; Ao, F. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, northwestern China. J. Plant Ecol. 2011, 4, 77–90. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Wang, P.; Fu, G. Vegetation responses to integrated water management in the Ejina basin, northwest China. Hydrol. Process. 2011, 25, 3448–3461. [Google Scholar] [CrossRef]
- Yao, Y.; Tian, Y.; Andrews, C.; Li, X.; Zheng, Y.; Zheng, C. Role of Groundwater in the Dryland Ecohydrological System: A Case Study of the Heihe River Basin. J. Geophys. Res. Atmos. 2018, 123, 6760–6776. [Google Scholar] [CrossRef]
- Wen, X.; Wu, Y.; Su, J.; Zhang, Y.; Liu, F. Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. Environ. Geol. 2005, 48, 665–675. [Google Scholar] [CrossRef]
- Yang, Q.; Xiao, H.; Zhao, L.; Yang, Y.; Li, C.; Zhao, L.; Yin, L. Hydrological and isotopic characterization of river water, groundwater, and groundwater recharge in the Heihe River basin, northwestern China. Hydrol. Process. 2011, 25, 1271–1283. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MODFLOW-2005, the U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process; U.S. Geological Survey Techniques and Methods 6-A16; U.S. Geological Survey: Reston, VA, USA, 2005.
- Chiang, W.-H. 3D-Groundwater Modeling with PMWIN: A Simulation System for Modeling Groundwater Flow and Transport Processes, 2nd ed.; Springer: New York, NY, USA, 2005; p. 397. [Google Scholar]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; U.S. Geological Survey: Reston, VA, USA, 1988. [Google Scholar]
- Prudic, D.E. Documentation of a Computer Program to Simulate Stream-Aquifer Relations Using a Modular, Finite-Difference, Ground-Water Flow Model; U.S. Geological Survey: Reston, VA, USA, 1989; pp. 88–729. [Google Scholar]
- Gates, J.; Edmunds, W.; Ma, J.; Scanlon, B. Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol. J. 2008, 16, 893–910. [Google Scholar] [CrossRef]
- Zhu, G.F.; Li, Z.Z.; Su, Y.H.; Ma, J.Z.; Zhang, Y.Y. Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. J. Hydrol. 2007, 333, 239–251. [Google Scholar] [CrossRef]
- Hu, S.; Tian, C.; Song, Y.; Chen, X.; Li, Y. Models for calculating phreatic water evaporation on bare and Tamarix-vegetated lands. Chin. Sci. Bull. 2006, 51, 43–50. [Google Scholar] [CrossRef]
- Shah, N.; Nachabe, M.; Ross, M. Extinction depth and evapotranspiration from ground water under selected land covers. Ground Water 2007, 45, 329–338. [Google Scholar] [CrossRef]
- Du, C.; Yu, J.; Wang, P.; Zhang, Y. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China. J. Hydrol. 2018, 558, 592–606. [Google Scholar] [CrossRef]
- Guo, X.; Feng, Q.; Si, J.; Xi, H.; Zhao, Y.; Deo, R.C. Partitioning groundwater recharge sources in multiple aquifers system within a desert oasis environment: Implications for water resources management in endorheic basins. J. Hydrol. 2019, 579, 124212. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Wang, P.; Yu, J.; Min, L.; Xu, Y.; Zhu, B.; Zhang, Y.; Du, C. Shallow groundwater regime and its driving forces in the Elina oasis. Quat. Sci. 2014, 34, 982–993, (In Chinese with English abstract). [Google Scholar]
- Wang, T.-Y.; Wang, P.; Zhang, Y.-C.; Yu, J.-J.; Du, C.-Y.; Fang, Y.-H. Contrasting groundwater depletion patterns induced by anthropogenic and climate-driven factors on Alxa Plateau, northwestern China. J. Hydrol. 2019, 576, 262–272. [Google Scholar] [CrossRef]
- Wang, P.; Grinevsky, S.O.; Pozdniakov, S.P.; Yu, J.; Dautova, D.S.; Min, L.; Du, C.; Zhang, Y. Application of the water table fluctuation method for estimating evapotranspiration at two phreatophyte-dominated sites under hyper-arid environments. J. Hydrol. 2014, 519 Pt B, 2289–2300. [Google Scholar] [CrossRef]
- Hill, M.C.; Tiedeman, C.R. Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions and Uncertainty; Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Maddock Iii, T.; Baird, K.J.; Hanson, R.T.; Schmid, W.; Ajami, H. RIP-ET: A Riparian Evapotranspiration Package for MODFLOW-2005; 6-A39; US Geological Survey Techniques and Methods 6; U.S. Geological Survey: Reston, VA, USA, 2012; pp. 1–76. [Google Scholar]
- Wang, P.; Niu, G.Y.; Fang, Y.H.; Wu, R.J.; Yu, J.J.; Yuan, G.F.; Pozdniakov, S.P.; Scott, R.L. Implementing Dynamic Root Optimization in Noah—MP for Simulating Phreatophytic Root Water Uptake. Water Resour. Res. 2018, 54, 1560–1575. [Google Scholar] [CrossRef] [Green Version]
Zone No. | Dominant Material | Initial Value | Calibrated Value | ||
---|---|---|---|---|---|
K, m/Day | Sy, - | K, m/Day | Sy, - | ||
1 | Coarse sand, gravel | 21 | 0.15 | 28 | 0.20 |
2 | Coarse sand | 16 | 0.15 | 26 | 0.22 |
3 | Medium sand | 11 | 0.15 | 23 | 0.17 |
4 | Fine sand | 6 | 0.15 | 17 | 0.15 |
River Segment No. | Segment Length, m | Lr, m | k0/m0, Day−1 | C, m2/Day | |
---|---|---|---|---|---|
Initial | Calibrated | ||||
1 | 16,000 | 140 | 0.50 | 37,800 | 37,885–151,542 |
2 | 18,000 | 140 | 0.48 | 40,600 | 36,515–146,060 |
3 | 17,000 | 72 | 0.26 | 20,160 | 10,195–40,781 |
4 | 18,500 | 78 | 1.03 | 24,180 | 43,345–173,383 |
5 | 16,000 | 88 | 0.56 | 29,920 | 26,432–105,729 |
6 | 15,000 | 67 | 0.44 | 27,470 | 15,880–63,518 |
7 | 15,000 | 70 | 0.48 | 23,800 | 18,125–72,498 |
8 | 15,000 | 36 | 0.89 | 7200 | 17,261–69,045 |
No. | Budget Component | Recharge | Discharge | ||
---|---|---|---|---|---|
Volume, m3 | % | Volume, m3 | % | ||
1 | Water exchange with river | 3.59 × 108 | 84 | 5.53 × 107 | 20 |
2 | Evapotranspiration | - | - | 1.64 × 108 | 59 |
3 | Groundwater exploitation | - | 4.19 × 107 | 15 | |
4 | Lateral flow | 6.77 × 107 | 16 | 1.85 × 107 | 6 |
5 | Total | 4.26 × 108 | 100 | 2.80 × 108 | 100 |
River Flow Period | Total Runoff (106 m3) | Average River Discharge (m3/s) | River Leakage (106 m3) | River Leakage Rate (%) | Correlation Coefficient (-) |
---|---|---|---|---|---|
21 April–9 May 2010 | 11.0 | 6.7 | 4.6 | 42 | 0.85 |
12–26 July 2010 | 50.7 | 39.1 | 20.3 | 40 | 0.79 |
15 September–4 November 2010 | 154.1 | 35.0 | 43.4 | 28 | 0.52 |
6 January–13 May 2011 | 166.8 | 15.1 | 65.5 | 39 | 0.25 |
13–17 July 2011 | 5.12 | 11.8 | 5.11 | 99.8 | 0.99 |
18 August–3 November 2011 | 248.7 | 36.9 | 59.1 | 24 | 0.60 |
4 December 2011–24 May 2012 | 192.0 | 12.8 | 73 | 38 | 0.61 |
3 August–7 September 2012 | 91.5 | 29.4 | 36.2 | 40 | 0.57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, L.; Vasilevskiy, P.Y.; Wang, P.; Pozdniakov, S.P.; Yu, J. Numerical Approaches for Estimating Daily River Leakage from Arid Ephemeral Streams. Water 2020, 12, 499. https://doi.org/10.3390/w12020499
Min L, Vasilevskiy PY, Wang P, Pozdniakov SP, Yu J. Numerical Approaches for Estimating Daily River Leakage from Arid Ephemeral Streams. Water. 2020; 12(2):499. https://doi.org/10.3390/w12020499
Chicago/Turabian StyleMin, Leilei, Peter Yu. Vasilevskiy, Ping Wang, Sergey P. Pozdniakov, and Jingjie Yu. 2020. "Numerical Approaches for Estimating Daily River Leakage from Arid Ephemeral Streams" Water 12, no. 2: 499. https://doi.org/10.3390/w12020499
APA StyleMin, L., Vasilevskiy, P. Y., Wang, P., Pozdniakov, S. P., & Yu, J. (2020). Numerical Approaches for Estimating Daily River Leakage from Arid Ephemeral Streams. Water, 12(2), 499. https://doi.org/10.3390/w12020499