Assessment of Surface Hydrological Connectivity in an Ungauged Multi-Lake System with a Combined Approach Using Geostatistics and Spaceborne SAR Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. SAR Data Collection
2.2.2. SAR Data Processing and Wet and Dry Binary State Data Generation
2.2.3. Geostatistical Connectivity Function
2.2.4. Connection Frequency Analysis
2.2.5. Statistical Analysis
3. Results
3.1. Changes in the GCF
3.1.1. Changes in the GCF in the W–E Direction
3.1.2. Changes in the GCF in the N–S Direction
3.1.3. Changes in the GCF in the NW–SE Direction
3.1.4. Changes in the GCF in the NE–SW Direction
3.2. Spatial-Temporal Distribution and Connection Process of the Main Connectomes
3.3. Variations in SWE of the Main Connectomes
3.4. Connection Frequency of the Main Connectomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ward, J.V. The four-dimensional nature of lotic ecosystems. J. N. Am. Benthol. Soc. 1989, 8, 2–8. [Google Scholar] [CrossRef]
- Bracken, L.J.; Croke, J. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrol. Process. 2007, 21, 1749–1763. [Google Scholar] [CrossRef]
- Fritz, K.M.; Schofield, K.A.; Alexander, L.C.; Mcmanus, M.G.; Golden, H.E.; Lane, C.R.; Kepner, W.G.; Leduc, S.D.; Demeester, J.E.; Pollard, A.I. Physical and chemical connectivity of streams and riparian wetlands to downstream waters: A synthesis. J. Am. Water Resour. Assoc. 2018, 54, 323–345. [Google Scholar] [PubMed]
- Pringle, C. What is hydrologic connectivity and why is it ecologically important? Hydrol. Process. 2003, 17, 2685–2689. [Google Scholar] [CrossRef]
- Saco, P.M.; Rodríguez, J.F.; Moreno-de las Heras, M.; Keesstra, S.; Azadi, S.; Sandi, S.; Baartman, J.; Rodrigo-Comino, J.; Rossi, M.J. Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena 2020, 186, 104354. [Google Scholar] [CrossRef]
- Leibowitz, S.G.; Wigington, P.J., Jr.; Schofield, K.A.; Alexander, L.C.; Vanderhoof, M.K.; Golden, H.E. Connectivity of streams and wetlands to downstream waters: An integrated systems framework. J. Am. Water Resour. Assoc. 2018, 54, 298–322. [Google Scholar] [PubMed]
- Leibowitz, S.G.; Mushet, D.M.; Newton, W.E. Intermittent surface water connectivity: Fill and spill vs. Fill and merge dynamics. Wetlands 2016, 36, S323–S342. [Google Scholar] [CrossRef]
- McDonough, O.T.; Lang, M.W.; Hosen, J.D.; Palmer, M.A. Surface hydrologic connectivity between Delmarva Bay wetlands and nearby streams along a gradient of agricultural alteration. Wetlands 2015, 35, 41–53. [Google Scholar] [CrossRef]
- Epting, S.M.; Hosen, J.D.; Alexander, L.C.; Lang, M.W.; Armstrong, A.W.; Palmer, M.A. Landscape metrics as predictors of hydrologic connectivity between coastal plain forested wetlands and streams. Hydrol. Process. 2018, 32, 516–532. [Google Scholar] [CrossRef] [Green Version]
- Vanderhoof, M.K.; Distler, H.E.; Lang, M.W.; Alexander, L.C. The influence of data characteristics on detecting wetland/stream surface-water connections in the Delmarva Peninsula, Maryland and Delaware. Wetl. Ecol. Manag. 2018, 26, 63–86. [Google Scholar] [CrossRef]
- Weiler, M.; McDonnell, J. Virtual experiments: A new approach for improving process conceptualization in hillslope hydrology. J. Hydrol. 2004, 285, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Evenson, G.R.; Golden, H.E.; Lane, C.R.; McLaughlin, D.L.; D’Amico, E. Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions. Ecol. Appl. 2018, 28, 953–966. [Google Scholar] [CrossRef] [PubMed]
- Higgisson, W.; Higgisson, B.; Powell, M.; Driver, P.; Dyer, F. Impacts of water resource development on hydrological connectivity of different floodplain habitats in a highly variable system. River Res. Appl. 2020, 36, 542–552. [Google Scholar] [CrossRef]
- Golden, H.E.; Lane, C.R.; Amatya, D.M.; Bandilla, K.W.; Kiperwas, H.R.; Knightes, C.D.; Ssegane, H. Hydrologic connectivity between geographically isolated wetlands and surface water systems: A review of select modeling methods. Environ. Model. Softw. 2014, 53, 190–206. [Google Scholar] [CrossRef]
- Jones, C.N.; Ameli, A.; Neff, B.P.; Evenson, G.R.; McLaughlin, D.L.; Golden, H.E.; Lane, C.R. Modeling connectivity of non-floodplain wetlands: Insights, approaches, and recommendations. JAWRA J. Am. Water Resour. Assoc. 2019, 55, 559–577. [Google Scholar] [CrossRef]
- Beven, K. A manifesto for the equifinality thesis. J. Hydrol. 2006, 320, 18–36. [Google Scholar] [CrossRef] [Green Version]
- Golden, H.E.; Creed, I.F.; Ali, G.; Basu, N.B.; Neff, B.P.; Rains, M.C.; McLaughlin, D.L.; Alexander, L.C.; Ameli, A.A.; Christensen, J.R.; et al. Integrating geographically isolated wetlands into land management decisions. Front. Ecol. Environ. 2017, 15, 319–327. [Google Scholar] [CrossRef]
- Vanderhoof, M.K.; Alexander, L.C. The role of lake expansion in altering the wetland landscape of the Prairie Pothole Region, United States. Wetlands 2016, 36, S309–S321. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.; Wang, X.; Chen, B.; Liu, X.; Zhang, Q. Surface water connectivity of seasonal isolated lakes in a dynamic lake-floodplain system. J. Hydrol. 2019, 579, 124154. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Li, Y.; Tan, Z.; Werner, A.D. Satellite image-based investigation of the seasonal variations in the hydrological connectivity of a large floodplain (Poyang Lake, China). J. Hydrol. 2020, 585, 124810. [Google Scholar] [CrossRef]
- Huang, S.; Young, C.; Feng, M.; Heidemann, K.; Cushing, M.; Mushet, D.M.; Liu, S. Demonstration of a conceptual model for using LiDAR to improve the estimation of floodwater mitigation potential of Prairie Pothole Region wetlands. J. Hydrol. 2011, 405, 417–426. [Google Scholar] [CrossRef] [Green Version]
- White, D.C.; Lewis, M.M. A new approach to monitoring spatial distribution and dynamics of wetlands and associated flows of Australian Great Artesian Basin springs using QuickBird satellite imagery. J. Hydrol. 2011, 408, 140–152. [Google Scholar] [CrossRef] [Green Version]
- Whiteside, T.G.; Bartolo, R.E. Use of WorldView-2 time series to establish a wetland monitoring program for potential offsite impacts of mine site rehabilitation. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 24–37. [Google Scholar] [CrossRef]
- Kim, J.-W.; Lu, Z.; Jones, J.W.; Shum, C.K.; Lee, H.; Jia, Y. Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter. Remote Sens. Environ. 2014, 150, 66–81. [Google Scholar] [CrossRef]
- Siles, G.; Trudel, M.; Peters, D.L.; Leconte, R. Hydrological monitoring of high-latitude shallow water bodies from high-resolution space-borne D-InSAR. Remote Sens. Environ. 2020, 236, 111444. [Google Scholar] [CrossRef]
- Jaramillo, F.; Brown, I.; Castellazzi, P.; Espinosa, L.; Guittard, A.; Hong, S.H.; Rivera-Monroy, V.H.; Wdowinski, S. Assessment of hydrologic connectivity in an ungauged wetland with InSAR observations. Environ. Res. Lett. 2018, 13, 024003. [Google Scholar] [CrossRef]
- Schlaffer, S.; Chini, M.; Pöppl, R.; Hostache, R.; Matgen, P. Monitoring of Inundation Dynamics in the North-American Prairie Pothole Region Using Sentinel-1 Time Series. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Piscataway Township, NJ, USA, 2018; pp. 6588–6591. [Google Scholar]
- Chen, Y.; Qiao, S.; Zhang, G.; Xu, Y.J.; Chen, L.; Wu, L. Investigating the potential use of Sentinel-1 data for monitoring wetland water level changes in China’S Momoge National Nature Reserve. PeerJ 2020, 8, e8616. [Google Scholar] [CrossRef]
- Trigg, M.A.; Michaelides, K.; Neal, J.C.; Bates, P.D. Surface water connectivity dynamics of a large scale extreme flood. J. Hydrol. 2013, 505, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Q.; Liu, X.; Tan, Z.; Yao, J. The role of a seasonal lake groups in the complex Poyang Lake-floodplain system (China): Insights into hydrological behaviors. J. Hydrol. 2019, 578, 124055. [Google Scholar] [CrossRef]
- Jiang, H.; He, C.; Luo, W.; Yang, H.; Sheng, L.; Bian, H.; Zou, C. Hydrological restoration and water resource management of Siberian Crane (Grus leucogeranus) stopover wetlands. Water 2018, 10, 1714. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Xu, M.; Sun, X.; Dong, L. Water Management Plan for the Momoge National Nature Reserve, China; The Drawing Times Press: Macao, China, 2009. (In Chinese) [Google Scholar]
- Kittler, J.; Illingworth, J. Minimum error thresholding. Pattern Recognit. 1986, 19, 41–47. [Google Scholar] [CrossRef]
- Journel, A.G.; Kyriakidis, P.C.; Mao, S. Correcting the smoothing effect of estimators: A spectral postprocessor. Math. Geol. 2000, 32, 787–813. [Google Scholar] [CrossRef]
Year | May | June | July | August | September | October | Total |
---|---|---|---|---|---|---|---|
2015 | 1 | 3 | 1 | 2 | 1 | 1 | 9 |
2016 | 1 | 1 | 1 | 2 | 2 | 0 | 7 |
2017 | 2 | 2 | 2 | 2 | 3 | 1 | 12 |
2018 | 2 | 3 | 2 | 4 | 2 | 2 | 15 |
2019 | 2 | 2 | 3 | 1 | 0 | 1 | 9 |
Total | 8 | 11 | 9 | 11 | 8 | 5 | 52 |
Month | Monthly Mean Connection Frequency (%) |
---|---|
May | 1.2 ± 5.5 B |
June | 2.6 ± 5.1 B |
July | 28.0 ± 31.0 AB |
August | 32.5 ± 29.1 A |
September | 30.4 ± 34.8 AB |
October | 13.3 ± 25.6 AB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wu, L.; Zhang, G.; Xu, Y.J.; Tan, Z.; Qiao, S. Assessment of Surface Hydrological Connectivity in an Ungauged Multi-Lake System with a Combined Approach Using Geostatistics and Spaceborne SAR Observations. Water 2020, 12, 2780. https://doi.org/10.3390/w12102780
Chen Y, Wu L, Zhang G, Xu YJ, Tan Z, Qiao S. Assessment of Surface Hydrological Connectivity in an Ungauged Multi-Lake System with a Combined Approach Using Geostatistics and Spaceborne SAR Observations. Water. 2020; 12(10):2780. https://doi.org/10.3390/w12102780
Chicago/Turabian StyleChen, Yueqing, Lili Wu, Guangxin Zhang, Y. Jun Xu, Zhiqiang Tan, and Sijia Qiao. 2020. "Assessment of Surface Hydrological Connectivity in an Ungauged Multi-Lake System with a Combined Approach Using Geostatistics and Spaceborne SAR Observations" Water 12, no. 10: 2780. https://doi.org/10.3390/w12102780
APA StyleChen, Y., Wu, L., Zhang, G., Xu, Y. J., Tan, Z., & Qiao, S. (2020). Assessment of Surface Hydrological Connectivity in an Ungauged Multi-Lake System with a Combined Approach Using Geostatistics and Spaceborne SAR Observations. Water, 12(10), 2780. https://doi.org/10.3390/w12102780