# Low-End Probabilistic Sea-Level Projections

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Data

#### 2.1. Sterodynamic Sea-Level Changes

#### 2.2. Mountain Glaciers

#### 2.3. Greenland

#### 2.4. Antarctica

#### 2.5. Land Water

#### 2.6. Summary of Inputs

## 3. Methods

#### 3.1. Integration: From Sea-Level Contributions to Global and Regional Sea-Level Scenarios

#### 3.2. Probabilistic Distributions for Individual Components to Sea-Level Rise

#### 3.3. Computational Approach and Statistical Dependencies

## 4. Results

#### 4.1. Global Probabilistic Sea-Level Projections

#### 4.2. Regional Sea-Level Projections

## 5. Discussion and Conclusions

- (1)
- (2)
- For Antarctica, we relied on a study that probably underestimated the impact of ocean warming on the Antarctic marine ice-sheet melting, according to its own assessment [7];
- (3)
- For the sterodynamic sea-level changes, we removed AOGCMs giving high thermal expansion values; in the regional AR5 assessment, these outliers increased the mean and uncertainties of the thermal expansion.
- (4)
- We relied on modelling outcomes only, and ignored the procedure consisting of multiplying the standard deviation of model outcomes by 1.64 applied in the AR5; we argue that this procedure artificially extends the lower tail of the distribution of future sea-level rise, whereas AOGCMs have been essentially criticized so far for minimizing future sea-level changes.
- (5)
- We assumed full dependency among the sterodynamic, Mountain Glaciers, and Greenland melting components, which slightly shifts the lower tail of the probability distribution to the right compared to partial dependency schemes;
- (6)
- We did not find physical arguments supporting probabilistic projections below our projections in the published literature.

## Supplementary Materials

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Sterodynamic Sea-Level Changes (2099, with Respect to 1986–2005)

**Figure A1.**Sterodynamic sea-level changes (in m, for 2099 with respect to 1986–2005) for each climate model used in this study, their mean and standard deviation, for RCP2.6.

**Figure A2.**Sterodynamic sea-level changes (in m, for 2099 with respect to 1986–2005) for each climate model used in this study, their mean and standard deviation, for RCP4.5 and 2099.

**Figure A3.**Mean and standard deviation of sterodynamic sea-level changes (in m, for 2099 with respect to 1986–2005) for RCP2.6, RCP4.5 and RCP8.5 by 2099.

## Appendix B. Regional 5th and 95th Percentiles of the Regional Low-End Sea-Level Projections

**Figure A4.**Low-end regional sea-level projections in 2100 for three RCP scenarios with respect to 1985–2006 (5th and 95th percentiles; unit: m).

## References

- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Cazenave, A.; Llovel, W. Contemporary Sea Level Rise. Annu. Rev. Mar. Sci.
**2010**, 2, 145–173. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Stammer, D.; Cazenave, A.; Ponte, R.M.; Tamisiea, M.E. Causes for Contemporary Regional Sea Level Changes. Annu. Rev. Mar. Sci.
**2013**, 5, 21–46. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Little, C.M.; Horton, R.M.; Kopp, R.E.; Oppenheimer, M.; Yip, S. Uncertainty in Twenty-First-Century CMIP5 Sea Level Projections. J. Clim.
**2015**, 28, 838–852. [Google Scholar] [CrossRef] - Rignot, E.; Mouginot, J.; Morlighem, M.; Seroussi, H.; Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett.
**2014**, 41, 3502–3509. [Google Scholar] [CrossRef] [Green Version] - Ritz, C.; Edwards, T.L.; Durand, G.; Payne, A.J.; Peyaud, V.; Hindmarsh, R.C.A. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature
**2015**, 528, 115–118. [Google Scholar] [CrossRef] - Bulthuis, K.; Arnst, M.; Sun, S.; Pattyn, F. Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change. Cryosphere
**2019**, 13, 1349–1380. [Google Scholar] [CrossRef] [Green Version] - Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature
**2012**, 482, 514–518. [Google Scholar] [CrossRef] - Marzeion, B.; Jarosch, A.H.; Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere
**2012**, 6, 1295–1322. [Google Scholar] [CrossRef] [Green Version] - Furst, J.J.; Goelzer, H.; Huybrechts, P. Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming. Cryosphere
**2015**, 9, 1039–1062. [Google Scholar] [CrossRef] [Green Version] - Palerme, C.; Genthon, C.; Claud, C.; Kay, J.E.; Wood, N.B.; L‘Ecuyer, T. Evaluation of current and projected Antarctic precipitation in CMIP5 models. Clim. Dyn.
**2017**, 48, 225–239. [Google Scholar] [CrossRef] - Frieler, K.; Clark, P.U.; He, F.; Buizert, C.; Reese, R.; Ligtenberg, S.R.M.; Van den Broeke, M.R.; Winkelmann, R.; Levermann, A. Consistent evidence of increasing Antarctic accumulation with warming. Nat. Clim. Chang.
**2015**, 5, 348–352. [Google Scholar] [CrossRef] - Rignot, E.; Casassa, G.; Gogineni, P.; Krabill, W.; Rivera, A.; Thomas, R. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett.
**2004**, 31. [Google Scholar] [CrossRef] [Green Version] - Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B. Terrestrial waters and sea level variations on interannual time scale. Glob. Planet. Chang.
**2011**, 75, 76–82. [Google Scholar] [CrossRef] [Green Version] - Wada, Y.; Van Beek, L.P.H.; Weiland, F.C.S.; Chao, B.F.; Wu, Y.H.; Bierkens, M.F.P. Past and future contribution of global groundwater depletion to sea-level rise. Geophys. Res. Lett.
**2012**, 39. [Google Scholar] [CrossRef] [Green Version] - Meyssignac, B.; Slangen, A.B.A.; Melet, A.; Church, J.A.; Fettweis, X.; Marzeion, B.; Agosta, C.; Ligtenberg, S.R.M.; Spada, G.; Richter, K.; et al. Evaluating Model Simulations of Twentieth-Century Sea-Level Rise. Part II: Regional Sea-Level Changes. J. Clim.
**2017**, 30, 8565–8593. [Google Scholar] [CrossRef] - Slangen, A.B.A.; Katsman, C.A.; Van de Wal, R.S.W.; Vermeersen, L.L.A.; Riva, R.E.M. Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim. Dyn.
**2012**, 38, 1191–1209. [Google Scholar] [CrossRef] - Slangen, A.B.A.; Carson, M.; Katsman, C.A.; Van de Wal, R.S.W.; Kohl, A.; Vermeersen, L.L.A.; Stammer, D. Projecting twenty-first century regional sea-level changes. Clim. Chang.
**2014**, 124, 317–332. [Google Scholar] [CrossRef] - Kopp, R.E.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.; Tebaldi, C. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earths Future
**2014**, 2, 383–406. [Google Scholar] [CrossRef] - Peltier, W.R. Global glacial isostasy and the surface of the ice-age earth: The ice-5G (VM2) model and grace. Annu. Rev. Earth Planet. Sci.
**2004**, 32, 111–149. [Google Scholar] [CrossRef] - Idier, D.; Paris, F.; Le Cozannet, G.; Boulahya, F.; Dumas, F. Sea-level rise impacts on the tides of the European Shelf. Cont. Shelf Res.
**2017**, 137, 56–71. [Google Scholar] [CrossRef] - Melet, A.; Meyssignac, B.; Almar, R.; Le Cozannet, G. Under-estimated wave contribution to coastal sea-level rise. Nat. Clim. Chang.
**2018**, 8, 234–239. [Google Scholar] [CrossRef] - Zhang, X.B.; Church, J.A.; Monselesan, D.; McInnes, K.L. Sea level projections for the Australian region in the 21st century. Geophys. Res. Lett.
**2017**, 44, 8481–8491. [Google Scholar] [CrossRef] [Green Version] - Poitevin, C.; Woppelmann, G.; Raucoules, D.; Le Cozannet, G.; Marcos, M.; Testut, L. Vertical land motion and relative sea level changes along the coastline of Brest (France) from combined space-borne geodetic methods. Remote Sens. Environ.
**2019**, 222, 275–285. [Google Scholar] [CrossRef] - Woppelmann, G.; Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys.
**2016**, 54, 64–92. [Google Scholar] [CrossRef] - De Winter, R.C.; Reerink, T.J.; Slangen, A.B.A.; De Vries, H.; Edwards, T.; Van de Wal, R.S.W. Impact of asymmetric uncertainties in ice sheet dynamics on regional sea level projections. Nat. Hazards Earth Syst. Sci.
**2017**, 17, 2125–2141. [Google Scholar] [CrossRef] - Carson, M.; Kohl, A.; Stammer, D.; Slangen, A.B.A.; Katsman, C.A.; Van de Wal, R.S.W.; Church, J.; White, N. Coastal sea level changes, observed and projected during the 20th and 21st century. Clim. Chang.
**2016**, 134, 269–281. [Google Scholar] [CrossRef] - Jackson, L.P.; Grinsted, A.; Jevrejeva, S. 21st Century Sea-Level Rise in Line with the Paris Accord. Earths Future
**2018**, 6, 213–229. [Google Scholar] [CrossRef] [Green Version] - Le Bars, D.; Drijfhout, S.; De Vries, H. A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss. Environ. Res. Lett.
**2017**, 12. [Google Scholar] [CrossRef] - Garner, A.J.; Weiss, J.L.; Parris, A.; Kopp, R.E.; Horton, R.M.; Overpeck, J.T.; Horton, B.P. Evolution of 21st Century Sea Level Rise Projections. Earths Future
**2018**, 6, 1603–1615. [Google Scholar] [CrossRef] [Green Version] - Slangen, A.B.A.; Adloff, F.; Jevrejeva, S.; Leclercq, P.W.; Marzeion, B.; Wada, Y.; Winkelmann, R. A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales. Surv. Geophys.
**2017**, 38, 385–406. [Google Scholar] [CrossRef] - Clark, P.U.; Shakun, J.D.; Marcott, S.A.; Mix, A.C.; Eby, M.; Kulp, S.; Levermann, A.; Milne, G.A.; Pfister, P.L.; Santer, B.D.; et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Chang.
**2016**, 6, 360–369. [Google Scholar] [CrossRef] - DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature
**2016**, 531, 591–597. [Google Scholar] [CrossRef] [PubMed] - Edwards, T.L.; Brandon, M.A.; Durand, G.; Edwards, N.R.; Golledge, N.R.; Holden, P.B.; Nias, I.J.; Payne, A.J.; Ritz, C.; Wernecke, A. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature
**2019**, 566, 58–64. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Le Bars, D. Uncertainty in Sea Level Rise Projections Due to the Dependence Between Contributors. Earths Future
**2018**, 6, 1275–1291. [Google Scholar] [CrossRef] - Le Cozannet, G.; Manceau, J.C.; Rohmer, J. Bounding probabilistic sea-level projections within the framework of the possibility theory. Environ. Res. Lett.
**2017**, 12. [Google Scholar] [CrossRef] - Nicholls, R.J.; Hanson, S.E.; Lowe, J.A.; Warrick, R.A.; Lu, X.F.; Long, A.J. Sea-level scenarios for evaluating coastal impacts. Wiley Interdiscip. Rev. Clim. Chang.
**2014**, 5, 129–150. [Google Scholar] [CrossRef] - Le Cozannet, G.; Nicholls, R.J.; Hinkel, J.; Sweet, W.V.; McInnes, K.L.; Van de Wal, R.S.W.; Slangen, A.B.A.; Lowe, J.A.; White, K.D. Sea Level Change and Coastal Climate Services: The Way Forward. J. Mar. Sci. Eng.
**2017**, 5, 49. [Google Scholar] [CrossRef] - Hinkel, J.; Church, J.A.; Gregory, J.M.; Lambert, E.; Le Cozannet, G.; Lowe, J.; McInnes, K.L.; Nicholls, R.J.; Van der Pol, T.D.; Van de Wal, R. Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective. Earths Future
**2019**, 7, 320–337. [Google Scholar] [CrossRef] [Green Version] - Stammer, D.; Van de Wal, R.S.W.; Nicholls, R.J.; Church, J.A.; Le Cozannet, G.; Lowe, J.A.; Horton, B.P.; White, K.; Behar, D.; Hinkel, J. Framework for high-end estimates of sea-level rise for stakeholder applications. Earths Future
**2019**. [Google Scholar] [CrossRef] - Huss, M.; Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci.
**2015**, 3, 54. [Google Scholar] [CrossRef] - Gregory, J.M.; Griffies, S.M.; Hughes, C.W.; Lowe, J.A.; Church, J.A.; Fukimori, I.; Gomez, N.; Kopp, R.E.; Landerer, F.; Le Cozannet, G.; et al. Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surv. Geophys.
**2019**, 1–39. [Google Scholar] [CrossRef] - Chambers, J.M.; Cleveland, W.S.; Kleiner, B.; Tukey, P.A. Graphical Methods for Data Analysis; Chapman and Hall/CRC: London, UK, 1983; Volume 21. [Google Scholar]
- Yin, J.J.; Schlesinger, M.E.; Stouffer, R.J. Model projections of rapid sea-level rise on the northeast coast of the United States. Nat. Geosci.
**2009**, 2, 262–266. [Google Scholar] [CrossRef] - Jackson, L.P.; Jevrejeva, S. A probabilistic approach to 21st century regional sea-level projections using RCP and High-end scenarios. Glob. Planet. Chang.
**2016**, 146, 179–189. [Google Scholar] [CrossRef] [Green Version] - Kopp, R.E.; DeConto, R.M.; Bader, D.A.; Hay, C.C.; Horton, R.M.; Kulp, S.; Oppenheimer, M.; Pollard, D.; Strauss, B.H. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. Earths Future
**2017**, 5, 1217–1233. [Google Scholar] [CrossRef] - Radic, V.; Bliss, A.; Beedlow, A.C.; Hock, R.; Miles, E.; Cogley, J.G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn.
**2014**, 42, 37–58. [Google Scholar] [CrossRef] - Shannon, S.; Smith, R.; Wiltshire, A.; Payne, T.; Huss, M.; Betts, R.; Caesar, J.; Koutroulis, A.; Jones, D.; Harrison, S. Global glacier volume projections under high-end climate change scenarios. Cryosphere
**2019**, 13, 325–350. [Google Scholar] [CrossRef] [Green Version] - Hirabayashi, Y.; Zang, Y.; Watanabe, S.; Koirala, S.; Kanae, S. Projection of glacier mass changes under a high-emission climate scenario using the global glacier model HYOGA2. Hydrol. Res. Lett.
**2013**, 7, 6–11. [Google Scholar] [CrossRef] - Cazenave, A.; Meyssignac, B.; Ablain, M.; Balmaseda, M.; Bamber, J.; Barletta, V.; Beckley, B.; Benveniste, J.; Berthier, E.; Blazquez, A.; et al. Global sea-level budget 1993-present. Earth Syst. Sci. Data
**2018**, 10, 1551–1590. [Google Scholar] [CrossRef] - Bamber, J.L.; Aspinall, W.P. An expert judgement assessment of future sea level rise from the ice sheets. Nat. Clim. Chang.
**2013**, 3, 424–427. [Google Scholar] [CrossRef] - Calov, R.; Beyer, S.; Greve, R.; Beckmann, J.; Willeit, M.; Kleiner, T.; Ruckamp, M.; Humbert, A.; Ganopolski, A. Simulation of the future sea level contribution of Greenland with a new glacial system model. Cryosphere
**2018**, 12, 3097–3121. [Google Scholar] [CrossRef] [Green Version] - Hanna, E.; Fettweis, X.; Hall, R.J. Brief communication: Recent changes in summer Greenland blocking captured by none of the CMIP5 models. Cryosphere
**2018**, 12, 3287–3292. [Google Scholar] [CrossRef] [Green Version] - Shepherd, A.; Ivins, E.R.; Geruo, A.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Galin, N.; et al. A Reconciled Estimate of Ice-Sheet Mass Balance. Science
**2012**, 338, 1183–1189. [Google Scholar] [CrossRef] [Green Version] - Dieng, H.B.; Cazenave, A.; Meyssignac, B.; Ablain, M. New estimate of the current rate of sea level rise from a sea level budget approach. Geophys. Res. Lett.
**2017**, 44, 3744–3751. [Google Scholar] [CrossRef] - Pattyn, F. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0). Cryosphere
**2017**, 22, 1851–1878. [Google Scholar] [CrossRef] - Golledge, N.R.; Kowalewski, D.E.; Naish, T.R.; Levy, R.H.; Fogwill, C.J.; Gasson, E.G.W. The multi-millennial Antarctic commitment to future sea-level rise. Nature
**2015**, 526, 421–425. [Google Scholar] [CrossRef] - Schlegel, N.J.; Seroussi, H.; Schodlok, M.P.; Larour, E.Y.; Boening, C.; Limonadi, D.; Watkins, M.M.; Morlighem, M.; Van den Broeke, M.R. Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework. Cryosphere
**2018**, 12, 3511–3534. [Google Scholar] [CrossRef] [Green Version] - Lemperiere, F.; Lafitte, R. The role of dams in the XXI Century to achieve a sustainable development target. In Proceedings of the International Symposium on Dams in the Societies of the 21st Century, Barcelona, Spain, 18–23 June 2006; pp. 1065–1072. [Google Scholar]
- Gzyl, H. The method of maximum entropy. In Series on Advances in Mathematics for Applied Sciences; Bellomo, F., Brezzi, N., Eds.; World Scientific Publishing Co.: Singapore, 1995; Volume 29, p. 160. [Google Scholar]
- Mishra, S. Assigning Probability Distributions to Input Parameters of Performance Assessment Models; INTERA Inc.: Austin, TX, USA, 2002. [Google Scholar]
- Meyssignac, B.; Fettweis, X.; Chevrier, R.; Spada, G. Regional Sea Level Changes for the Twentieth and the Twenty-First Centuries Induced by the Regional Variability in Greenland Ice Sheet Surface Mass Loss. J. Clim.
**2017**, 30, 2011–2028. [Google Scholar] [CrossRef] - Rahmstorf, S.; Foster, G.; Cazenave, A. Comparing climate projections to observations up to 2011. Environ. Res. Lett.
**2012**, 7. [Google Scholar] [CrossRef] - Fettweis, X.; Franco, B.; Tedesco, M.; Van Angelen, J.H.; Lenaerts, J.T.M.; Van den Broeke, M.R.; Gallee, H. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere
**2013**, 7, 469–489. [Google Scholar] [CrossRef] [Green Version] - Slater, T.; Shepherd, A. Antarctic ice losses tracking high. Nat. Clim. Chang.
**2018**, 8, 1025–1026. [Google Scholar] [CrossRef] [Green Version] - Tietjen, G.L.; Moore, R.H. Some Grubbs-Type Statistics for the Detection of Several Outliers. Technometrics
**1972**, 14, 583–597. [Google Scholar] [CrossRef] - Wilks, S.S. Determination of sample sizes for setting tolerance limits. Ann. Math. Stat.
**1941**, 12, 91–96. [Google Scholar] [CrossRef] - Rohmer, J.; Manceau, J.; Guyonnet, D.; Boulahya, F. HyRisk: Hybrid Methods for Addressing Uncertainty in Risk Assessments. 2017. Available online: https://cran.r-project.org/web/packages/HYRISK/index.html (accessed on 19 July 2019).
- Bratley, P.; Fox, B. ALGORITHM 659 Implementing Sobol‘s Quasirandom Sequence Generator. ACM Trans. Math. Softw.
**1988**, 14, 88–100. [Google Scholar] [CrossRef] - Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature
**2015**, 517, 481–484. [Google Scholar] [CrossRef] - Dangendorf, S.; Marcos, M.; Woppelmann, G.; Conrad, C.P.; Frederikse, T.; Riva, R. Reassessment of 20th century global mean sea level rise. Proc. Natl. Acad. Sci. USA
**2017**, 114, 5946–5951. [Google Scholar] [CrossRef] [Green Version] - Chen, X.Y.; Zhang, X.B.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B.; Harig, C. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Chang.
**2017**, 7, 492–495. [Google Scholar] [CrossRef] - Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O‘Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. Hum. Policy Dimens.
**2017**, 42, 153–168. [Google Scholar] [CrossRef] [Green Version] - Perrette, M.; Landerer, F.; Riva, R.; Frieler, K.; Meinshausen, M. A scaling approach to project regional sea level rise and its uncertainties. Earth Syst. Dyn.
**2013**, 4, 11–29. [Google Scholar] [CrossRef] [Green Version] - Rockström, J.; Gaffney, O.; Rogelj, J.; Meinshausen, M.; Nakicenovic, N.; Schellnhuber, H.J. A roadmap for rapid decarbonization. Science
**2017**, 355, 1269–1271. [Google Scholar] [CrossRef] [Green Version] - Iyer, G.C.; Edmonds, J.A.; Fawcett, A.A.; Hultman, N.E.; Alsalam, J.; Asrar, G.R.; Calvin, K.V.; Clarke, L.E.; Creason, J.; Jeong, M.; et al. The contribution of Paris to limit global warming to 2 degrees C. Environ. Res. Lett.
**2015**, 10, 10. [Google Scholar] [CrossRef] - Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science
**2010**, 328, 1517–1520. [Google Scholar] [CrossRef] - Nachmany, M.; Mangan, E. Aligning National and International Climate Targets. 2018. Available online: http://www.lse.ac.uk/GranthamInstitute/publication/targets/ (accessed on 19 July 2019).
- Idier, D.; Bertin, X.; Thompson, P.; Pickering, M.D. Interactions Between Mean Sea Level, Tide, Surge, Waves and Flooding: Mechanisms and Contributions to Sea Level Variations at the Coast. Surv. Geophys.
**2019**. [Google Scholar] [CrossRef] - Haigh, I.; Green, M.; Pickering, M.; Arbic, B.; Arns, A.; Dangendorf, S.; Hill, D.; Horsburgh, K.; Howard, T.; Idier, D.; et al. The Tides They Are a-Changin. Rev. Geophys.
**2019**. [Google Scholar] - Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun.
**2018**, 9, 2360. [Google Scholar] [CrossRef] - Han, W.Q.; Meehl, G.A.; Stammer, D.; Hu, A.X.; Hamlington, B.; Kenigson, J.; Palanisamy, H.; Thompson, P. Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes. Surv. Geophys.
**2017**, 38, 217–250. [Google Scholar] [CrossRef] - Nicholls, R.J.; Marinova, N.; Lowe, J.A.; Brown, S.; Vellinga, P.; De Gusmao, D.; Hinkel, J.; Tol, R.S.J. Sea-level rise and its possible impacts given a ‘beyond 4 degrees C world’ in the twenty-first century. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
**2011**, 369, 161–181. [Google Scholar] [CrossRef]

**Figure 1.**Sterodynamic sea-level changes (in m, for 2099 with respect to 1986–2005) for each climate model used in this study, their mean and standard deviation, for RCP8.5 and 2100. See Appendix A for RCP2.6 and RCP4.5.

**Figure 2.**Method to compute global and regional sea-level changes (see Gregory et al., 2019 [42] for the terminology).

**Figure 3.**Bootstrap analysis (using 1000 random replicates) of the Gaussian assumption of contributions to sea-level rise in 2099 for RCP8.5. (

**a**): 21 models used in AR5 (regional results); (

**b**): subset of models used in this study; (

**c**): Greenland [10]; (

**d**): Mountain glaciers [41]. Black dots correspond to the empirical cumulative distribution function and the solid red curve is its Gaussian fit. Dashed red curves indicate maximum and minimum empirical cumulative distributions delivered by the bootstrap procedure. Solid black curves indicate the maximum and minimum Gaussian fits. This figure allows estimating the potential error made with Gaussian assumptions in this study.

**Figure 4.**Global probabilistic sea-level projections obtained in this study (2100, with respect to a 1986–2005 average; unit: m).

**Figure 6.**Regional low-end sea-level scenarios in 2100 for the RCP2.6, 4.5, and 8.5 scenarios (unit: m).

**Table 1.**Comparison of the global mean of sterodynamic sea-level changes to sea-level rise by 2100. The global mean of sterodynamic sea-level changes is theoretically equal to the thermosteric contribution, but some numerical differences can be found (see text). The uncertainties below are those used as input for the global or regional sea-level change computations. Hence, they correspond to one standard deviation of AOGCMs outcomes in this study and in Jackson and Jevrejeva 2016 [45], but the 5–95% range of AOGCMs outcomes in the AR5, in the Integrated Climate Data Center at the Hamburg University dataset and in Kopp et al. (2017) [46].

Reference | RCP2.6 | RCP4.5 | RCP8.5 |
---|---|---|---|

This study | 0.14 ± 0.03 m | 0.20 ± 0.03 m | 0.30 ± 0.03 m |

IPCC AR5 (Global) [1] ^{1} | 0.15 ± 0.05 m | 0.20 ± 0.05 m | 0.32 ± 0.07 m |

Kopp et al. (2014) [19] ^{1} | 0.19 ± 0.06 m | 0.26 ± 0.08 m | 0.37 ± 0.09 m |

Integrated Climate Data Center at the Hamburg University ^{1} | 0.16 ± 0.06 m | 0.21 ± 0.07 m | 0.33 ± 0.10 m |

Jackson et Jevrejeva (2016) [45] | N.A. | 0.21 ± 0.05 m | 0.32 ± 0.07 m |

^{1}In these studies, the standard deviation of model outcomes was multiplied by 1.64.

**Table 2.**Global mean sea-level changes by 2100 relative to 1986–2005 assumed in this study (all Gaussian distributions). For comparison, the AR5 likely range and median contributions are provided for each component in italic and parenthesis, either in the form of “(median ± half the likely range)”, or “(median [likely range])” when the distributions are not centered. All values are rounded at two significant digits beyond the decimal point.

Component | RCP2.6 | RCP4.5 | RCP8.5 |
---|---|---|---|

Thermosteric | 0.14 ± 0.03 m | 0.20 ± 0.03 m | 0.30 ± 0.03 m |

(0.15 ± 0.05 m) | (0.20 ± 0.05 m) | (0.32 ± 0.07 m) | |

Glaciers ^{1} | 0.09 ± 0.02 m | 0.12 ± 0.03 m | 0.17 ± 0.03 m |

(0.11 ± 0.06 m) | (0.13 ± 0.06 m) | (0.18 ± 0.08 m) | |

Greenland ^{1} | 0.04 ± 0.02 m | 0.06 ± 0.02 m | 0.10 ± 0.03 m |

(0.08 ± 0.04 m) | (0.09 [0.05–0.16] m) | (0.15 [0.09–0.28] m) | |

Antarctica ^{1} | 0.02 ± 0.04 m | 0.04 ± 0.04 m | 0.09 ± 0.06 m |

(0.06 ± 0.1 m) | (0.05 ± 0.1 m) | (0.04 [−0.08–0.14] m) | |

Groundwater ^{2} | 0.05 ± 0.08 m | 0.05 ± 0.08 m | 0.05 ± 0.08 m |

0.05 [−0.01–0.11] m | 0.05 [−0.01–0.11] m | 0.05 [−0.01–0.11] m | |

Global isostatic adjustment ^{3} | Based on two different GIA models, as in AR5 [1] |

^{1}Including peripheral glaciers in Greenland and Antarctica for the projections of this paper, and excluding them for the IPCC figures.

^{2}Because we use a Gaussian distribution, our standard deviation is not the same as half the AR5 likely range (see Section 2.5).

^{3}Used for regional projections only.

Correlation Scheme Name | Global Experiments | Regional Experiments |
---|---|---|

“Ind” | All components uncorrelated | All components uncorrelated |

“Dep” | Fully correlated Thermosteric, Mountain Glaciers and Greenland components | Fully correlated Sterodynamic, Mountain Glaciers and Greenland components |

RCP Scenario | 5% | 17% | 50% | 83% | 95% |
---|---|---|---|---|---|

RCP2.6 | 0.17 m | 0.23 m | 0.34 m | 0.45 m | 0.52 m |

RCP4.5 | 0.27 m | 0.35 m | 0.46 m | 0.57 m | 0.63 m |

RCP8.5 | 0.48 m | 0.58 m | 0.70 m | 0.83 m | 0.92 m |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Le Cozannet, G.; Thiéblemont, R.; Rohmer, J.; Idier, D.; Manceau, J.-C.; Quique, R.
Low-End Probabilistic Sea-Level Projections. *Water* **2019**, *11*, 1507.
https://doi.org/10.3390/w11071507

**AMA Style**

Le Cozannet G, Thiéblemont R, Rohmer J, Idier D, Manceau J-C, Quique R.
Low-End Probabilistic Sea-Level Projections. *Water*. 2019; 11(7):1507.
https://doi.org/10.3390/w11071507

**Chicago/Turabian Style**

Le Cozannet, Gonéri, Rémi Thiéblemont, Jeremy Rohmer, Déborah Idier, Jean-Charles Manceau, and Robin Quique.
2019. "Low-End Probabilistic Sea-Level Projections" *Water* 11, no. 7: 1507.
https://doi.org/10.3390/w11071507