Optimization of Pressurized Tree-Type Water Distribution Network Using the Improved Decomposition–Dynamic Programming Aggregation Algorithm
Abstract
1. Introduction
2. Mathematical Model
2.1. Objective Function
2.2. Constraint Conditions
3. Model Solution
4. Application and Optimization Results
4.1. General Situation for a Pressurized Tree-Type WDN
4.2. Solution Procedures
4.3. Optimization Results Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bello, O.; Abu-Mahfouz, A.M.; Hamam, Y.; Page, P.R.; Adedeji, K.B.; Piller, O. Solving Management Problems in Water Distribution Networks: A Survey of Approaches and Mathematical Models. Water 2019, 11, 562. [Google Scholar] [CrossRef]
- Mala-Jetmarova, H.; Sultanova, N.; Savic, D. Lost in Optimisation of Water Distribution Systems? A Literature Review of System Design. Water 2018, 10, 307. [Google Scholar] [CrossRef]
- Makaremi, Y.; Haghighi, A.; Ghafouri, H.R. Optimization of Pump Scheduling Program in Water Supply Systems Using a Self-Adaptive NSGA-II; a Review of Theory to Real Application. Water Resour. Manag. 2017, 31, 1283–1304. [Google Scholar] [CrossRef]
- Coelho, B.; Andrade-Campos, A. Efficiency achievement in water supply systems-A review. Renew. Sustain. Energy Rev. 2014, 30, 59–84. [Google Scholar] [CrossRef]
- Zhao, W.Q.; Beach, T.H.; Rezgui, Y. Optimization of Potable Water Distribution and Wastewater Collection Networks: A Systematic Review and Future Research Directions. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 659–681. [Google Scholar] [CrossRef]
- Vilanova, M.R.N.; Balestieri, J.A.P. Energy and hydraulic efficiency in conventional water supply systems. Renew. Sustain. Energy Rev. 2014, 30, 701–714. [Google Scholar] [CrossRef]
- Cisty, M. Hybrid Genetic Algorithm and Linear Programming Method for Least-Cost Design of Water Distribution Systems. Water Resour. Manag. 2010, 24, 1–24. [Google Scholar] [CrossRef]
- Shiono, N.; Suzuki, H.; Saruwatari, Y. A dynamic programming approach for the pipe network layout problem. Eur. J. Oper. Res. 2019, 277, 52–61. [Google Scholar] [CrossRef]
- Meirelles, G.; Brentan, B.; Izquierdo, J.; Ramos, H.; Luvizotto, E. Trunk Network Rehabilitation for Resilience Improvement and Energy Recovery in Water Distribution Networks. Water 2018, 10, 693. [Google Scholar] [CrossRef]
- Cherchi, C.; Badruzzaman, M.; Oppenheimer, J.; Bros, C.M.; Jacangelo, J.G. Energy and water quality management systems for water utility’s operations: A review. J. Environ. Manag. 2015, 153, 108–120. [Google Scholar] [CrossRef]
- Martinez-Bahena, B.; Cruz-Chavez, M.A.; Avila-Melgar, E.Y.; Cruz-Rosales, M.H.; Rivera-Lopez, R. Using a Genetic Algorithm with a Mathematical Programming Solver to Optimize a Real Water Distribution System. Water 2018, 10, 1318. [Google Scholar] [CrossRef]
- D’Ambrosio, C.; Lodi, A.; Wiese, S.; Bragalli, C. Mathematical programming techniques in water network optimization. Eur. J. Oper. Res. 2015, 243, 774–788. [Google Scholar] [CrossRef]
- De Corte, A.; Sörensen, K. Optimisation of gravity-fed water distribution network design: A critical review. Eur. J. Oper. Res. 2013, 228, 1–10. [Google Scholar] [CrossRef]
- De Corte, A.; Sörensen, K. An Iterated Local Search Algorithm for Multi-Period Water Distribution Network Design Optimization. Water 2016, 8, 359. [Google Scholar] [CrossRef]
- Azoumah, Y.; Bieupoude, P.; Neveu, P. Optimal design of tree-shaped water distribution network using constructal approach: T-shaped and Y-shaped architectures optimization and comparison. Int. Commun. Heat Mass Transf. 2012, 39, 182–189. [Google Scholar] [CrossRef]
- Dobersek, D.; Goricanec, D. Optimisation of tree path pipe network with nonlinear optimisation method. Appl. Therm. Eng. 2009, 29, 1584–1591. [Google Scholar] [CrossRef]
- Perelman, L.S.; Amin, S. Control of tree water networks: A geometric programming approach. Water Resour. Res. 2015, 51, 8409–8430. [Google Scholar] [CrossRef]
- Sangiorgio, M.; Guariso, G. NN-Based Implicit Stochastic Optimization of Multi-Reservoir Systems Management. Water 2018, 10, 303. [Google Scholar] [CrossRef]
- Castelletti, A.; Galelli, S.; Restelli, M.; Soncini-Sessa, R. Tree-based reinforcement learning for optimal water reservoir operation. Water Resour. Res. 2010, 46, 1–19. [Google Scholar] [CrossRef]
- Abdullah, M.A.; Ab Rashid, M.F.F.; Ghazalli, Z. Optimization of Assembly Sequence Planning Using Soft Computing Approaches: A Review. Arch. Comput. Methods Eng. 2019, 26, 461–474. [Google Scholar] [CrossRef]
- Batchabani, E.; Fuamba, M. Optimal Tank Design in Water Distribution Networks: Review of Literature and Perspectives. J. Water Resour. Plan. Manag. 2014, 140, 136–145. [Google Scholar] [CrossRef]
- Lamaddalena, N.; Khadra, R.; Tlili, Y. Reliability-Based Pipe Size Computation of On-Demand Irrigation Systems. Water Resour. Manag. 2012, 26, 307–328. [Google Scholar] [CrossRef]
- Leon-Celi, C.; Iglesias-Rey, P.L.; Martinez-Solano, F.J.; Mora-Melia, D. A Methodology for the Optimization of Flow Rate Injection to Looped Water Distribution Networks through Multiple Pumping Stations. Water 2016, 8, 575. [Google Scholar] [CrossRef]
- Goncalves, G.M.; Gouveia, L.; Pato, M.V. An improved decomposition-based heuristic to design a water distribution network for an irrigation system. Ann. Oper. Res. 2014, 219, 141–167. [Google Scholar] [CrossRef]
- Basupi, I.; Kapelan, Z. Flexible Water Distribution System Design under Future Demand Uncertainty. J. Water Resour. Plan. Manag. 2015, 141, 1–14. [Google Scholar] [CrossRef]
- Farmani, R.; Abadia, R.; Savic, D. Optimum design and management of pressurized branched irrigation networks. J. Irrig. Drain. Eng. 2007, 133, 528–537. [Google Scholar] [CrossRef]
- Geem, Z.W. Multiobjective Optimization of Water Distribution Networks Using Fuzzy Theory and Harmony Search. Water 2015, 7, 3613–3625. [Google Scholar] [CrossRef]
- Zeng, J.; Han, J.; Zhang, G.Q. Diameter optimization of district heating and cooling piping network based on hourly load. Appl. Therm. Eng. 2016, 107, 750–757. [Google Scholar] [CrossRef]
- Price, E.; Ostfeld, A. Iterative Linearization Scheme for Convex Nonlinear Equations: Application to Optimal Operation of Water Distribution Systems. J. Water Resour. Plan. Manag. 2013, 139, 299–312. [Google Scholar] [CrossRef]
- Gong, Y.; Cheng, J.L. Optimization of Cascade Pumping Stations’ Operations Based on Head Decomposition-Dynamic Programming Aggregation Method Considering Water Level Requirements. J. Water Resour. Plan. Manag. 2018, 144, 04018034. [Google Scholar] [CrossRef]
- Gong, Y.; Cheng, J.L. Combinatorial Optimization Method for Operation of Pumping Station with Adjustable Blade and Variable Speed Based on Experimental Optimization of Subsystem. Adv. Mech. Eng. 2014, 2014, 283520. [Google Scholar] [CrossRef]
- Sadr, J.; Malhamé, R.P. Unreliable transfer lines: Decomposition/aggregation and optimization. Ann. Oper. Res. 2004, 125, 167–190. [Google Scholar] [CrossRef]
- Sadr, J.; Malhamé, R.P. Decomposition/aggregation-based dynamic programming optimization of partially homogeneous unreliable transfer lines. IEEE Trans. Autom. Control 2004, 49, 68–81. [Google Scholar] [CrossRef]
- Howard, R.A. Dynamic Programming. Manag. Sci. 1966, 12, 317–348. [Google Scholar] [CrossRef]
Diameter (m) | Pipe Cost (RMB/m) | ||
---|---|---|---|
PVC-U | DIP | PE | |
0.025 | - | - | 2.2 |
0.032 | - | - | 4.5 |
0.040 | - | - | 7.1 |
0.050 | 9.3 | - | 10.9 |
0.063 | 14.5 | 16.2 | 17.1 |
0.075 | 18.3 | 21.0 | 21.5 |
0.090 | 25.6 | 29.2 | 30.1 |
0.110 | 40.0 | 42.8 | 45.6 |
0.125 | 50.5 | 55.9 | 60.3 |
0.140 | 63.3 | 69.7 | - |
0.160 | 80.00 | 92.0 | - |
0.180 | 101.2 | 116.9 | - |
0.200 | 120.1 | 160.2 | - |
Number of Up and Down Nodes | Materials | Length (m) | Actual Diameter (m) | Optimal Diameter (m) | Number of Up and Down Nodes | Materials | Length (m) | Actual Diameter (m) | Optimal Diameter (m) |
---|---|---|---|---|---|---|---|---|---|
0–1 | DIP+PE | 4470 | 0.160 | 0.140 | 21–22 | PE | 35 | 0.025 | 0.025 |
1–2 | PVC-U | 50 | 0.160 | 0.140 | 4–23 | PE | 21 | 0.032 | 0.025 |
2–3 | PVC-U | 150 | 0.140 | 0.140 | 23–24 | PE | 21 | 0.025 | 0.025 |
3–4 | PVC-U | 110 | 0.140 | 0.110 | 5–25 | PE | 21 | 0.032 | 0.025 |
4–5 | PVC-U | 110 | 0.125 | 0.110 | 25–26 | PE | 21 | 0.025 | 0.025 |
5–6 | PVC-U | 110 | 0.125 | 0.090 | 6–27 | PE | 21 | 0.032 | 0.025 |
6–7 | PVC-U | 110 | 0.125 | 0.090 | 27–28 | PE | 21 | 0.025 | 0.025 |
7–8 | PVC-U | 110 | 0.110 | 0.090 | 7–29 | PE | 21 | 0.032 | 0.025 |
8–9 | PVC-U | 110 | 0.075 | 0.075 | 29–30 | PE | 21 | 0.025 | 0.025 |
9–10 | PE | 150 | 0.063 | 0.050 | 8–31 | PE | 35 | 0.063 | 0.040 |
1–11 | PE | 60 | 0.040 | 0.050 | 31–32 | PE | 35 | 0.050 | 0.040 |
11–12 | PE | 35 | 0.040 | 0.032 | 32–33 | PE | 35 | 0.040 | 0.032 |
12–13 | PE | 35 | 0.032 | 0.025 | 33–34 | PE | 35 | 0.032 | 0.025 |
13–14 | PE | 35 | 0.025 | 0.025 | 9–35 | PE | 35 | 0.063 | 0.040 |
2–15 | PE | 35 | 0.040 | 0.040 | 35–36 | PE | 35 | 0.050 | 0.040 |
15–16 | PE | 35 | 0.040 | 0.040 | 36–37 | PE | 35 | 0.050 | 0.032 |
16–17 | PE | 35 | 0.032 | 0.025 | 37–38 | PE | 35 | 0.032 | 0.025 |
17–18 | PE | 35 | 0.025 | 0.025 | 10–39 | PE | 35 | 0.063 | 0.040 |
3–19 | PE | 35 | 0.050 | 0.040 | 39–40 | PE | 35 | 0.050 | 0.040 |
19–20 | PE | 35 | 0.050 | 0.040 | 40–41 | PE | 35 | 0.040 | 0.032 |
20–21 | PE | 35 | 0.040 | 0.025 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Chen, Y.; Cheng, J.; Wang, W.; Gong, Y.; Wang, L.; Wang, Y. Optimization of Pressurized Tree-Type Water Distribution Network Using the Improved Decomposition–Dynamic Programming Aggregation Algorithm. Water 2019, 11, 1391. https://doi.org/10.3390/w11071391
Cheng H, Chen Y, Cheng J, Wang W, Gong Y, Wang L, Wang Y. Optimization of Pressurized Tree-Type Water Distribution Network Using the Improved Decomposition–Dynamic Programming Aggregation Algorithm. Water. 2019; 11(7):1391. https://doi.org/10.3390/w11071391
Chicago/Turabian StyleCheng, Haomiao, Yuru Chen, Jilin Cheng, Wenfen Wang, Yi Gong, Liang Wang, and Yulin Wang. 2019. "Optimization of Pressurized Tree-Type Water Distribution Network Using the Improved Decomposition–Dynamic Programming Aggregation Algorithm" Water 11, no. 7: 1391. https://doi.org/10.3390/w11071391
APA StyleCheng, H., Chen, Y., Cheng, J., Wang, W., Gong, Y., Wang, L., & Wang, Y. (2019). Optimization of Pressurized Tree-Type Water Distribution Network Using the Improved Decomposition–Dynamic Programming Aggregation Algorithm. Water, 11(7), 1391. https://doi.org/10.3390/w11071391