Smart Water Management towards Future Water Sustainable Networks
Abstract
:1. Introduction
1.1. Overview of the Water Sector
1.2. Smart Water Management
2. Materials and Methods
2.1. Brief Description of Case Study
2.2. Parameters Definition in RS
2.3. Methodology to Develop CMC
- Analysis of the evolution of the consumption results: this analysis should be done in both systems (RS and CMC). On the one hand, the study related to RS should be developed. To do so, the knowledge of the number of customers, the BW, the current level of NRW, as well as the investment in water losses control, is necessary to know. This information is given by the water company. On the other hand, for CMC, the same information is also necessary.
- Determination of indicators: the second stage of the methodology consists of an analysis of the performance indicators, which will be used as variables in the CMC. For RS, the selected indicators were: growth rate of the number of customers per year, evolution of the water demand by the users; investment of the water company to reduce the water losses and to control the NRW. In contrast, the CMC should establish the deadline to reach the aim, as well as the limit of NRW. In the proposed case study, the deadline was 2025, and the objective value for NRW was 10%.
- Estimation of the necessary investment plan until the deadline: defined the consumption results of the water systems (input data) as well as the determination of the indicators and the defined objective for NRW, a correlation model, and the determination of the annual investment is necessary to develop. The investment plan is focused on the water losses control as well as reducing the unbilled water.
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sachidananda, M.; Patrick Webb, D.; Rahimifard, S. A concept of water usage efficiency to support water reduction in manufacturing industry. Sustainability 2016, 8, 1222. [Google Scholar] [CrossRef] [Green Version]
- Boyle, T.; Giurco, D.; Mukheibir, P.; Liu, A.; Moy, C.; White, S.; Stewart, R. Intelligent metering for urban water: A review. Water 2013, 5, 1052–1081. [Google Scholar] [CrossRef] [Green Version]
- Baptista, J.; Pires, J.; Alves, D.; Marques, S.; Aleixo, C.; Andrade, I.; Ramos, L. Relatório Anual do Sector de Águas e Resíduos em Portugal; ERSAR–Entidade Reguladora dos Serviços de Águas e Resíduos: Lisbon, Portugal, 2016; Volume 1, 186p. [Google Scholar]
- Ritzema, H.; Kirkpatrick, H.; Stibinger, J.; Heinhuis, H.; Belting, H.; Schrijver, R.; Diemont, H. Water management supporting the delivery of ecosystem services for grassland, heath and moorland. Sustainability 2016, 8, 440. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Sánchez, M.; Sánchez-Romero, F.J.; López-Jiménez, P.A. Nexo agua-energía: Optimización energética en sistemas de distribución. Aplicación “Postrasvase Júcar-Vinalopó”, España. Tecnología y Ciencias del Agua 2017, 8, 19–36. [Google Scholar] [CrossRef]
- Tadokoro, H.; Onishi, M.; Kageyama, K.; Kurisu, H.; Takahashi, S. Smart water management and usage systems for society and environment. Hitachi Rev. 2011, 60, 164–171. [Google Scholar]
- Howell, S.; Rezgui, Y.; Beach, T. Integrating building and urban semantics to empower smart water solutions. Autom. Constr. 2017, 81, 434–448. [Google Scholar] [CrossRef]
- Mounce, S.R.; Pedraza, C.; Jackson, T.; Linford, P.; Boxall, J.B. Cloud based machine learning approaches for leakage assessment and management in smart water networks. Procedia Eng. 2015, 119, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, P.; Giordano, S.; Farouh, H.; Yousef, W. Modelling the smart city performance. Innov. Eur. J. Soc. Sci. Res. 2012, 25, 137–149. [Google Scholar] [CrossRef]
- Colldahl, C.; Frey, S.; Kelemen, J. Smart Cities: Strategic Sustainable Development for an Urban World. Sweden: School of Engineering, Blekinge Institute of Technology. 2013. Available online: https://www.diva-portal.org/smash/get/diva2:832150/FULLTEXT01.pdf (accessed on 18 July 2017).
- Giffinger, R.; Fertner, C.; Kramar, H.; Kalasek, R.; Pichler-Milanović, N.; Meijers, E. Smart Cities: Ranking of European Medium-Sized. Vienna, Austria: Centre of Regional Science (SRF), Vienna University of Technology. 2007. Available online: http://www.smart-cities.eu/download/smart_cities_final_report.pdf (accessed on 16 July 2017).
- Nam, T.; Pardo, T.A. Conceptualizing smart city with dimensions of technology, people, and institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, New York, NY, USA, 12–15 June 2011; pp. 282–291. [Google Scholar]
- Hellström, D.; Jeppsson, U.; Kärrman, E. A framework for systems analysis of sustainable urban water management. Environ. Impact Assess. Rev. 2000, 20, 311–321. [Google Scholar] [CrossRef]
- Martyusheva, O. Smart Water Grid. USA: Department of Civil and Environmental Engineering, Colorado State University. 2014. Available online: http://www.engr.colostate.edu/~pierre/ce_old/Projects/Rising%20Stars%20Website/Martyusheva,Olga_PlanB_TechnicalReport.pdf (accessed on 1 August 2017).
- Lin, Y.F.; Liu, C.; Whisler, J. Smart pipe—nanosensors for monitoring water quantity and quality in public water systems. In World Environmental and Water Resources Congress 2009: Great Rivers; Steve Starrett; ASCE: Reston, VA, USA, 2009; pp. 1–8. [Google Scholar]
- Alliance for Water Efficiency. Smart Metering Introduction. Obtained on 12 August 2015, from Alliance for Water Efficiency. 2010. Available online: http://www.allianceforwaterefficiency.org/smart-meter-introduction.aspx (accessed on 30 July 2017).
- Ntuli, N.; Abu-Mahfouz, A. A simple security architecture for smart water management system. Procedia Comput. Sci. 2016, 83, 1164–1169. [Google Scholar] [CrossRef] [Green Version]
- Britton, T.C.; Stewart, R.A.; O’Halloran, K.R. Smart metering: Enabler for rapid and effective post meter leakage identification and water loss management. J. Clean. Prod. 2013, 54, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Sharvelle, S.; Dozier, A.; Arabi, M.; Reichel, B. A geospatially-enabled web tool for urban water demand forecasting and assessment of alternative urban water management strategies. Environ. Model. Softw. 2017, 97, 213–228. [Google Scholar] [CrossRef]
- Furht, B.; Escalante, A. Handbook of Cloud Computing; Springer: New York, NY, USA, 2010. [Google Scholar]
- EPA. Distribution System Water Quality Monitoring: Sensor Technology Evaluation Methodology and Results.A Guide for Sensor Manufacturers and Water Utilities. Ohio: EPA–Environmental Protection Agency. 2009. Available online: https://www.epa.gov/sites/production/files/2015-06/documents/distribution_system_water_quality_monitoring_sensor_technology_evaluation_methodology_results.pdf (accessed on 11 August 2017).
- Boyer, S. SCADA: Supervisory Control and Data Acquision. USA: ISA–The Instrumentation, Systemas and Automation Society. 2004. Available online: https://www.fer.unizg.hr/_download/repository/SCADA-Supervisory_And_Data_Acquisition.pdf (accessed on 20 July 2017).
- Airaksinen, M.; Pinto-Seppa, I.; Piira, K.; Ahvenniemi, H.; Huovila, A. Real-Time decision support systems for city management. In Smart City–Research Highlights; Airaksinen, M., Kokkala, M., Eds.; VTT Technical Research Centre of Finland Ltd.: Espoo, Finland, 2015; pp. 21–38. Available online: http://www.vtt.fi/inf/pdf/researchhighlights/2015/R12.pdf (accessed on 24 July 2017).
- Boulos, P.; Wiley, A. Can we make water systems smarter? Opflow. 2013. Available online: http://innovyze.com/news/showcases/SmartWaterNetworks.pdf (accessed on 19 July 2017).
- Gurung, T.R.; Stewart, R.A.; Beal, C.D.; Sharma, A.K. Smart meter enabled water end-use demand data: Platform for the enhanced infrastructure planning of contemporary urban water supply networks. J. Clean. Prod. 2015, 87, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Romano, M.; Kapelan, Z. Adaptive water demand forecasting for near real-time management of smart water distribution systems. Environ. Model. Softw. 2014, 60, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Rossman, L.A. EPANET 2 User’s Manual; U.S. Environmental Protection Agency (EPA): Cincinnati, OH, USA, 2000.
- Nazari, A.; Meisami, H. 2008 Instructing WaterGEMS Software Usage; Water Online: Exton, PA, USA, 2008. [Google Scholar]
- Samora, I.; Franca, M.; Schleiss, A.; Ramos, H. Simulated annealing in optimization of energy production in a water supply network. Water Resour. Manag. 2016, 30, 1533–1547. [Google Scholar] [CrossRef]
- Sanchis, R.; Díaz-Madroñero, M.; López-Jiménez, P.A.; Pérez-Sánchez, M. Solution approaches for the management of the water resources in irrigation water systems with fuzzy costs. Water 2019, 12, 2432. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.A.; Jiménez-Bello, M.A.; Alzamora, F.M. Real-Time energy optimization of irrigation scheduling by parallel multi-objective genetic algorithms. Agric. Water Manag. 2020, 227, 105857. [Google Scholar] [CrossRef]
- Sardinha, J.; Serranito, F.; Donnelly, A.; Marmelo, V.; Saraiva, P.; Dias, N.; Rocha, V. Controlo Ativo de Perdas de Água. Lisboa: EPAL–Empresa Portuguesa das Águas Livres. 2015. Available online: http://www.epal.pt/EPAL/docs/default-source/epal/publica%C3%A7%C3%B5es-t%C3%A9cnicas/controlo-ativo-de-perdas-de-%C3%A1gua.pdf?sfvrsn=30 (accessed on 31 July 2017).
- Ndirangu, N.; Chege, A.; de Blois, R.J.; Mels, A. Local solutions in non-revenue water management through north-south water operator partnerships: The case of Nakuru. Water Policy 2013, 15, 137–164. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Cohen, P. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Mahwah, NJ, USA, 2014. [Google Scholar]
- Romero, L.; Pérez-Sánchez, M.; Amparo López-Jiménez, P. Improvement of sustainability indicators when traditional water management changes: A case study in Alicante (Spain). AIMS Environ. Sci. 2017, 4, 502–522. [Google Scholar] [CrossRef]
- Spadaro, J.V.; Langlois, L.; Hamilton, B. Greenhouse Gas Emissions of Electricity Generation Chains: Assessing the Difference. IAEA Bull. 2000, 42, 19–28. [Google Scholar]
Regression Type | Increase of Customer Number | Increase of Bill Water | Unbilled Water Investment per Customer |
---|---|---|---|
Linear | 0.25 | 0.01 | 0.03 |
Logaritmich | 0.33 | 0.02 | 0.14 |
Second Degree Polynomial | 0.46 | 0.24 | 0.23 |
Third Degree Polynomial | 0.61 | 45 | 0.34 |
Main Features | CMC | RS | |||
---|---|---|---|---|---|
2016 | 2025 | 2004 | 2014 | ||
Total Annual Volume | (Mm3) | 20.82 | 17.3 | 127.0 | 101.12 |
BW | (Mm3) | 16.94 | 15.5 | 96.6 | 92.94 |
NRW | (Mm3) | 3.87 | 1.7 | 30.4 | 8.18 |
(%) | 18.6 | 10.0 | 23.9 | 8.1 | |
Total Customers | - | 150,812 | 155,293 | 339,111 | 349,151 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, H.M.; McNabola, A.; López-Jiménez, P.A.; Pérez-Sánchez, M. Smart Water Management towards Future Water Sustainable Networks. Water 2020, 12, 58. https://doi.org/10.3390/w12010058
Ramos HM, McNabola A, López-Jiménez PA, Pérez-Sánchez M. Smart Water Management towards Future Water Sustainable Networks. Water. 2020; 12(1):58. https://doi.org/10.3390/w12010058
Chicago/Turabian StyleRamos, Helena M., Aonghus McNabola, P. Amparo López-Jiménez, and Modesto Pérez-Sánchez. 2020. "Smart Water Management towards Future Water Sustainable Networks" Water 12, no. 1: 58. https://doi.org/10.3390/w12010058