Stable Isotopes of Precipitation in China: A Consideration of Moisture Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isotopic Data and Analysis
2.2. Interpolation
2.3. Correlation
3. Results and Discussion
3.1. Regionalization of China
3.2. Spatial Distribution of Stable Isotopes and D Excess
3.3. Seasonal Variations of Precipitation Isotopes and D Excess
3.4. Regional Meteoric Water Line (RMWL)
3.5. Spatial Extent of the Isotope–Climate Relationship
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- IAEA. Isotope Hydrology Information System, the ISOHIS Database. 2006. Available online: http://www.iaea.org/water (accessed on 1 March 2013).
- Salati, E.; Dall’Olio, A.; Matsui, E.; Gat, J.R. Recycling of water in the Amazon Basin: An isotopic study. Water Resour. Res. 1979, 15, 1250–1258. [Google Scholar] [CrossRef]
- Gonfiantini, R. On the isotopic composition of precipitation in tropical stations. Acta Amaz. 1985, 5, 121–139. [Google Scholar] [CrossRef]
- Joseph, A.; Frangi, J.P.; Aranyossy, J.F. Isotope characteristics of meteoric water and groundwater in the Sahelo-Sudanese Zone. J. Geophys. Res. 1992, 97, 7543–7551. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguas-Araguas, L. Spatial and temporal variability of stable isotope composition of precipitation over the South American continent. Bulletin De L’Institut Français D’Études Andines 1995, 24, 379–390. [Google Scholar]
- Araguas-Araguas, L.; Froehlich, K.; Rozanski, K. Stable isotope composition of precipitation over Southeast Asia. J. Geophys. Res. 1998, 103, 721–742. [Google Scholar] [CrossRef]
- Bowen, G.J.; Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 2003, 39, 1299. [Google Scholar] [CrossRef]
- Wang, D.; Wang, K. Isotopes in precipitation in China (1986–1999). Sci. China Ser. E 2001, 44, 48–51. [Google Scholar] [CrossRef]
- Johnson, K.; Ingram, B.L. Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: Implications for paleoclimate reconstructions. Earth Planet. Sci. Lett. 2004, 220, 365–377. [Google Scholar] [CrossRef]
- Liu, J.; Song, X.; Yuan, G.; Sun, X.; Yang, L. Stable isotopic compositions of precipitation in China. Tellus 2014, 66, 22567. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; MacClune, K.; White, J.W.C.; Schilla, A.; Vaughn, B.; Vachon, R.; Ichiyanagi, K. Stable isotopic variations in west China: A consideration of moisture sources. J. Geophys. Res. 2007, 112, D10112. [Google Scholar] [CrossRef]
- Pang, Z.; Kong, Y.; Froehlich, K.; Huang, T.; Yuan, L.; Li, Z.; Wang, F. Processes affecting isotopes in precipitation of an arid region. Tellus 2011, 63, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Pang, Z. Evaluating the Sensitivity of Glacier Rivers to Climate Change based on Hydrograph Separation of Discharge. J. Hydrol. 2012, 434–435, 121–129. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z.; Froehlich, K. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus 2013, 65, 19251. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z. Statistical analysis of stream discharge in response to climate change for Urumqi river catchment, Tianshan Mountains, Central Asia. Quat. Int. 2014, 336, 44–51. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Hughes, C.; Zhu, X.; Dong, L.; Ren, Z.; Chen, F. Factors controlling stable isotope composition of precipitation in arid conditions: An observation network in the Tianshan Mountains, central Asia. Tellus B 2016, 68, 26206. [Google Scholar] [CrossRef]
- Li, Z.X.; Feng, Q.; Li, Z. Climate Background, Facts, and Hydrological Effects of Multiphase Water Transformation in Cold Regions OF the Western China: A review. Earth-Sci. Rev. 2018. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Gat, J. Oxygen and hydrogen isotopes in the hydrological cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguas-Araguas, L.; Gonfiantini, R. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science 1992, 258, 981–985. [Google Scholar] [CrossRef]
- Stumpp, C.; Klaus, J.; Stichler, W. Analysis of long-term stable isotopic composition in German precipitation. J. Hydrol. 2014, 517, 351–361. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Leuenberger, M.; Kohan, B.; Kern, Z. Geostatistical analysis and isoscape of ice core derived water stable isotope records in an Antarctic macro region. Polar Sci. 2017, 13, 23–32. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Liu, J.R.; Song, X.F.; Yuan, G.F.; Sun, X.; Liu, X.; Wang, S. Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources. Chin. Sci. Bull. 2010, 55, 200–211. [Google Scholar] [CrossRef]
- Bowen, G.J.; Wilkinson, B. Spatial distribution of δ18O in meteoric precipitation. Geology 2002, 30, 315–318. [Google Scholar] [CrossRef]
- Luo, K. Draft of natural geography regionalization of China. Acta Geogr. Sin. 1954, 20, 379–394. [Google Scholar]
- Huang, B. Draft of the complex physical geographical division of China. Chin. Sci. Bull. 1959, 18, 594–602. [Google Scholar]
- Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. Global isoscapes for δ18O and δ2H in precipitation: Improved prediction using regionalized climatic regression models. Hydrol. Earth Syst. Sci. 2013, 17, 4713–4728. [Google Scholar] [CrossRef]
- Li, Z.X.; Yao, T.; Tian, L. Variation of δ18O in precipitation in annual timescale with moisture transport in Delingha region. Earth Sci. Front. 2006, 13, 330–334. [Google Scholar]
- Zhou, S.Q.; Nakawo, M.; Sakai, A.; Matsuda, Y.; Duan, K.Q.; Pu, J.C. Water isotope variations in the snow pack and summer precipitation at July 1 Glacier, Qilian Mountains in northwest China. Chin. Sci. Bull. 2007, 52, 2963–2972. [Google Scholar] [CrossRef]
- Xu, G.; Chen, T.; Liu, X.; An, W.; Wang, W.; Yun, H. Potential linkages between the moisture variability in the northeastern Qaidam Basin, China, since 1800 and the East Asian summer monsoon as reflected by tree ring δ18O. J. Geophys. Res. 2011, 116, D09111. [Google Scholar] [CrossRef]
- Winkler, M.G.; Wang, P.K. The Late-Quaternary vegetation climate of China. In Global Climates since the Last Glacial Maximum; University of Minnesota Press: St. Paul, MN, USA, 1993; pp. 221–261. [Google Scholar]
- Pang, Z. Mechanism of water cycle changes and implications on water resources regulation in Xinjiang Uygur Autonomous Region. Quat. Sci. 2014, 34, 907–917. [Google Scholar]
- Li, J.; Pang, Z.; Kong, Y.; Zhou, M.; Huang, T. Spatial distributions of stable isotopic composition and deuterium excess in precipitation during the summer and winter seasons in China, Fresenius Environmental Bulletin. Fresenius Environ. Bull. 2014, 23, 2074–2085. [Google Scholar]
- Kong, Y.; Pang, Z. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation. J. Hydrol. 2016, 542, 222–230. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, Y. Tibetan Plateau Forcing and the Timing of the Monsoon Onset over South Asia and the South China Sea. Mon. Weather Rev. 1998, 126, 913–927. [Google Scholar] [CrossRef]
- Yamanaka, T.; Shimada, J.; Hamada, Y.; Tanaka, T.; Yang, Y.; Zhang, W.; Hu, C. Hydrogen and oxygen isotopes in precipitation in the northern part of the North China Plain: Climatology and inter-storm variability. Hydrol. Process. 2004, 18, 2211–2222. [Google Scholar] [CrossRef]
- Liu, Z.; Bowen, G.J.; Welker, J.M. Atmospheric circulation is reflected in precipitation isotope gradients over the conterminous United States. J. Geophys. Res. 2010, 115, D22120. [Google Scholar] [CrossRef]
- Kreutz, K.J.; Wake, C.P.; Aizen, V.B.; Cecil, L.D.; Synal, H.A. Seasonal deuterium excess in a Tien Shan ice core: Influence of moisture transport and recycling in Central Asia. Geophys. Res. Lett. 2003, 30, 1922. [Google Scholar] [CrossRef]
- Aizen, V.; Aizen, E.; Fujita, K.; Nikitin, S.; Kreutz, K. Stable-Isotope Time Series and Precipitation Origin from Firn-Core and Snow Samples, Altai Glaciers, Siberia. J. Glaciol. 2005, 51, 637–654. [Google Scholar] [CrossRef]
- Ding, Y.; Chan, J. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Clark, I.; Fritz, P. Environmental Isotopes in Hydrogeology; Clark, I., Fritz, P., Eds.; Lewis Publishers: New York, NY, USA, 1997. [Google Scholar]
- Froehlich, K.; Kralik, M.; Papesch, W.; Rank, D.; Scheifinger, H.; Stichler, W. Deuterium excess in precipitation of Alpine regions-moisture recycling. Isot. Environ. Health Stud. 2008, 44, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Nie, Z.; Zhang, G.; Wan, L.; Shen, J. Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, Northwestern China. Hydrogeol. J. 2006, 14, 1635–1651. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; Schuster, P.F.; White, J.W.C.; Ichiyanagi, K.; Pendall, E.; Pu, J.; Yu, W. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J. Geophys. Res. 2003, 108, 4293. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z.; Li, J.; Huang, T. Seasonal variations of water isotopes in the Kumalak River catchments, Western Tianshan Mountains. Central Asia. Fresenius Environ. Bull. 2014, 23, 169–174. [Google Scholar]
- Li, X.; Zhang, M.; Ma, Q.; Li, Y.; Wang, S.; Wang, B. Characteristics of Stable Isotopes in Precipitation over Northeast China and Its Water Vapor Sources. Chin. J. Environ. Sci. 2012, 33, 2924–2931. [Google Scholar]
Sample Site | Longitude (E) | Latitude (N) | Altitude (m) | δ2H (‰) | Std1 (‰) | δ18O (‰) | Std2 (‰) | d excess (‰) | Std3 (‰) | P (mm) | T (°C) | n | Observation Period | Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Omsk | 73.38 | 55.01 | 94 | −98.8 | / | −13.5 | / | 8.9 | / | 361.0 | 2.7 | 8 | 1990 | GNIP |
Enisejsk | 92.15 | 58.45 | 98 | −98.4 | / | −13.3 | / | 7.9 | / | 609.0 | 0.5 | 12 | 1990 | GNIP |
Novosibirsk | 82.90 | 55.03 | 162 | −104.3 | / | −14.6 | / | 12.8 | / | 479.0 | 2.5 | 12 | 1990 | GNIP |
Irkutsk | 104.35 | 52.27 | 485 | −94.5 | 13.1 | −12.2 | 0.9 | 3.2 | 5.7 | 482.0 | 2.4 | 14 | 1990 | GNIP |
Habarovsk | 135.17 | 48.52 | 72 | −102.9 | / | −14.3 | / | 11.4 | / | 911.0 | 2.2 | 11 | 1971 | GNIP |
Tashkent | 69.27 | 41.27 | 428 | −42.9 | / | −7.0 | / | 13.1 | / | 316.0 | 8.6 | 7 | 1971 | GNIP |
Kabul | 69.21 | 34.57 | 1860 | −34.8 | 25.6 | −6.6 | 3.5 | 18.3 | 6.1 | 348.9 | 11.8 | 86 | 1967–1970, 1973–1974, 1982–1989 | GNIP |
Karachi | 67.13 | 24.90 | 23 | −24.3 | 15.0 | −4.1 | 2.0 | 8.7 | 4.4 | 438.8 | 24.2 | 39 | 1961–1968, 1970, 1973 | GNIP |
New Delihi | 77.20 | 28.58 | 212 | −34.6 | 18.2 | −5.4 | 2.4 | 8.3 | 4.0 | 899.1 | 24.8 | 304 | 1961–1969, 1973–1996, 2000–2008 | GNIP |
Allahabad | 81.73 | 25.45 | 98 | −67.8 | / | −9.5 | / | 8.1 | / | 1531.0 | 17.8 | 5 | 1980 | GNIP |
Shillong | 91.88 | 25.57 | 1598 | −34.4 | 30.2 | −5.7 | 3.8 | 11.1 | 2.8 | 1950.0 | 17.0 | 30 | 1969–1970, 1973–1976, 1978 | GNIP |
Salagiri | 79.44 | 18.19 | 259 | −33.4 | / | −5.0 | / | 7.0 | / | 640.0 | / | 5 | 1977 | GNIP |
Colombo | 79.87 | 6.91 | 7 | −23.5 | 1.0 | −4.1 | 0.2 | 8.9 | 0.5 | 2179.3 | 25.4 | 54 | 1983−1987, 1992−1994 | GNIP |
Hongkong | 114.16 | 22.31 | 66 | −42.1 | 9.8 | −6.6 | 1.2 | 10.3 | 1.9 | 2342.8 | 23.0 | 408 | 1961−1965, 1973−2007 | GNIP |
Pohang | 129.38 | 36.03 | 6 | −51.8 | 17.4 | −7.8 | 2.5 | 10.3 | 4.5 | 1141.0 | 13.3 | 110 | 1961−1966, 1973−1976 | GNIP |
Ryori | 141.81 | 39.03 | 260 | −55.9 | 8.1 | −8.5 | 1.2 | 12.0 | 4.0 | 1400.6 | 10.2 | 189 | 1979−1986, 1998−2006 | GNIP |
Tokyo | 139.77 | 35.68 | 4 | −46.5 | 7.0 | −7.2 | 0.8 | 11.4 | 2.8 | 1400.2 | 15.6 | 183 | 1961−1969, 1973−1979 | GNIP |
Yangoon | 96.17 | 16.77 | 20 | −29.4 | 7.8 | −4.5 | 0.5 | 6.3 | 3.5 | 2434.7 | 27.3 | 18 | 1961−1963 | GNIP |
Bangkok | 100.50 | 13.73 | 2 | −42.9 | 7.7 | −6.6 | 3.9 | 9.5 | 6.6 | 1638.8 | 28.5 | 347 | 1968−1970, 1973−2008 | GNIP |
Ko Sichang | 100.80 | 13.17 | 26 | −38.2 | 4.9 | −6.1 | 0.6 | 10.2 | 1.7 | 1273.3 | 28.3 | 40 | 1985, 1987−1991 | GNIP |
Ko Samui | 100.05 | 9.47 | 7 | −28.3 | 10.4 | −4.9 | 1.3 | 10.7 | 0.1 | 1444.2 | 27.7 | 27 | 1979−1980, 1982−1983 | GNIP |
Singapore | 103.90 | 1.35 | 32 | −46.5 | 2.5 | −7.5 | 0.2 | 13.1 | 1.4 | 2345.9 | 26.2 | 52 | 1968−1969, 1973−1975 | GNIP |
Luang-Prabang | 102.13 | 19.88 | 305 | −53.2 | 10.5 | −7.8 | 1.3 | 8.9 | 2.2 | 1407.9 | 26.2 | 26 | 1961−1964 | GNIP |
Qiqihar | 123.91 | 47.38 | 147 | −80.9 | 6.2 | −10.8 | 0.6 | 5.8 | 1.8 | 570.2 | 3.9 | 50 | 1988−1992 | GNIP |
Haerbin | 126.62 | 45.68 | 172 | −78.0 | 4.3 | −10.5 | 0.9 | 5.8 | 4.7 | 623.7 | 9.1 | 32 | 1986−1990, 1996−1997 | GNIP |
Hetian | 79.93 | 37.13 | 1375 | −34.9 | 4.8 | −5.7 | 0.6 | 11.1 | 1.9 | 217.8 | 9.2 | 46 | 1988−1992 | GNIP |
Wulumuqi | 87.62 | 43.78 | 918 | −74.0 | 15.7 | −10.9 | 2.1 | 12.9 | 2.9 | 336.3 | 7.3 | 123 | 1986−1992, 1996−1998, 2001−2003 | GNIP |
Zhangye | 100.43 | 38.93 | 1483 | −47.6 | 8.5 | −6.6 | 1.3 | 5.4 | 7.7 | 150.3 | 7.8 | 79 | 1986−1992, 1995−1996, 2001−2003 | GNIP |
Lanzhou | 103.88 | 36.05 | 1517 | −41.6 | 12.0 | −6.2 | 1.5 | 7.9 | 6.9 | 345.8 | 10.9 | 39 | 1985−1987, 1996−1990 | GNIP |
Yinchuan | 106.21 | 38.48 | 1112 | −43.5 | 12.3 | −6.8 | 2.2 | 11.2 | 6.6 | 308.4 | 9.2 | 30 | 1988−1992 | GNIP |
Shijiazhuang | 114.41 | 38.03 | 80 | −56.8 | 7.7 | −8.1 | 0.8 | 8.3 | 3.6 | 572.4 | 13.7 | 129 | 1985−2003 | GNIP |
Yantai | 121.40 | 37.53 | 47 | −50.6 | 4.8 | −7.3 | 0.9 | 7.7 | 8.8 | 575.7 | 14.1 | 44 | 1986−1991 | GNIP |
Taiyuan | 112.55 | 37.78 | 778 | −62.1 | 15.1 | −8.7 | 1.8 | 7.2 | 1.3 | 444.2 | 14.8 | 20 | 1986−1988 | GNIP |
Changchun | 125.21 | 43.90 | 237 | −63.8 | 9.8 | −9.5 | 0.8 | 12.5 | 11.8 | 448.3 | 7.4 | 22 | 1999−2001 | GNIP |
Jinzhou | 121.10 | 41.13 | 66 | −54.6 | 5.2 | −7.4 | 1.1 | 4.8 | 4.6 | 541.0 | 17.0 | 12 | 1986−1989 | GNIP |
Tianjin | 117.16 | 39.10 | 3 | −50.0 | 3.6 | −7.7 | 0.5 | 11.7 | 1.4 | 536.5 | 13.8 | 64 | 1988−1992, 2000−2001 | GNIP |
Baotou | 109.85 | 40.67 | 1067 | −55.9 | 24.7 | −7.9 | 1.0 | 7.4 | 3.4 | 300.6 | 7.0 | 52 | 1986−1993 | GNIP |
Lhasa | 91.13 | 29.70 | 3649 | −117.2 | 35.7 | −15.9 | 4.6 | 10.3 | 1.8 | 427.0 | 8.4 | 41 | 1986−1992 | GNIP |
Chengdu | 104.02 | 30.67 | 506 | -51.2 | 11.1 | -7.0 | 1.7 | 4.7 | 4.0 | 854.2 | 16.3 | 65 | 1986−1992, 1996−1999 | GNIP |
Kunming | 102.68 | 25.01 | 1892 | -69.2 | 12.1 | −10.1 | 1.7 | 11.2 | 5.5 | 1005.5 | 15.5 | 148 | 1986−1991, 2000−2003 | GNIP |
Xian | 108.93 | 34.30 | 397 | −50.7 | 18.9 | −7.7 | 2.7 | 11.2 | 3.4 | 585.5 | 13.4 | 48 | 1985−1993 | GNIP |
Zhengzhou | 113.65 | 34.72 | 110 | −54.0 | 15.4 | −7.5 | 2.2 | 5.8 | 4.0 | 642.6 | 14.1 | 55 | 1985−1992 | GNIP |
Wuhan | 114.13 | 30.62 | 23 | −48.0 | 19.2 | −6.7 | 2.3 | 5.4 | 5.0 | 1248.7 | 17.9 | 49 | 1986−1998 | GNIP |
Changqing | 106.60 | 29.62 | 192 | −69.6 | −10.4 | 13.7 | 493.0 | / | 5 | 1992−1993 | GNIP | |||
Changsha | 113.06 | 28.20 | 37 | −32.2 | 0.1 | −5.7 | 0.0 | 13.0 | 0.1 | 1280.7 | 17.1 | 57 | 1988−1992 | GNIP |
Zunyi | 106.88 | 27.70 | 844 | −55.6 | 7.0 | −8.4 | 1.0 | 11.7 | 1.9 | 988.1 | 15.4 | 70 | 1986−1992 | GNIP |
Guiyang | 106.71 | 26.58 | 1071 | −52.0 | 10.5 | −8.3 | 1.4 | 14.5 | 1.5 | 970.0 | 15.3 | 58 | 1988−1992 | GNIP |
Guilin | 110.08 | 25.07 | 170 | −34.7 | 6.1 | −6.2 | 0.9 | 14.8 | 1.2 | 1523.6 | 19.0 | 91 | 1983−1990 | GNIP |
Nanjing | 118.18 | 32.18 | 26 | −53.0 | 6.7 | −8.2 | 0.8 | 12.6 | 1.0 | 1212.0 | 14.4 | 58 | 1987−1992 | GNIP |
Fuzhou | 119.28 | 26.08 | 16 | −43.0 | 14.0 | −6.6 | 1.5 | 9.8 | 3.3 | 1471.8 | 20.4 | 71 | 1985−1992 | GNIP |
Liuzhou | 109.40 | 24.35 | 97 | −43.9 | 10.8 | −6.5 | 1.0 | 7.9 | 3.0 | 1082.5 | 20.9 | 45 | 1988−1992 | GNIP |
Guangzhou | 113.32 | 23.13 | 7 | −42.8 | 8.8 | −6.1 | 1.1 | 6.0 | 2.4 | 1830.8 | 23.0 | 30 | 1986−1989 | GNIP |
Haikou | 110.35 | 20.03 | 15 | −37.6 | 12.9 | −5.7 | 1.6 | 8.3 | 4.7 | 1923.3 | 24.9 | 58 | 1988−1991, 1996−2000 | GNIP |
Weathership V | 164.00 | 31.00 | / | −24.0 | 4.0 | −6.1 | 0.6 | 24.8 | 3.4 | 943.4 | 19.1 | 81 | 1962−1969 | GNIP |
Taguac Guam IS. | 144.83 | 13.55 | 110 | −29.9 | 12.3 | −5.1 | 1.5 | 10.7 | 2.9 | 2686.1 | 26.0 | 103 | 1962−1966, 1973−1977 | GNIP |
Wake Island | 166.65 | 19.28 | 3 | −9.8 | 8.7 | −2.2 | 1.2 | 7.6 | 2.6 | 904.9 | 26.6 | 122 | 1962−1969, 1973−1976 | GNIP |
Truk | 151.85 | 7.47 | 2 | −32.5 | 10.8 | −5.4 | 1.4 | 10.3 | 1.9 | 3606.2 | 27.4 | 72 | 1968−1969, 1972−1977 | GNIP |
Yap | 138.09 | 9.49 | 23 | −34.5 | 16.2 | −5.5 | 2.5 | 9.6 | 4.5 | 2913.3 | 27.0 | 65 | 1968−1969, 1972−1976 | GNIP |
Tarawa | 172.92 | 1.35 | 4 | −37.5 | / | −6.1 | / | 11.3 | / | 3187.0 | 25.9 | 17 | 1991 | GNIP |
Manila | 121.00 | 14.52 | 14 | −44.2 | 12.7 | −6.8 | 1.5 | 9.8 | 3.8 | 1975.3 | 27.0 | 46 | 1961−1965 | GNIP |
Gaoshan | 86.83 | 43.1 | 3545 | −53.6 | / | −7.7 | / | 8.4 | / | 390 | -4.3 | 59 | 2003−2004 | Pang et al. [13] |
Houxia | 87.18 | 43.28 | 2100 | −55.4 | / | −7.9 | / | 7.7 | / | 424 | 1.5 | 88 | 2003−2004 | Pang et al. [13] |
Nyalam | 85.97 | 28.18 | 3811 | −85.9 | / | −12.1 | / | 10.6 | / | 650 | / | 295 | 1998−2001 | Tian et al [12] |
Lhasa | 91.03 | 29.72 | 3650 | −129.7 | / | −17.0 | / | 5.8 | / | 411 | / | 152 | 1998−2001 | Tian et al. [12] |
Gaize | 84.05 | 32.3 | 4416 | −92.0 | / | −12.7 | / | 9.6 | / | 170 | / | 140 | 1998−2001 | Tian et al. [12] |
Shiquanhe | 80.1 | 32.5 | 4279 | −76.3 | / | −11.2 | / | 12.9 | / | 71 | / | 62 | 1998−2001 | Tian et al. [12] |
Yushu | 97.02 | 33.02 | 3682 | −82.0 | / | −12.2 | / | 15.8 | / | 482 | 3 | 339 | 1998−2001 | Tian et al. [12] |
Altay | 88.08 | 47.73 | 737 | −100.4 | / | −13.8 | / | 9.9 | / | 194 | / | 226 | 1998−2001 | Tian et al. [12] |
Regions | RMWL | R2 (n) | Level of Significance |
---|---|---|---|
I | δ2H = (7.24 ± 0.11)δ18O + 1.96 ± 1.38 | 0.95 (264) | 0.01 |
II | δ2H = ( 7.55 ± 0.10) δ18O + 3.91 ± 1.22 | 0.97 (182) | 0.01 |
III | δ2H = (6.32 ± 0.12) δ18O − 4.07 ± 0.97 | 0.87 (460) | 0.01 |
IV | δ2H = (7.63 ± 0.06) δ18O + 8.03 ± 0.41 | 0.93 (1246) | 0.01 |
V | δ2H = (8.41 ± 0.20)δ18O + 16.72 ± 2.98 | 0.97 (108) | 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; Wang, K.; Li, J.; Pang, Z. Stable Isotopes of Precipitation in China: A Consideration of Moisture Sources. Water 2019, 11, 1239. https://doi.org/10.3390/w11061239
Kong Y, Wang K, Li J, Pang Z. Stable Isotopes of Precipitation in China: A Consideration of Moisture Sources. Water. 2019; 11(6):1239. https://doi.org/10.3390/w11061239
Chicago/Turabian StyleKong, Yanlong, Ke Wang, Jie Li, and Zhonghe Pang. 2019. "Stable Isotopes of Precipitation in China: A Consideration of Moisture Sources" Water 11, no. 6: 1239. https://doi.org/10.3390/w11061239