Nitrogen Retention Effects under Reservoir Regulation at Multiple Time Scales in a Subtropical River Basin
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Coupled Modeling System
2.3. Nitrogen Retention Calculation and Influential Factor Analysis
3. Results
3.1. Nitrogen Retention Effect at Multiple Time Scales
3.1.1. Annual Retention Effect
3.1.2. Monthly Retention Effect on Nitrogen Concentration
3.1.3. Daily Retention Effect
3.2. Influential Factors Affecting Nitrogen Retention at Multiple Time Scales
4. Discussion
4.1. Comparison of Different Forms of Nitrogen Retention Effects
4.2. Influence of Reservoir Regulation on Nitrogen Retention
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kelly, V.J. Influence of reservoirs on solute transport: A regional scale approach. Hydrol. Process. 2001, 15, 1227–1249. [Google Scholar] [CrossRef]
- Klaver, G.; van Os, B.; Negrel, P.; Petelet-Giraud, E. Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube. Environ. Pollut. 2007, 148, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.L.; Kalff, J. Nitrogen retention in wetlands, lakes and reservoirs. Hydrobiologia 2001, 443, 205–212. [Google Scholar] [CrossRef]
- Syvitskl, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Gree, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- López-Tarazón, J.A.; López, P.; Lobera, G.; Batalla, R.J. Suspended sediment, carbon and nitrogen transport in a regulated Pyrenean river. Sci. Total Environ. 2016, 540, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Romero, E.; Garnier, J.; Billen, G.; Peters, F.; Lassaletta, L. Water management practices exacerbate nitrogen retention in Mediterranean catchments. Sci. Total Environ. 2016, 573, 420–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ounissi, M.; Bouchareb, N. Nutrient distribution and fluxes from three Mediterranean coastal rivers (NE Algeria) under large damming. C. R. Geosci. 2013, 345, 81–92. [Google Scholar] [CrossRef]
- Greg, A.S.; William, G.C.; Keith, E.S. Nitrate loss in Saylorville Lake reservoir in Iowa. J. Hydrol. 2014, 513, 1–6. [Google Scholar]
- Ne’mery, J.; Gratiot, N.; Doan, P.T.K.; Duvert, C.; Alvarado-Villanueva, R.; Duwig, C. Carbon, nitrogen, phosphorus, and sediment sources and retention in a small eutrophic. Aquat. Sci. 2016, 78, 171–189. [Google Scholar] [CrossRef]
- Burford, M.A.; Green, S.A.; Cook, A.J.; Johnson, S.A.; Kerr, J.G.; O’Brien, K.R. Sources and fate of nutrients in a subtropical reservoir. Aquat. Sci. 2012, 74, 179–190. [Google Scholar] [CrossRef]
- Dillon, P.J.; Molot, L.A. The role of ammonium and nitrate retention in the acidification of lakes and forested catchments. Biogeochemistry 1990, 11, 23–43. [Google Scholar] [CrossRef]
- Cunha, D.G.; do Carmo Calijuri, M.; Dodds, W.K. Trends in nutrient and sediment retention in Great Plains reservoirs (USA). Environ. Monit. Assess. 2014, 186, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.A.; Maranger, R.J.; Alexander, R.B.; Giblin, A.E.; Jacinthe, P.A.; Mayorga, E.; Seitzinger, S.P.; Sobota, D.J.; Wollheim, W.M. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 2009, 93, 143–157. [Google Scholar] [CrossRef]
- Jackson, H.M.; Gibbins, C.N.; Soulsby, C. Role of discharge and temperature variation in determining invertebrate community structure in a regulated river. River Res. Appl. 2007, 23, 651–669. [Google Scholar] [CrossRef]
- Andradottir, H.O.; Rueda, F.J.; Armengol, J.; Marcé, R. Characterization of residence time variability in a managed monomictic reservoir. Water Resour. Res. 2012, 48, 299–307. [Google Scholar] [CrossRef]
- Chen, N.W.; Chen, Z.H.; Wu, Y.Q.; Hu, A.Y. Understanding gaseous nitrogen removal through direct measurement of dissolved N2 and N2O in a subtropical river-reservoir system. Ecol. Eng. 2014, 70, 56–67. [Google Scholar] [CrossRef]
- Zhao, G.; Gao, H.L.; Naz, B.S.; Kao, S.C.; Voisin, N. Integrating a reservoir regulation scheme into a spatially distributed hydrological model. Adv. Water Resour. 2016, 98, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Ganoulis, J.; Skoulikaris, C. Impact of climate change on hydropower generation and irrigation: A case study from Greece. NATO Sci. Peace Secur. Ser. C Environ. Secur. 2011, 3, 87–95. [Google Scholar]
- Cheng, F.; Zhang, H.M.; Zhang, G.L.; Liu, S.M.; Song, G.D.; Du, G.X. Distribution and emission of N2O in the largest river-reservoir system along the Yellow River. Sci. Total Environ. 2019, 666, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, P.F.; Wang, C.; Wang, X. Optimal reservoir operation using multi-objective evolutionary algorithms for potential estuarine eutrophication control. J. Environ. Manag. 2018, 223, 758–770. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.B.; Chen, X.W.; Yao, H.X.; Chen, Y. A coupled modeling approach to evaluate nitrogen retention within the Shanmei Reservoir watershed, China. Estuar. Coast. Shelf Sci. 2015, 166, 189–198. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gowdab, P.H.; Arnoldc, J.G.; Mulla, D.J.; Ale, S.; Steiner, J.L. Modeling the impact of nitrogen fertilizer application and tile drain configuration on nitrate leaching using SWAT. Agric. Water Manag. 2013, 130, 36–43. [Google Scholar] [CrossRef]
- Ullrich, A.; Volk, M. Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Agric. Water Manag. 2009, 96, 1207–1217. [Google Scholar] [CrossRef]
- Cole, T.M.; Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.6 User’s Manual; US Army Corps of Engineers: Washington, DC, USA, 2008; p. 715. [Google Scholar]
- Norton, G.E.; Bradford, A. Comparison of two stream temperature models and evaluation of potential management alternatives for the Speed River. Southern Ontario. J. Environ. Manag. 2009, 90, 866–878. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Cho, K.H.; Kang, J.H.; Lee, S.W.; Kim, J.H. Developing a flow control strategy to reduce nutrient load in a reclaimed multi-reservoir system using a 2D hydrodynamic and water quality model. Sci. Total Environ. 2014, 466, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Drake, C.W.; Jonesa, C.S.; Schillingb, K.E.; Arenas Amadoa, A.; Weber, L. Estimating nitrate-nitrogen retention in a large constructed wetland using high-frequency, continuous monitoring and hydrologic modeling. Ecol. Eng. 2018, 117, 69–83. [Google Scholar] [CrossRef]
- Castaldelli, G.; Aschonitis, V.; Vincenzi, F.; Fano, E.A.; Soana, E. The effect of water velocity on nitrate removal in vegetated waterways. J. Environ. Manag. 2018, 215, 230–238. [Google Scholar] [CrossRef]
- Koszelnik, P.; Tomaszek, J.A. Loading of the Rzeszów reservoir with biogenic elements-mass balance. Environ. Prot. Eng. 2002, 28, 99–106. [Google Scholar]
- Koszelnik, P.; Tomaszek, J.A.; Gruca-Rokosz, R. The significance of denitrification in relation to external loading and nitrogen retention in a mountain reservoir. Mar. Freshw. Res. 2007, 58, 818–826. [Google Scholar] [CrossRef]
- Natho, S.; Venohr, M.; Henle, K.; Schulz-Zunkel, C. Modelling nitrogen retention in floodplains with different degrees of degradation for three large rivers in Germany. J. Environ. Manag. 2013, 12, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Seitzinger, S.P. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 1988, 33, 702–724. [Google Scholar] [CrossRef]
- Morris, G.L.; Fan, J. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs and Watersheds for Sustainable Use; McGraw-Hill: New York, NY, USA, 1998; p. 805. [Google Scholar]
- Mulholland, P.J.; Helton, A.M.; Poole, G.C.; Hall, R.O.; Hamilton, S.K.; Peterson, B.J.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C.N. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 2008, 452, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Gardner, W.S.; Nalepa, T.F.; Malczyk, J.M. Nitrogen mineralization and denitrification in lake michigan sediments. Limnol. Oceanogr. 1987, 32, 1226–1238. [Google Scholar] [CrossRef]
- Burger, D.F.; Hamilton, D.P.; Pilditch, C.A. Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecol. Model. 2008, 21, 411–423. [Google Scholar] [CrossRef]
- Han, H.J.; Los, F.J.; Burger, D.F.; Lu, X.X. A modelling approach to determine systematic nitrogen transformations in a tropical reservoir. Ecol. Eng. 2016, 94, 37–49. [Google Scholar] [CrossRef]
- Knoll, L.B.; Vanni, M.J.; Renwick, W.H.; Kollie, S. Burial rates and stoichiometry of sedimentary carbon, nitrogen and phosphorus in Midwestern US reservoirs. Freshw. Biol. 2014, 59, 2342–2353. [Google Scholar] [CrossRef]
- Li, J.; Lin, J. Nutrient response modeling in falls of the Neuse Reservoir. Environ. Manag. 2011, 47, 398–409. [Google Scholar]
- Jansso onardson, L.; Fejes, J. Denitrification and nitrogen retention in a farmland stream in southern Sweden. Ambio 1994, 23, 326–331. [Google Scholar]
- David, M.B.; Wall, L.G.; Royer, T.V.; Tank, J.L. Denitrification and the nitrogen budget of a reservoir in an agricultural landscape. Ecol. Appl. 2006, 16, 2177–2190. [Google Scholar] [CrossRef]
- Janusz, A.T.; Piotr, K. A simple model of nitrogen retention in reservoirs. Hydrobiologia 2003, 504, 51–58. [Google Scholar]
- Howarth, R.; Billen, G.; Swaney, D. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the north Atlantic Ocean: Natural and human influences. Biogeochemistry 1996, 35, 75–139. [Google Scholar] [CrossRef]
- Fleischer, S.; Gustafson, A.; Joelsson, A.; Pansar, J.; Stibe, L. Nitrogen removal in created ponds. Ambio 1994, 23, 349–357. [Google Scholar]
- Carpenter, R.C.; Hackney, J.M.; Adey, W.H. Measurements of Primary Productivity and Nitrogenase Activity of Coral Reef Algae in a Chamber Incorporating Oscillatory Flow. Limnol. Oceanogr. 1991, 36, 40–49. [Google Scholar] [CrossRef]
- Carleton, J.N.; Mohamoud, Y.M. Effect of flow depth and velocity on nitrate loss rates in natural channels. J. Am. Water Res. Assoc. 2013, 49, 205–216. [Google Scholar] [CrossRef]
- Arnon, S.; Yanuka, K.; Nejidat, A. Impact of overlying water velocity on ammonium uptake by benthic biofilms. Hydrol. Process. 2013, 27, 570–578. [Google Scholar] [CrossRef]
- Soares, M.C.S.; Marinho, M.M.; Azevedo, S.M.O.F.; Branco, C.W.C.; Huszar, V.L.M. Eutrophication and retention time affecting spatial heterogeneity in a tropical Reservoir. Limnologica 2012, 42, 197–203. [Google Scholar] [CrossRef]
- Anjusha, A.; Jyothibabu, R.; Jagadeesan, L.; Savitha, K.M.M.; Albin, K.J. Seasonal ecological changes and water level variations in the Sélingué Reservoir (Mali, West Africa). Phys. Chem. Earth Parts A/B/C 2005, 30, 432–441. [Google Scholar]
- Schindler, D.W.; Hecky, R.E.; Findlay, D.L.; Stainton, M.P.; Parker, B.R.; Paterson, M.J.; Beaty, K.G.; Lyng, M.; Kasian, S.E.M. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 2008, 105, 11254–11258. [Google Scholar] [CrossRef] [Green Version]
Index | ENS | AME | RMSE | NOF | ||||
---|---|---|---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | Calibration | Validation | Calibration | Validation | |
Runoff (m3·s−1) | 0.88 | 0.87 | - | - | - | - | - | - |
Sediment (t) | 0.58 | 0.51 | - | - | - | - | - | - |
Water level (m) | - | - | 0.28 | 1.81 | 0.35 | 1.83 | 0.00 | 0.02 |
Water temperature (°C) | - | - | 0.93 | 1.87 | 1.09 | 2.36 | 0.05 | 0.10 |
DO (mg·L−1) | - | - | 0.73 | 1.03 | 0.89 | 1.07 | 0.11 | 0.11 |
NO3-N (mg·L−1) | - | - | 0.38 | 0.39 | 0.56 | 0.59 | 0.27 | 0.32 |
TN (mg·L−1) | - | - | 0.61 | 0.13 | 0.82 | 0.14 | 0.34 | 0.06 |
NH4-N (mg·L−1) | - | - | 0.03 | 0.03 | 0.04 | 0.04 | 0.59 | 0.35 |
Inflow | Regulated Discharge Difference | Residence Time | Velocity | Temperature | Water Level | |||
---|---|---|---|---|---|---|---|---|
Annual | TN | Nret | 0.539 * | 0.969 ** | 0.16 | −0.759 ** | −0.288 | 0.488 * |
RN | 0.450 * | 0.937 ** | 0.216 | −0.729 ** | −0.315 | 0.412 | ||
NO3-N | Nret | 0.517 * | 0.920 ** | 0.121 | −0.717 ** | −0.262 | 0.442 | |
RN | 0.501 * | 0.878 ** | 0.089 | −0.668 ** | −0.271 | 0.391 | ||
NH4-N | Nret | 0.397 | 0.677 ** | 0.116 | −0.559 * | −0.095 | 0.4 | |
RN | 0.192 | 0.749 ** | 0.413 | −0.654 ** | −0.163 | 0.333 | ||
Monthly | TN | Nret | 0.973 ** | 0.986 ** | −0.711 ** | −0.759 ** | 0.937 ** | 0.3 |
RN | 0.838 ** | 0.847 ** | −0.543 | −0.899 ** | 0.919 ** | 0.453 | ||
NO3-N | Nret | 0.942 ** | 0.946 ** | −0.764 ** | −0.811 ** | 0.950 ** | 0.257 | |
RN | 0.822 ** | 0.824 ** | −0.624 * | −0.920 ** | 0.925 ** | 0.358 | ||
NH4-N | Nret | 0.852 ** | 0.881 ** | −0.499 | −0.55 | 0.735 ** | 0.335 | |
RN | 0.325 | 0.343 | 0.178 | −0.443 | 0.308 | 0.425 | ||
Daily with dispatch | TN | Nret | 0.937 ** | 0.977 ** | −0.006 | −0.617 ** | 0.785 ** | 0.268 ** |
RN | 0.694 ** | 0.681 ** | 0.219 ** | −0.783 ** | 0.803 ** | 0.493 ** | ||
NO3-N | Nret | 0.921 ** | 0.939 ** | 0.005 | −0.673 ** | 0.823 ** | 0.268 ** | |
RN | 0.624 ** | 0.610 ** | 0.223 ** | −0.763 ** | 0.751 ** | 0.493 ** | ||
NH4-N | Nret | 0.741 ** | 0.792 ** | −0.113 * | −0.426 ** | 0.545 ** | 0.205 ** | |
RN | 0.206 ** | 0.240 ** | 0.167 ** | −0.315 ** | 0.183 ** | 0.686 ** | ||
Daily with non-dispatch | TN | Nret | 0.273 | 0.111 | 0.626 ** | −0.865 ** | 0.591 ** | 0.695 ** |
RN | 0.323 | −0.01 | 0.618 ** | −0.827 ** | 0.601 ** | 0.776 ** | ||
NO3-N | Nret | 0.154 | 0.283 | 0.23 | −0.628 ** | 0.468 * | 0.168 | |
RN | 0.263 | 0.189 | 0.461 * | −0.810 ** | 0.572 ** | 0.498 * | ||
NH4-N | Nret | 0.057 | −0.104 | 0.252 | −0.031 | 0.096 | 0.406 | |
RN | 0.046 | −0.119 | 0.665 ** | −0.465 * | 0.144 | 0.808 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Chen, X.; Chen, Y.; Gao, L.; Deng, H. Nitrogen Retention Effects under Reservoir Regulation at Multiple Time Scales in a Subtropical River Basin. Water 2019, 11, 1685. https://doi.org/10.3390/w11081685
Liu M, Chen X, Chen Y, Gao L, Deng H. Nitrogen Retention Effects under Reservoir Regulation at Multiple Time Scales in a Subtropical River Basin. Water. 2019; 11(8):1685. https://doi.org/10.3390/w11081685
Chicago/Turabian StyleLiu, Meibing, Xingwei Chen, Ying Chen, Lu Gao, and Haijun Deng. 2019. "Nitrogen Retention Effects under Reservoir Regulation at Multiple Time Scales in a Subtropical River Basin" Water 11, no. 8: 1685. https://doi.org/10.3390/w11081685
APA StyleLiu, M., Chen, X., Chen, Y., Gao, L., & Deng, H. (2019). Nitrogen Retention Effects under Reservoir Regulation at Multiple Time Scales in a Subtropical River Basin. Water, 11(8), 1685. https://doi.org/10.3390/w11081685