Ecotoxicological Analysis of Emerging Contaminants from Wastewater Discharges in the Coastal Zone of Cihuatlán (Jalisco, Mexico)
Abstract
:1. Introduction
Ecotoxicology of Emerging Contaminants
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling and Analysis
2.3. Sample Processing
2.4. Analysis of ECs
2.5. Quantitative Analysis of The Structure-Activity Relationship (QSAR) of ECs
2.6. Determination of Ecotoxicity of Emerging Contaminants
3. Results
4. Conclusions and Comments
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thompson, E. Indicators of anthropogenic change and biological risk in coastal aquatic environments earth systems and environmental sciences. Encycl. Anthr. 2018, 3, 97–124. [Google Scholar]
- Omar TF, T.; Aris, A.Z.; Yusoff, F.M.; Mustafa, S. Occurrence, distribution, and sources of emerging organic contaminants in tropical coastal sediments of anthropogenically impacted Klang River estuary, Malaysia. Mar. Pollut. Bull. 2017, 131, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 1, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.; Lapworth, D. Emerging Organic Contaminants in Groundwater. Smart Sensors for Real-Time Water Quality Monitoring; Springer: Berlin, Germany, 2013; pp. 259–284. [Google Scholar]
- Richardson, S.D.; Kimura, S.Y. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2016, 88, 546–582. [Google Scholar] [CrossRef]
- Sorensen, J.P.R.; Lapworth, D.J.; Nkhuwa, D.C.; Stuart, M.E.; Gooddy, D.C.; Bell, R.A.; Chirwa, M.; Kabika, J.; Liemisa, M.; Chibesa, M.; et al. Emerging contaminants in urban groundwater sources in Africa. Water Res. 2015, 72, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, M.; Eljarrat, E.; Lopez de Alda, M.J.; Barceló, D. Endocrine disrupting compounds and other emerging contaminants in the environment: A survey on new monitoring strategies and occurrence data. Anal. Bioanal. Chem. 2004, 378, 549–562. [Google Scholar] [CrossRef]
- Benotti, M.J.; Trenholm, R.A.; Vanderford, B.; Holady, J.; Stanford, B.D.; Snyder, S.A. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Env. Sci. Technol. 2009, 43, 597–603. [Google Scholar] [CrossRef]
- Bila, D.M.; Dezottii, M. Pharmaceutical drugs in the environment. Quím. Nova 2003, 26, 523–530. [Google Scholar] [CrossRef]
- Jondeau-Cabaton, A.; Soucasse, A.; Jamin, E.L.; Creusot, N.; Grimaldi, M.; Jouanin, I.; Aït-Aïssa, S.; Balaguer, P.; Debrauwer, L.; Zalko, D. Characterization of endocrine disruptors from a complex matrix using estrogen receptor affinity columns and high performance liquid chromatography-high resolution mass spectrometry. Env. Sci. Poll. Res. Int. 2013, 20, 2705–2720. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Matamoros, V.; Sidrach, R.; Villacorta, J. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Res. 2010, 44, 3669–3678. [Google Scholar] [CrossRef]
- Maruya, K.A.; Dodder, N.G.; Tang, C.L.; Lao, W.; Tsukada, D. Which coastal and marine environmental contaminants are truly emerging? Env. Sci. Poll. Res. Int. 2015, 22, 1644–1652. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Pak, A.P. Acute and subchronic toxicity of the heavy metals copper, chromium, nickel, and zinc, individually and in mixture, to the freshwater copepod Mesocyclopspehpeiensis. Bull. Environ. Contam. Toxicol. 2014, 73, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Ramos Alvariño, C.; Espinosa, M.; Lloréns, M.; López, M.; Pellón, A. Waste in the pharmaceutical industry. Cenic Chem. Sci. 2006, 36, 25–31. [Google Scholar]
- Connon, R.E.; Geist, J.; Werner, I. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 2012, 12, 12741–12771. [Google Scholar] [CrossRef] [PubMed]
- Zuccato, E.; Castiglioni, S.; Fanelli, R. Pharmaceuticals in the environment in Italy: Causes, occurrence, effects and control. Environ. Sci. Poll. Res. 2006, 13, 15–21. [Google Scholar] [CrossRef]
- Di Paolo, C.; Ottermanns, R.; Keiter, S.; Ait-Aissa, S.; Bluhm, K.; Brack, W. Bioassay battery interlaboratory investigation of emerging contaminants in spiked water extracts—Towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring. Water Res. 2016, 1, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Wernersson, A.S.; Carere, M.; Maggi, C.; Tusil, P.; Soldan, P.; James, A.; Sanchez, W.; Dulio, V.; Broeg, K. The European technical report on aquatic effect-based monitoring tools under the water framework directive. Env. Sci. Eur. 2015, 27, 1–11. [Google Scholar] [CrossRef]
- LaGoy, P. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAH). Regul. Toxicol. Pharm. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Colborn, T.; Hayes, T.B.; Heindel, J.J.; Jacobs, D.R.; Lee, D.H.; Shioda, T.; Soto, A.M.; vomSaal, F.S.; Welshons, W.V.; et al. Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr. Rev. 2012, 33, 378–455. [Google Scholar] [CrossRef]
- Yangali-Quintanilla, V.; Sadmani, A.; McConville, M.; Kennedy, M.; Amy, G. A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes. Water Res. 2010, 44, 373–384. [Google Scholar] [CrossRef]
- Khan, A.U. Descriptors and their selection methods in QSAR analysis: Paradigm for drug design. Drug Discov. Today 2016, 21, 1291–1302. [Google Scholar] [CrossRef]
- Meffe, R.; De Bustamante, I. Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy. Sci. Total Environ. 2014, 481, 280–295. [Google Scholar] [CrossRef] [PubMed]
- INEGI. Census of Population and Housing 2010; National Institute of Statistic and Geography: Aguascalientes, Mexico, 2010; Available online: http://www.inegi.org.mx. [Google Scholar]
- Ramsar. Ramsar Sites List. Ramsar Convention. Available online: www.ramsar:document/the-list-of-wetlands-of-international-importance-the ramsar-list (accessed on 29 September 2018).
- SMN. Weather Normals Jalisco. National Meteorological Service, Mexico. Available online: https://smn.cna.gob.mx/es/informacion-climatologica-por-estado?estado=jal (accessed on 29 September 2018).
- Pérez-Parada, A.; Gómez-Ramos, M.; Martínez-Bueno, M.J.; Uclés, S.; Uclés, A.; Fernández-Alba, A.R. Analytical improvements of hybrid LC-MS/MS techniques for the efficient evaluation of emerging contaminants in river waters: A case study of the Henares River (Madrid, Spain). Environ. Sci. Pollut. Res. 2012, 19, 467–481. [Google Scholar] [CrossRef]
- Wille, K.; De Brabander, H.; De Wulf, E.; Van Caeter, P.; Janssen, C.; Vanhaecke, L. Coupled chromatographic and mass-spectrometric techniques for the analysis of emerging pollutants in the aquatic environment. Trac Trends Anal. Chem. 2012, 35, 87–108. [Google Scholar] [CrossRef]
- Bennett, E.; Clausen, J.; Linkov, E.; Linkov, I. Predicting physical properties of emerging compounds with limited physical and chemical data: QSAR model uncertainty and applicability to military munitions. Chemosphere 2009, 77, 1412–1418. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Hoeschele, J.; Turner, J.; Jacobson, K.; Christie, N.; Paton, C.; Smith, L.; Witschi, H.; Lee, E. Chemical softness and acute metal toxicity in mice and drosophila. Toxicol. Appl. Pharmacol. 1982, 63, 461–469. [Google Scholar] [CrossRef]
- Veith, G.; Konasewich, D. Structure-Activity Correlations in Studies of Toxicity and Bioconcentration with Aquatic Organisms; Great Lakes Advisory Board, International Joint Commission: Windsor, ON, Canada, 1983; pp. 11–23. [Google Scholar]
- Parrott, J.; Blunt, B. Life-cycle exposure of fathead minnows (Pimephalespromelas) to an ethinylestradiol concentration below 1 ng/L reduces egg fertilization success and demasculinizes males. Environ. Toxicol. 2005, 23, 131–141. [Google Scholar] [CrossRef]
- Nash, J.P.; Kime, D.E.; Van der Ven, L.; Wester, P.; Brion, F.; Maack, G.; Tyler, C. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ. Health Perspect. 2004, 112, 1725–1733. [Google Scholar] [CrossRef]
- Yu, J.; Terry, J.; Nestrick, A.; Savage, P. Microcontaminants in pentachlorophenol synthesis. 1. New bioassay for microcontaminant quantification industrial engineering. Chem. Res. 2006, 45, 5199–5204. [Google Scholar] [CrossRef]
- Pawlowski, S.; Van Aerle, R.; Tyler, C.; Braunbeck, T. Effects of 17a-ethinylestradiol in a fathead minnow (Pimephalespromelas) gonadal recrudescence assay. Ecotoxicol. Environ. Saf. 2004, 57, 330–345. [Google Scholar] [CrossRef]
- Hoeger, B.; Van den Heuvel, M.R.; Hitzfeld, B.C.; Dietrich, D.R. Effects of treated sewage on immune function in rainbow trout (Oncorhynchusmykiss). Aquatic Toxicol. 2004, 70, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, S.; Baddaloo, E.; Gerard, Y. Handbook of Chemical Toxicity Profiles of Biological Species; Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 254–259. [Google Scholar]
Contaminant | Molecular Formula | pKa | Solubility in Water (mg/L) | Bioassay | EC50 (mg/L) |
---|---|---|---|---|---|
Diclofenac | C14H11NCl2O2 | 4.15 | 19.4 | Vibrio Fischeri 30 min | 13.5 |
Daphnia Magna 48 h | 224.30 | ||||
D: Subspicatus 3 d [32] | 72 | ||||
Ibuprofen | C13H18O2 | 5.2 | 21 | Daphnia Magna 48 h | 9.06 |
L. macrohiruz(fish) 48 h | 10 | ||||
S.costatum 48 h [32] | 7.1 | ||||
Ketorolac | C15H13NO3 | 3.84 | 15 | Rat 96 h [33] | 189 |
PCP | C6Cl5OH | 4.74 | 20 | Palemonetes pugio 96 h | 0.515 |
Pimephalespromelas 96 h | 0.19 | ||||
Oncorhynchus mykiss 96 h [34] | 0.23 | ||||
Estradiol | C18H24O2 | 10.33 | 3.6 | Fathead Minnows 3 d | 0.001 |
Limneastagnalisa [35] | 0.004 |
TEQ | Toxicity Classification |
---|---|
<1 | Low or no toxicity |
1–10 | Toxic |
11–100 | Very Toxic |
>100 | Extremely toxic |
Parameter | Effluent | ||||
---|---|---|---|---|---|
A | D | J | L | S | |
T (°C) | 28.9 ± 0.02 | 30.1 ± 0.5 | 29.9 ± 0.1 | 29.3 ± 0.1 | 31.2 ± 0.2 |
pH | 5.9 ± 0.8 | 8.2 ± 0.2 | 6.4 ± 0.4 | 6.9 ± 0.7 | 7.56 ±0.5 |
Conductivity (mS/cm3) | 1.215 ± 0.32 | 1.448 ± 0.86 | 1.325 ± 0.65 | 1.329 ± 0.76 | 1.775 ± 0.82 |
TDS (g/L) | 0.527 ± 0.24 | 1.987 ± 0.32 | 0.882 ± 0.12 | 0.768 ± 0.11 | 1.072 ± 0.16 |
% Salt | 0.79 ± 0.06 | 0.67 ± 0.13 | 0.72 ± 0.56 | 0.96 ± 0.03 | 0.83 ± 0.24 |
DO (mg/L) | 0.82 ± 0.9 | 1.94 ± 0.8 | 1.26 ± 0.6 | 0.53 ± 0.4 | 0.68 ± 0.3 |
P (mmHg) | 759.8 ± 0.2 | 757.8 ± 0.1 | 759.6 ± 0.4 | 759.3 ± 1.1 | 758.8 ± 1.2 |
Q (L/min) | 62.5 ± 8.2 | 3333.33 ± 26.4 | 450.5 ± 38.2 | 1562.5 ± 124.3 | 328.12 ± 19.2 |
Diclofenac (mg/min) | 0.335 ± 0.056 | 11.66 ± 0.32 | 0.43 ± 0.072 | 0 | 0.38 ± 0.023 |
Ibuprofen (mg/min) | 0.345 ± 0.062 | 18.33 ± 0.56 | 0.76 ± 0.11 | 1.60 ± 0.35 | 0.46 ± 0.06 |
Ketorolac (mg/min) | 0.270 ± 0.038 | 8.66 ± 0.67 | 0.40 ± 0.08 | 0.83 ± 0.032 | 0.31 ± 0.07 |
PCP (mg/min) | 0.119 ± 0.024 | 6.23 ± 0.23 | 0 | 0 | 0 |
Estradiol (mg/min) | 0.033 ± 0.018 | 2.13 ± 0.12 | 0 | 0 | 0 |
Effluent | Emerging Contaminant | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Diclofenac | Ibuprofen | Ketorolac | PCP | Estradiol | ||||||
TEQ | Toxicity Class | TEQ | Toxicity Class | TEQ | Toxicity Class | TEQ | Toxicity Class | TEQ | Toxicity Class | |
A | 3 | Toxic | 3 | Toxic | 3 | Toxic | 4 | Toxic | 18 | Very Toxic |
D | 3 | Toxic | 3 | Toxic | 3 | Toxic | 4 | Toxic | 18 | Very Toxic |
J | 3 | Toxic | 3 | Toxic | 3 | Toxic | *Nd | - | *Nd | - |
L | *Nd | - | 2 | Toxic | 2 | Toxic | *Nd | - | *Nd | - |
S | 3 | Toxic | 3 | Toxic | 3 | Toxic | *Nd | - | *Nd | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arguello-Pérez, M.Á.; Mendoza-Pérez, J.A.; Tintos-Gómez, A.; Ramírez-Ayala, E.; Godínez-Domínguez, E.; Silva-Bátiz, F.d.A. Ecotoxicological Analysis of Emerging Contaminants from Wastewater Discharges in the Coastal Zone of Cihuatlán (Jalisco, Mexico). Water 2019, 11, 1386. https://doi.org/10.3390/w11071386
Arguello-Pérez MÁ, Mendoza-Pérez JA, Tintos-Gómez A, Ramírez-Ayala E, Godínez-Domínguez E, Silva-Bátiz FdA. Ecotoxicological Analysis of Emerging Contaminants from Wastewater Discharges in the Coastal Zone of Cihuatlán (Jalisco, Mexico). Water. 2019; 11(7):1386. https://doi.org/10.3390/w11071386
Chicago/Turabian StyleArguello-Pérez, Miguel Ángel, Jorge Alberto Mendoza-Pérez, Adrián Tintos-Gómez, Eduardo Ramírez-Ayala, Enrique Godínez-Domínguez, and Francisco de Asís Silva-Bátiz. 2019. "Ecotoxicological Analysis of Emerging Contaminants from Wastewater Discharges in the Coastal Zone of Cihuatlán (Jalisco, Mexico)" Water 11, no. 7: 1386. https://doi.org/10.3390/w11071386
APA StyleArguello-Pérez, M. Á., Mendoza-Pérez, J. A., Tintos-Gómez, A., Ramírez-Ayala, E., Godínez-Domínguez, E., & Silva-Bátiz, F. d. A. (2019). Ecotoxicological Analysis of Emerging Contaminants from Wastewater Discharges in the Coastal Zone of Cihuatlán (Jalisco, Mexico). Water, 11(7), 1386. https://doi.org/10.3390/w11071386