Pretreatment Techniques for Produced Water with Subsequent Forward Osmosis Remediation
Abstract
:1. Introduction
2. Methods and Material
2.1. Bench Top System
2.2. Analytical Instrumentation and Chemicals
3. Experimental Conditions
4. Results and Discussion
4.1. Raw PW Characterization
4.2. Analytical Results for Pretreated PW
4.3. Forward Osmosis with Pretreated PW
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shaffer, D.; Chavez, L.H.A.; Ben-Sasson, M.; Castrillo, S.R.; Yin Yip, N.; Elimelech, M. Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers, Technologies, and Future Direction. Environ. Sci. Technol. 2013, 47, 9569–9583. [Google Scholar] [CrossRef] [PubMed]
- Darrah, T.H.; Vengosh, A.; Jackson, R.B.; Warner, N.R.; Poreda, R.J. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales. Proc. Natl. Acad. Sci. USA 2014, 111, 14076–14081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontenot, B.E.; Hunt, L.R.; Hildenbrand, Z.L.; Carlton, D.D., Jr.; Oka, H.; Walton, J.L.; Hopkins, D.; Osorio, A.; Bjorndal, B.; Hu, Q.H.; et al. An evaluation of water quality in private drinking water wells near natural gas extraction sits in the Barnett Shale Formation. Environ. Sci. Technol. 2013, 47, 10032–10040. [Google Scholar] [CrossRef] [PubMed]
- Hildenbrand, Z.L.; Carlton, D.D., Jr.; Fontenot, B.E.; Meik, J.M.; Walton, J.L.; Taylor, J.T.; Thacker, J.B.; Korlie, S.; Shelor, C.P.; Henderson, D.; et al. Comprehensive Analysis of Groundwater Quality in The Barnett Shale Region. Environ. Sci. Technol. 2015, 49, 8254–8262. [Google Scholar] [CrossRef] [PubMed]
- Hildenbrand, Z.L.; Carlton, D.D., Jr.; Fontenot, B.E.; Meik, J.M.; Walton, J.L.; Thacker, J.B.; Korlie, S.; Shelor, C.P.; Kadjo, A.F.; Clark, A.; et al. Temporal variation in groundwater quality in the Permian Basin of Texas, a region of increasing unconventional oil and gas development. Sci. Total Environ. 2016, 562, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Drollette, B.D.; Hoelzer, K.; Warner, N.R.; Darrah, T.H.; Karatum, O.; O’Connor, M.P.; Nelson, R.K.; Fernandez, L.A.; Reddy, C.M.; Vengosh, A.; et al. Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities. Proc. Natl. Acad. Sci. USA 2015, 12, 13184–13189. [Google Scholar] [CrossRef] [PubMed]
- Lauer, N.E.; Harkness, J.S.; Vengosh, A. Brine Spills Associated with Unconventional Oil Development in North Dakota. Environ. Sci. Technol. 2016, 50, 5389–5397. [Google Scholar] [CrossRef]
- Harriss, R.; Alvarez, R.A.; Lyon, D.; Zavala-Araiza, D.; Nelson, D.; Hamburg, S.P. Using Multi-Scale Measurements to Improve Methane Emission Estimates from Oil and Gas Operations in the Barnett Shale Region, Texas. Environ. Sci. Technol. 2015, 49, 7524–7526. [Google Scholar] [CrossRef]
- Hildenbrand, Z.L.; Mach, P.M.; McBride, E.M.; Dorreyatim, M.N.; Taylor, J.T.; Carlton, D.D., Jr.; Meik, J.M.; Fontenot, B.E.; Wright, K.C.; Schug, K.A.; et al. Point source attribution of ambient contamination events near unconventional oil and gas developmentn. Sci. Total Environ. 2016, 573, 382–388. [Google Scholar] [CrossRef]
- Payne, B.F.; Ackley, R.; Wicker, A.P.; Hildenbrand, Z.L.; Carlton, D.D., Jr.; Schug, K.A. Characterization of methane plumes downwind of natural gas compressor stations in Pennsylvania and New York. Sci. Total Environ. 2017, 580, 1214–1221. [Google Scholar] [CrossRef]
- Nicot, J.P.; Scanlon, B.R.; Reedy, R.C.; Costley, R.A. Source and Fate of Hydraulic Fracturing Water in the Barnett Shale: A Historical Perspective. Environ. Sci. Technol. 2014, 48, 2464–2471. [Google Scholar] [CrossRef] [PubMed]
- Backstrom, J. Groundwater Regulations and Hydraulic Fracturing: Reporting Water Use in the Permian. Ph.D. Dissertation, Texas A&M University, College Station, TX, USA, 2018. [Google Scholar]
- Liden, T.; Santos, I.C.; Hildenbrand, Z.L.; Schug, K.A. Treatment Modalities for the Reuse of Produced Waste from Oil and Gas Development. Sci. Total Environ. 2018, 643, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Veil, J.; Puder, M.G.; Elcock, D.; Redweik, R.J.J. A White Paper Describing Produced Water from Production of Crude Oil, Natural Gas, and Coal Bed Methane; Argonne National Lab: DuPage, IL, USA, 2004. [Google Scholar]
- Jepsen, K.L.; Bram, M.V.; Pedersen, S.; Yang, Z. Membrane fouling for Produced Water Treatmetn: A Review Study From a Process Control Prespective. Water 2018, 10, 847. [Google Scholar] [CrossRef]
- Liden, T.; Clark, B.G.; Hildenbrand, Z.L.; Schug, K.A. Unconventional Oil and Gas Production: Waste Management and the Water Cycle. In Environmental Issues Concerning Hydraulic Fracturing; Schug, K.A., Hildenbrand, Z.L., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 1, pp. 17–45. [Google Scholar] [CrossRef]
- Van der Elst, N.J.; Page, M.T.; Weiser, D.A.; Goebel, T.H.; Hosseini, S.M. Induced earthquake magnitudes are as large as (statistically) expected. J. Geophys. Res. Solid Earth 2016, 121, 4575–4590. [Google Scholar] [CrossRef]
- Veil, J. US Produced Water Volumes and Management Practices in 2012. 2015. Available online: http://www.veilenvironmental.com/publications/pw/prod_water_volume_2012.pdf (accessed on 5 May 2017).
- Hornbach, M.J.; DeShon, H.R.; Ellsworth, W.L.; Stump, B.W.; Hayward, C.; Frohlich, C.; Oldham, H.R.; Olson, J.E.; Magnani, M.B.; Brokaw, C.; et al. Causal factors for seismicity near Azle. Texas Nat. 2015, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hornbach, M.J.; Jones, M.; Scales, M.; DeShon, H.R.; Magnani, M.B.; Frohlich, C.; Stump, B.; Hayward, C.; Layton, M. Ellenburger wastewater injection and seismicity in North Texas. Phys. Earth Planet. Inter. 2016, 261, 54–68. [Google Scholar] [CrossRef] [Green Version]
- Walsh, F.R.; Zoback, M.D. Oklahoma’s recent earthquakes and saltwater disposal. Sci. Adv. 2015, 1, 1–9. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Jha, A.N.; Rogers, H. Natural gas from shale formation- The evolution, evidence, and challenges of shale gas revolution in United States. Renew. Sustain. Energy Rev. 2014, 30, 1–28. [Google Scholar] [CrossRef]
- Arthur, D.J.; Bohm, B.; Coughlin, B.J.; Layne, M.; Cornue, D. Evaluating the Environmental Implications of Hydraulic Fracturing in Shale Gas Reservoirs. In Proceedings of the SPE Americas E&P Environmental and Safety Conference, San Antonio, TX, USA, 23–25 March 2009; pp. 1–21. [Google Scholar] [CrossRef]
- Clark, C.E.; Veil, J.A. Produced Water Volumes and Management Practices in the United States; Argonne National Laboratory: DuPage, IL, USA, 2009. [Google Scholar]
- Igunnu, E.T.; Chen, G.Z. Produced water treatment technologies. Int. J. Low Carbon Technol. 2014, 9, 157–177. [Google Scholar] [CrossRef]
- Ground Water Protection Council; All Consulting. Modern Shale Gas—A. Primer; US Department of Energy et Office of Fossil Energy: Washington, DC, USA, 2009.
- Hildenbrand, Z.L.; Santos, I.C.; Liden, T.; Carlton, D.D., Jr.; Varona-Torres, E.; Martin, M.S.; Reyes, M.L.; Mulla, S.R.; Schug, K.A. Characterizing variable biogeochemical changes during the treatment of produced oilfield waste. Sci. Total Environ. 2018, 634, 1519–1529. [Google Scholar] [CrossRef]
- Oetjen, K.; Chan, K.E.; Gulmark, K.; Christensen, J.H.; Blotevogel, J.; Borch, T.; Spear, J.R.; Cath, T.Y.; Higgins, C.P. Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse. Sci. Total Environ. 2018, 619, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Tipton, S. Treatment Option for Recycling Produced Water. In Proceedings of the Unconventional Oil & Gas Water Management Forum, Grapevine, TX, USA, 9–11 July 2013; pp. 1–26. [Google Scholar]
- Liden, T.; Santos, I.C.; Hildenbrand, Z.L.; Schug, K.A. Analytical Methods for the Comprehensive Characterization of Produced Water. In Evaluating Water Quality to Prevent Future Disasters; Ahuja, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 11, pp. 199–217. [Google Scholar]
- Ansari, A.J.; Hai, F.I.; Guo, W.; Ngo, H.H.; Price, W.E.; Nghiem, L.D. Factors governing the pre-concentration of wastewater using forward osmosis for subsequent resource recovery. Sci. Total Environ. 2016, 566, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Hickenbottom, K.L.; Hancock, N.T.; Hutchings, N.R.; Appleton, E.W.; Beaudry, E.G.; Xu, P.; Cath, T.Y. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination 2013, 312, 60–66. [Google Scholar] [CrossRef]
- Liden, T.; Carton, D.D., Jr.; Miyazaki, S.; Otoyo, T.; Schug, K.A. Forward Osmosis Remediation of High Salinity Permian Basin Produced Water from Unconventional Oil and Gas Development. Sci. Total Environ. 2018, 653, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zou, L.; Tang, C.Y.; Mulcahy, D. Recent developments in forward osmosis: Opportunities and challenges. J. Membr. Sci. 2012, 396, 1–21. [Google Scholar] [CrossRef]
- Hutchings, N.R.; Appleton, E.W.; Mcginnis, R.A. Bear Creek Services, Making High Quality Frac Water out of Oilfield Waste. In Proceedings of the SPE Annunal Technical Conference, Florence, Italy, 19–22 September 2010; pp. 1–10. [Google Scholar]
- Liden, T.; Carlton, D.D., Jr.; Miyazaki, S.; Otoyo, T.; Schug, K.A. Comparison of the Degree of Fouling at various Flux Rate and Modes of Operation when using Forward Osmosis for Remediation of Produced Water from Unconventional Oil and Gas Exploration and Development. Sci. Total Environ. 2019, 675, 73–80. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Zhou, Y.; Xi, X.; Li, W.; Yang, L.; Wang, X. Study of the contribution of the main pollutants in the oilfield polymer-flooding wastewater to the critical flux. Desalination 2011, 273, 375–385. [Google Scholar] [CrossRef]
- Guo, W.; Ngo, H.H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef]
- Xiong, B.; Roman-white, S.; Piechowicz, B.; Miller, Z.; Farina, B.; Tasker, T.; Burgos, W.; Zydney, A.L.; Kumar, M. Polyacrylamide in hydraulic fracturing fl uid causes severe membrane fouling during fl owback water treatment. J. Membr. Sci. 2018, 560, 125–131. [Google Scholar] [CrossRef]
- Xiong, B.; Zydney, A.L.; Kumar, M. Fouling of microfiltration membranes by flowback and produced waters from the Marcellus shale gas play. Water Res. 2016, 99, 162–170. [Google Scholar] [CrossRef]
- Ahmad, A.; Goh, P.S.; Karim, Z.A.; Ismail, A.F. Thin Film Composite for Oily Waste Water Treatment: Recent Advances and Challenges. Mebranes 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Coday, B.D.; Xu, P.; Beaudry, E.G.; Herron, J.; Lampi, K.; Hancock, N.T.; Cath, T.Y. The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination 2014, 333, 23–35. [Google Scholar] [CrossRef]
- King, G.E. Treating Produced Water For Shale Fracs; Society of Petroleum Engineers Gulf Coast Section: Houston, TX, USA, 2011; pp. 1–20. [Google Scholar]
- Hu, Y.; Mackay, E.; Ishkov, O.; Strachan, A. Predicted and Observed Evolution of Produced-Brine Compositions and Implications for Scale Management. SPE Prod. Oper. 2016, 31, 270–279. [Google Scholar] [CrossRef]
- Esmaeilirad, N.; White, S.; Terry, C.; Prior, A.; Carlson, K. Influence of inorganic ions in recycled produced water on gel-based hydraulic fracturing fluid viscosity. J. Pet. Sci. Eng. 2016, 139, 104–111. [Google Scholar] [CrossRef]
- Montgomery, C. Fracturing Fluid Components. In Effective and Sustainable Hydraulic Fracturing; Brnger, A., McLennan, J., Jeffrey, R., Eds.; IntechOpen: London, UK, 2013; pp. 25–45. [Google Scholar]
- Wasylishen, R.; Fulton, S. Reuse of Flowback & Produced Water for Hydraulic Fracturing in Tight Oil; The Pertroleum Technology Allance of Canada: Calgary, AB, Canada, 2012. [Google Scholar]
- Liu, Z.; Chen, J.; Cao, Z.; Wang, J.; Guo, C. Enhanced Performance of Thin Film Composite Forward.Osmosis Membrane by Chemical Post-Treatment. Earth Environ. Sci. 2018, 108, 1–6. [Google Scholar]
- Shin, M.G.; Park, S.; Kwon, S.J.; Kwon, H.; Park, J.B.; Lee, J. Facile performance enhancement of reverse osmosis membranes via solvent activation with benzyl alcohol. J. Membr. Sci. 2019, 578, 220–229. [Google Scholar] [CrossRef]
- Wang, X.; Duitsman, E.; Rajagopalan, N.; Namboodiri, V.V. Chemical treatment of commercial reverse osmosis membranes for use in FO. Desalination 2013, 319, 66–72. [Google Scholar] [CrossRef]
Component | Conditions |
---|---|
Centrifugation | Speed 3, estimated to be 2485 rpm, 30 min → supernatant extracted |
Activated Carbon | 1% (wt), 1 h of stirring → 25 µm vacuum filtration |
Filtration | 25 µm then 1 µm vacuum filtration |
FeCl3 | 1000 mg, mixed for 5 min stirring on low → supernatant extracted |
UltraPAC 261 | 1000 ppm, mix high 15 s, low for 15 min → 25 µm vacuum filtration |
UltraPAC 2346 | 1000 ppm, mix high 15 s, low for 15 min → 25 µm vacuum filtration |
UltraPAC 1145 | 1000 ppm, mix high 15 s, low for 15 min → 25 µm vacuum filtration |
UltraPAC 560CV | 1000 ppm, mix high 15 s, low for 15 min → 25 µm vacuum filtration |
UltraPAC 261 and UltraPAC 560CV | 1000 ppm of each coagulant, mix high 15 s, low for 15 min → 25 µm vacuum filtration |
Experiment Section | FS | DS | Time |
---|---|---|---|
Baseline | DI water | 3.5% (wt) NaCl | 30 min |
FO Trial | Treated PW | 35% (wt) MgCl2 | 7 h |
Baseline after trail | DI water | 3.5% (wt) NaCl | 30 min |
Washing | DI Water | DI Water | 1 h |
Baseline after washing | DI water | 3.5% (wt) NaCl | 30 min |
Parameter (mg/L) | |
---|---|
Total Alkalinity CaCO3 | 208 |
TDS | 112,000 |
TSS | 300 |
TOC | 147.2 ± 0.3 |
pH | 7.06 |
Specific Gravity | 1.05 ± 0.01 |
Bromide | 429 |
Chloride | 77,000 |
Fluoride | <0.034 |
Nitrate | <0.06 |
Sulfate | 416 |
B | 49 ± 2 |
Ba | 2.4 ± 0.2 |
Ca | 3000 ± 200 |
Fe | 1.7 ± 0.3 |
K | 460 ± 20 |
Li | 16.8 ± 0.8 |
Mg | 430 ± 20 |
Mn | 1.9 ± 0.1 |
Na | 37,000 ± 3000 |
Si | 15 ± 1 |
Sr | 430 ± 30 |
Treatment for PW FS | TOC (mg/L) | TSS (mg/L) | Turbidity (NTU) |
---|---|---|---|
Centrifugation | 16.5 ± 0.5 | 360 ± 60 | 46.9 ± 0.6 |
Activated Carbon | 1.9 ± 0.1 | 70 ± 20 | 26 ± 1 |
Filtration | 12. ± 1 | 220 ±20 | 65 ± 3 |
UltraPAC 2346 | 7.0 ± 0.4 | 300 ± 200 | 54.3 ± 0.9 |
UltraPAC 261 and Ultra PAC560CV | 12.9 ± 0.5 | 200 ± 100 | 21 ± 6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liden, T.; Hildenbrand, Z.L.; Schug, K.A. Pretreatment Techniques for Produced Water with Subsequent Forward Osmosis Remediation. Water 2019, 11, 1437. https://doi.org/10.3390/w11071437
Liden T, Hildenbrand ZL, Schug KA. Pretreatment Techniques for Produced Water with Subsequent Forward Osmosis Remediation. Water. 2019; 11(7):1437. https://doi.org/10.3390/w11071437
Chicago/Turabian StyleLiden, Tiffany, Zacariah L. Hildenbrand, and Kevin A. Schug. 2019. "Pretreatment Techniques for Produced Water with Subsequent Forward Osmosis Remediation" Water 11, no. 7: 1437. https://doi.org/10.3390/w11071437