Passive Detection of Phosphorus in Agricultural Tile Waters Using Reactive Hybrid Anion Exchange Resins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of the Hybrid Resins
2.3. Phosphorus Adsorption Isotherm in the Hybrid Resins
2.4. Phopshate Adsorption Kinetics in Hybrid Resins
2.5. Field Deployment of Hybrid Resin Bags
2.6. Monitoring Flow Rate, Temperature, and DRP Concentration of Tile Water
2.7. Recovery of Passive-Sampled P from Tile Drainage Water and Its Evaluation
2.8. Calibration of the Passive Sampling Device
2.9. Stability of the Iron Coating of Hybrid Resins
2.10. Statistical Analysis
2.10.1. Calculation of the Sampling Rate
2.10.2. Average DRP Concentration in Monitored Tile Drainage Water
2.10.3. The Load of Phosphorus Loss in Tile Lines
3. Results and Discussion
3.1. Material Characterization
3.2. Batch P Adsorption in the Hybrid Resins
3.2.1. Phosphate Adsorption Isotherm in the Hybrid Resins
3.2.2. Phosphate Adsorption Kinetics in the Hybrid Resins
3.3. Field Test of Passive Sampling of P in Tile Drainage Water Using Hybrid Resins
3.3.1. Recovery of Passive-Sampled P in the Hybrid Resins
3.3.2. Calibration of the Hybrid Resin Passive Sampler
3.3.3. Estimation of DRP Concentration of Tile Water Using Hybrid Resin Sampler
3.3.4. Evaluation of P Loads in Tile Drainage Water
4. Conclusions and Future Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharpley, A.N.; Chapra, S.C.; Wedepohl, R.; Sims, J.T.; Daniel, T.C.; Reddy, K.R. Managing agricultural phosphorus for protection of surface waters: Issues and options. J. Environ. Qual. 1994, 23, 437–451. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, W.R.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Gentry, L.E.; David, M.B.; Royer, T.V.; Mitchell, C.A.; Starks, K.M. Phosphorus transport pathways to streams in tile-drained agricultural watersheds. J. Environ. Qual. 2007, 36, 408–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, K.; Williams, M.; Fausey, N. Contributions of systematic tile drainage to watershed-scale phosphorus transport. J. Environ. Qual. 2015, 44, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Rozemeijer, J.; van der Velde, Y.; de Jonge, H.; van Geer, F.; Broers, H.P.; Bierkens, M. Application and evaluation of a new passive sampler for measuring average solute concentrations in a catchment scale water quality monitoring study. Environ. Sci. Technol. 2010, 44, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Müller, B.; Stöckli, A.; Stierli, R.; Butscher, E.; Gächter, R. A low cost method to estimate dissolved reactive phosphorus loads of rivers and streams. J. Environ. Monit. 2007, 9, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Worsfold, P.; McKelvie, I.; Monbet, P. Determination of phosphorus in natural waters: A historical review. Anal. Chim. Acta 2016, 918, 8–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, D.S.; Chiswell, B.; Mueller, J.F. A novel method for the in situ calibration of flow effects on a phosphate passive sampler. J. Environ. Monit. 2009, 11, 212–219. [Google Scholar]
- Edenborn, H.M.; Howard, B.H.; Sams, J.I.; Vesper, D.J.; Edenborn, S.L. Passive detection of Pb in water using rock phosphate agarose beads. J. Hazard. Mater. 2017, 336, 240–248. [Google Scholar] [CrossRef]
- Vrana, B.; Allan, I.J.; Greenwood, R.; Mills, G.A.; Dominiak, E.; Svensson, K.; Knutsson, J.; Morrison, G. Passive sampling techniques for monitoring pollutants in water. TrAC Trends Anal. Chem. 2005, 24, 845–868. [Google Scholar] [CrossRef]
- Ahrens, L.; Daneshvar, A.; Lau, A.E.; Kreuger, J. Characterization of five passive sampling devices for monitoring of pesticides in water. J. Chromatogr. A 2015, 1405, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.I.G.S.; Jayawardane, B.M.; Kolev, S.D.; McKelvie, I.D. Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta 2018, 177, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Jayawardane, B.M.; McKelvie, I.D.; Kolev, S.D. A paper-based device for measurement of reactive phosphate in water. Talanta 2012, 100, 454–460. [Google Scholar] [CrossRef] [PubMed]
- King, K.W.; Williams, M.R.; Macrae, M.L.; Fausey, N.R.; Frankenberger, J.; Smith, D.R.; Kleinman, P.J.A.; Brown, L.C.; Fausey, N.R.; Brown, L.C.; et al. Phosphorus transport in agricultural subsurface drainage: A review. J. Environ. Qual. 2015, 44, 467–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.R.; King, K.W.; Johnson, L.; Francesconi, W.; Richards, P.; Baker, D.; Sharpley, A.N. Surface runoff and tile drainage transport of phosphorus in the midwestern United States. J. Environ. Qual. 2015, 44, 495. [Google Scholar] [CrossRef]
- Roll, I.B.; Halden, R.U. Critical review of factors governing data quality of integrative samplers employed in environmental water monitoring. Water Res. 2016, 94, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, R.B.; Paschke, A.; Vrana, B.; Mueller, R.; Liess, M. Performance of the Chemcatcher® passive sampler when used to monitor 10 polar and semi-polar pesticides in 16 Central European streams, and comparison with two other sampling methods. Water Res. 2008, 42, 2707–2717. [Google Scholar] [CrossRef]
- Gunold, R.; Schäfer, R.B.; Paschke, A.; Schüürmann, G.; Liess, M. Calibration of the Chemcatcher® passive sampler for monitoring selected polar and semi-polar pesticides in surface water. Environ. Pollut. 2008, 155, 52–60. [Google Scholar] [CrossRef]
- Kingston, J.K.; Greenwood, R.; Mills, G.A.; Morrison, G.M.; Persson, L.B. Development of a novel passive sampling system for the time-averaged measurement of a range of organic pollutants in aquatic environments. J. Environ. Monit. 2000, 2, 487–495. [Google Scholar] [CrossRef]
- Gong, X.; Li, K.; Wu, C.; Wang, L.; Sun, H. Passive sampling for monitoring polar organic pollutants in water by three typical samplers. Trends Environ. Anal. Chem. 2018, 17, 23–33. [Google Scholar] [CrossRef]
- De Jonge, H.; Rothenberg, G. New device and method for flux-proportional sampling of mobile solutes in soil and groundwater. Environ. Sci. Technol. 2005, 39, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Sendrowski, A.; Boyer, T.H. Phosphate removal from urine using hybrid anion exchange resin. Desalination 2013, 322, 104–112. [Google Scholar] [CrossRef]
- Sengupta, S.; Pandit, A. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Res. 2011, 45, 3318–3330. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, J.A.; Boyer, T.H. Phosphate recovery using hybrid anion exchange: Applications to source-separated urine and combined wastewater streams. Water Res. 2013, 47, 5003–5017. [Google Scholar] [CrossRef]
- Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. Phosphate adsorption on synthetic goethite and akaganeite. J. Colloid Interface Sci. 2006, 298, 602–608. [Google Scholar] [CrossRef]
- Funes, A.; Martínez, F.J.; Álvarez-Manzaneda, I.; Conde-Porcuna, J.M.; de Vicente, J.; Guerrero, F.; de Vicente, I. Determining major factors controlling phosphorus removal by promising adsorbents used for lake restoration: A linear mixed model approach. Water Res. 2018, 141, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Luengo, C.; Brigante, M.; Antelo, J.; Avena, M. Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements. J. Colloid Interface Sci. 2006, 300, 511–518. [Google Scholar] [CrossRef]
- Upping, E.; Thompson, D.W.; Ohnstad, M.; Hetherington, N.B. Effects of ph on the release of metals from naturally-occurring oxides of mn and fe. Environ. Technol. Lett. 1986, 7, 109–114. [Google Scholar]
- Sager, M. Chemical speciation and environmental mobility of heavy metals in sediments and soils. Tech. Instrum. Anal. Chem. 1992, 12, 133–175. [Google Scholar]
- Tamura, H.; Goto, K.; Yotsuyanagi, T.; Nagayama, M. Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta 1974, 21, 314–318. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klute, A.; Carter, D.L.; Mortland, M.M.; Kemper, W.D. Specific Surface. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1986; pp. 413–423. [Google Scholar]
- He, Z.; Baligar, V.; Ritchey, K.; Martens, D. Determination of soluble phosphorus in the presence of organic ligands or fluoride. Soil Sci. Soc. Am. J. 1998, 62, 1538–1541. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. The sorption of lead(II) ions on peat. Water Res. 1999, 33, 578–584. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000, 34, 735–742. [Google Scholar] [CrossRef]
- Xu, S.; Gentry, L.; Chen, K.; Arai, Y. Intensive agricultural management induced subsurface accumulation of labile phosphorus in tile line dominated Midwestern agricultural soils. Soil Sci. Soc. Am. J. 2020, in press. [Google Scholar] [CrossRef]
- USDA Soil Survey. Soil Survey of Douglas County, Illinois. Natural Accessibility Conservation Service. 2006. Available online: https://www.blogs.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/illinois/IL041/0/Douglas_IL.pdf (accessed on 10 January 2020).
- Chun, J.A.; Cooke, R.A. Calibrating agridrain water level control structures using generalized weir and orifice equations. Appl. Eng. Agric. 2008, 24, 595–602. [Google Scholar] [CrossRef]
- Penn, C.; Bowen, J. Characterization of PSMs. In Design and Construction of Phosphorus Removal Structures for Improving Water Quality, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017; p. 105. [Google Scholar]
- Knutsson, J.; Rauch, S.; Morrison, G.M. Performance of a passive sampler for the determination of time averaged concentrations of nitrate and phosphate in water. Environ. Sci. Process. Impacts 2013, 15, 955–962. [Google Scholar] [CrossRef] [Green Version]
- Takeshita, R.; Yoshida, I.; Ueno, K. Adsorption behaviour of phosphate ion on the iron (III) compleks of a chelating resin. Bull. Chem. Soc. Jpn. 1979, 52, 2577–2580. [Google Scholar] [CrossRef]
- Acelas, N.Y.; Martin, B.D.; López, D.; Jefferson, B. Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere 2015, 119, 1353–1360. [Google Scholar] [CrossRef]
- Sarkar, S.; Chatterjee, P.K.; Cumbal, L.H.; SenGupta, A.K. Hybrid ion exchanger supported nanocomposites: Sorption and sensing for environmental applications. Chem. Eng. J. 2011, 166, 923–931. [Google Scholar] [CrossRef]
- Pan, B.; Wu, J.; Pan, B.; Lv, L.; Zhang, W.; Xiao, L.; Wang, X.; Tao, X.; Zheng, S. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Water Res. 2009, 43, 4421–4429. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Li, N.; Zhao, L. Adsorptive removal of Cr (VI) from water by anion exchanger based nanosized ferric oxyhydroxide hybrid adsorbent. Chem. Biochem. Eng. Q 2012, 26, 111–118. [Google Scholar]
- Sengupta, A.K.; Cumbal, L.H. Hybrid Anion Exchanger for Selective Removal of Contaminating Ligands from Fluids and Method of Manufacture Thereof. U.S. Patent 7,291,578, 6 November 2007. Available online: https://patentimages.storage.googleapis.com/13/34/25/1a107991a4843f/US7291578B2.pdf (accessed on 10 January 2020).
- You, X.; Guaya, D.; Farran, A.; Valderrama, C.; Cortina, J.L. Phosphate removal from aqueous solution using a hybrid impregnated polymeric sorbent containing hydrated ferric oxide (HFO). J. Chem. Technol. Biotechnol. 2016, 91, 693–704. [Google Scholar] [CrossRef]
- Parfitt, R.L. Phosphate reactions with natural allophane, ferrihydrite and goethite. J. Soil Sci. 1989, 40, 359–369. [Google Scholar] [CrossRef]
- Parfitt, R.L.; Atkinson, R.J.; Smart, R.S.C. The mechanism of phosphate fixation by iron oxides1. Soil Sci. Soc. Am. J. 1975, 39, 837–841. [Google Scholar] [CrossRef]
- Pan, B.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q.; Zheng, S. Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 2009, 151, 19–29. [Google Scholar] [CrossRef]
- Zagorodni, A.A. Ion Exchange Materials: Properties and Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2006; p. 26. [Google Scholar]
- Boari, G.; Liberti, L.; Passino, R. Selective renovation of eutrophic wastes phosphate removal. Water Res. 1976, 10, 421–428. [Google Scholar] [CrossRef]
- Ding, L.; Wu, C.; Deng, H.; Zhang, X. Adsorptive characteristics of perchlorate from aqueous solutions by MIEX resin. J. Colloid Interface Sci. 2012, 376, 224–232. [Google Scholar] [CrossRef]
- Ho, Y.S.; Ng, J.C.Y.; McKay, G. Kinetics of pollutant sorption by biosorbents: Review. Sep. Purif. Methods 2000, 29, 189–232. [Google Scholar] [CrossRef]
- Lalley, J.; Han, C.; Li, X.; Dionysiou, D.D.; Nadagouda, M.N. Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests. Chem. Eng. J. 2016, 284, 1386–1396. [Google Scholar] [CrossRef]
- Xue, Y.; David, M.B.; Gentry, L.E.; Kovacic, D.A. Kinetics and modeling of dissolved phosphorus export from a tile- drained agricultural watershed. J. Environ. Qual. 1998, 27, 917–922. [Google Scholar] [CrossRef]
- Baker, L.; Campbell, K.L.; Johnson, H.P.; Hanway, J. Nitrate, phosphorus, and sulfate in subsurface drainage wate. J. Environ. Qual. 1975, 4, 406–412. [Google Scholar] [CrossRef]
- Algoazany, A.S.; Kalita, P.K.; Czapar, G.F.; Mitchell, J.K. Phosphorus transport through subsurface drainage and surface runoff from a flat watershed in east central Illinois, USA. J. Environ. Qual. 2007, 36, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Smil, V. Phosphorus in the environment: Natural flows and human interferences. Annu. Rev. Energy Environ. 2000, 25, 53–88. [Google Scholar] [CrossRef] [Green Version]
- Heathwaite, A.L.; Dils, R.M. Characterising phosphorus loss in surface and subsurface hydrological pathways. Sci. Total Environ. 2000, 251–252, 523–538. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Smith, D.R.; Bolster, C.H.; Easton, Z.M. Phosphorus fate, management, and modeling in artificially drained systems. J. Environ. Qual. 2015, 44, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Vaithiyanathan, P.; Correll, D.L. The Rhode River watershed: Phosphorus distribution and export in forest and agricultural soils. J. Environ. Qual. 1992, 21, 280–288. [Google Scholar] [CrossRef]
- Saadat, S.; Bowling, L.; Frankenberger, J.; Kladivko, E. Nitrate and phosphorus transport through subsurface drains under free and controlled drainage. Water Res. 2018, 142, 196–207. [Google Scholar] [CrossRef]
Resin | Matrix | Structure Type | Type of Functional Groups | Physical Form | Particle Size (µm) | Total Surface Area (m2/g) | Iron Content before Shaking (mg/g) | Iron Content after Shaking (mg/g) |
---|---|---|---|---|---|---|---|---|
FerrIX™A33E (HR1) | Polystyrene-DVB | Macroporous | Strong-base | Brown, opaque, spherical beads | 750 ± 450 | 810 ± 38 | 196.0 ± 3.0 | 194.3 ± 2.5 |
Hybrid IRA67 (HR2) | Polyacrylic | Gel | Weak-base | Reddish brown, spherical beads | 625 ± 125 | 3515 ± 21 | 13.4 ± 0.8 | 13.5 ± 0.5 |
Resin | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|
Qm (mg/g) | Km (L/mg) | R2 | n | Kf (mg1–1/n L1/n/g) | R2 | |
FerrIX™A33E (HR1) | 7.686 | 0.948 | 0.983 | 4.435 | 3.759 | 0.983 |
Hybrid IRA67 (HR2) | 19.841 | 0.719 | 0.983 | 1.467 | 7.263 | 0.993 |
Resin | Pseudo-First Order Model | Pseudo-Second Order Model | |||||
---|---|---|---|---|---|---|---|
k1 (1/min) | qe (mg/g) | R2 | k2 (g/(mg min)) | qe (mg/g) | k2qe2 (mg/(g min)) | R2 | |
FerrIX™A33E (HR1) | 0.045 | 0.291 | 0.726 | 0.080 | 3.000 | 0.719 | 1.000 |
Hybrid IRA67 (HR2) | 0.004 | 0.124 | 0.487 | 0.108 | 2.943 | 0.934 | 1.000 |
Data Sets | Pairs | Paired Differences | t | df | p (2-Tailed) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | ||||||
Lower | Upper | ||||||||
HR1_sampled | Tile_4-Tile_7 | 0.032 | 0.024 | 0.007 | 0.016 | 0.047 | 4.497 | 11 | 0.001 |
Tile_7-Tile_46 | −0.042 | 0.018 | 0.005 | −0.053 | −0.031 | −8.317 | 11 | 0.000 | |
Tile_4-Tile_46 | −0.011 | 0.019 | 0.005 | −0.022 | 0.001 | −1.978 | 11 | 0.073 | |
HR2_sampled | Tile_4-Tile_7 | 0.065 | 0.065 | 0.019 | 0.024 | 0.106 | 3.470 | 11 | 0.005 |
Tile_7-Tile_46 | −0.077 | 0.030 | 0.009 | −0.096 | −0.058 | −8.950 | 11 | 0.000 | |
Tile_4-Tile_46 | −0.012 | 0.044 | 0.013 | −0.040 | 0.016 | −0.964 | 11 | 0.356 |
Data Sets | Pairs | Paired Differences | t | df | p (2-Tailed) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | ||||||
Lower | Upper | ||||||||
Tile_4 | HR1_sampled-HR2_sampled | −0.112 | 0.094 | 0.036 | −0.199 | −0.025 | −3.149 | 6 | 0.020 |
HR1_sampled-Auto_sampled | −0.006 | 0.003 | 0.001 | −0.008 | −0.003 | −5.953 | 6 | 0.001 | |
HR2_sampled-Auto_sampled | 0.106 | 0.093 | 0.035 | 0.020 | 0.192 | 3.029 | 6 | 0.023 | |
Tile_7 | HR1_sampled-HR2_sampled | −0.056 | 0.027 | 0.010 | −0.081 | −0.031 | −5.499 | 6 | 0.002 |
HR1_sampled-Auto_sampled | −0.002 | 0.002 | 0.001 | −0.004 | 0.000 | −3.038 | 6 | 0.023 | |
HR2_sampled-Auto_sampled | 0.053 | 0.027 | 0.010 | 0.028 | 0.078 | 5.212 | 6 | 0.002 | |
Tile_46 | HR1_sampled-HR2_sampled | −0.114 | 0.060 | 0.023 | −0.169 | −0.058 | −4.980 | 6 | 0.003 |
HR1_sampled-Auto_sampled | −0.010 | 0.003 | 0.001 | −0.013 | −0.007 | −9.143 | 6 | 0.000 | |
HR2_sampled-Auto_sampled | 0.104 | 0.060 | 0.023 | 0.048 | 0.159 | 4.585 | 6 | 0.004 |
Data Sets | Pairs | Paired Differences | t | df | p (2-Tailed) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | ||||||
Lower | Upper | ||||||||
Tile_4 | HR1_sampled-HR2_sampled | −0.001 | 0.005 | 0.002 | −0.005 | 0.003 | −0.470 | 6 | 0.655 |
HR1_sampled-Auto_sampled | 0.002 | 0.004 | 0.001 | −0.001 | 0.005 | 1.402 | 6 | 0.210 | |
HR2_sampled-Auto_sampled | 0.003 | 0.007 | 0.003 | −0.004 | 0.010 | 0.953 | 6 | 0.377 | |
Tile_7 | HR1_sampled-HR2_sampled | −0.007 | 0.003 | 0.001 | −0.010 | −0.004 | −5.579 | 6 | 0.001 |
HR1_sampled-Auto_sampled | −0.005 | 0.002 | 0.001 | −0.007 | −0.003 | −5.724 | 6 | 0.001 | |
HR2_sampled-Auto_sampled | 0.002 | 0.003 | 0.001 | −0.001 | 0.005 | 1.379 | 6 | 0.217 | |
Tile_46 | HR1_sampled-HR2_sampled | 0.014 | 0.006 | 0.002 | 0.009 | 0.020 | 6.760 | 6 | 0.001 |
HR1_sampled-Auto_sampled | −0.001 | 0.004 | 0.001 | −0.005 | 0.003 | −0.677 | 6 | 0.524 | |
HR2_sampled-Auto_sampled | −0.015 | 0.004 | 0.001 | −0.019 | −0.012 | −10.348 | 6 | 0.000 |
Sampling Site | Sampling Material | Time-Weighted Average DPR (mg/L) | Flow-Weighted Average DPR (mg/L) |
---|---|---|---|
Tile 4 | HR1 | 0.0111 (0.0002) | 0.0163 (0.0005) |
HR2 | 0.0116 (0.0002) | 0.0198 (0.0003) | |
Tile 7 | HR1 | 0.0061 (0.0000) | 0.0071 (0.0000) |
HR2 | 0.0059 (0.0000) | 0.0078 (0.0003) | |
Tile 46 | HR1 | 0.0127 (0.0008) | 0.0155 (0.0004) |
HR2 | 0.0127 (0.0001) | 0.0166 (0.0003) |
Sampling Site | Sampling Material | Sampling Period (Shown as the Initial Date) | Total P Load (g) | Average P Load (g/day) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12-Mar | 15-Mar | 19-Mar | 22-Mar | 26-Mar | 29-Mar | 2-Apr | 5-Apr | 9-Apr | 12-Apr | 16-Apr | 19-Apr | ||||
Tile 4 | HR1 | 1.7 (0.18) | 1.95 (0.23) | 12.49 (1.02) | 1.29 (0.09) | 2.11 (0.03) | 1.28 (0.13) | 0.29 (0.04) | 0.4 (0.02) | 0.14 (0.02) | 0.17 (0.02) | 0.13 (0.02) | 0.19 (0.03) | 22.16 (0.61) | 0.53 (0.01) |
HR2 | 1.49 (0.19) | 1.95 (0.17) | 17.42 (0.72) | 1.26 (0.05) | 2.54 (0.28) | 0.96 (0.02) | 0.3 (0.03) | 0.35 (0.09) | 0.13 (0.04) | 0.15 (0.05) | 0.13 (0.01) | 0.23 (0.01) | 26.89 (0.46) | 0.64 (0.01) | |
Tile 7 | HR1 | 0.69 (0.11) | 0.99 (0.10) | 3.36 (0.20) | 0.58 (0.11) | 0.68 (0.08) | 0.58 (0.04) | 0.13 (0.02) | 0.15 (0.02) | 0.07 (0.01) | 0.08 (0.01) | 0.08 (0.01) | 0.11 (0.01) | 7.51 (0.01) | 0.18 (0.00) |
HR2 | 0.71 (0.02) | 0.73 (0.27) | 4.49 (0.17) | 0.53 (0.05) | 0.65 (0.21) | 0.55 (0.06) | 0.12 (0.01) | 0.13 (0.03) | 0.06 (0.00) | 0.06 (0.01) | 0.08 (0.02) | 0.11 (0.01) | 8.22 (0.35) | 0.20 (0.01) | |
Tile 46 | HR1 | 1.47 (0.12) | 1.72 (0.18) | 7.91 (0.83) | 1.19 (0.06) | 1.39 (0.09) | 1.23 (0.04) | 0.32 (0.04) | 0.37 (0.04) | 0.17 (0.03) | 0.16 (0.00) | 0.11 (0.02) | 0.16 (0.03) | 16.2 (0.45) | 0.39 (0.01) |
HR2 | 1.3 (0.05) | 1.77 (0.08) | 9.44 (0.31) | 0.87 (0.05) | 1.47 (0.20) | 1.17 (0.20) | 0.32 (0.03) | 0.36 (0.02) | 0.2 (0.01) | 0.17 (0.04) | 0.13 (0.01) | 0.13 (0.02) | 17.33 (0.35) | 0.41 (0.01) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Chu, M.L.; Gentry, L.; Li, Y.; Mitchell, C.; Arai, Y. Passive Detection of Phosphorus in Agricultural Tile Waters Using Reactive Hybrid Anion Exchange Resins. Water 2020, 12, 2808. https://doi.org/10.3390/w12102808
Li Z, Chu ML, Gentry L, Li Y, Mitchell C, Arai Y. Passive Detection of Phosphorus in Agricultural Tile Waters Using Reactive Hybrid Anion Exchange Resins. Water. 2020; 12(10):2808. https://doi.org/10.3390/w12102808
Chicago/Turabian StyleLi, Zhe, Maria Librada Chu, Lowell Gentry, Ying Li, Corey Mitchell, and Yuji Arai. 2020. "Passive Detection of Phosphorus in Agricultural Tile Waters Using Reactive Hybrid Anion Exchange Resins" Water 12, no. 10: 2808. https://doi.org/10.3390/w12102808
APA StyleLi, Z., Chu, M. L., Gentry, L., Li, Y., Mitchell, C., & Arai, Y. (2020). Passive Detection of Phosphorus in Agricultural Tile Waters Using Reactive Hybrid Anion Exchange Resins. Water, 12(10), 2808. https://doi.org/10.3390/w12102808