Review of the Quantitative Resilience Methods in Water Distribution Networks
Abstract
:1. Introduction
2. Methods
2.1. Questions Definition
- What are the capabilities of resilience in WDNs?
- What quantitative methods for determining WDN resilience were adopted in the existing studies?
- What are the advantages and disadvantages of the surveyed quantitative resilience methods?
- What are the challenges and gaps facing the future use of resilience methods in WDNs?
2.2. Search Protocol
2.3. Analysis
3. Results
3.1. Clustering of Quantitative Resilience Methods
3.2. Classification of Quantitative Resilience Methods
3.3. Distribution by Year of Publication
4. Quantitative Resilience Methods
4.1. Three Capabilities of WDN Resilience
- Absorptive capability is the ability of a system to absorb local failures within an acceptable range and maintain its performance during such failures. The absorptive capacity can be evaluated in normal service and at the functional threshold. Two related states were identified: (1) the normal service state (the baseline of the WDN’s service); and (2) the functional threshold states of the WDN occurring at the maximum bearable disturbance. When the disturbance exceeds the threshold, the service performance degrades and the WDN cannot self-heal. To improve this capability, researchers have proposed the following strategies: (1) Strengthening the protection of the crucial components, making them resistant to random failures [73,82,83]; (2) strengthening the real-time monitoring and management of WDNs [84,85,86]; and (3) increasing the redundancy and flexibility of the system to improve its uncertainty absorbing capacity [67,87,88,89].
- Restorative capability defines the ability of a system to recover after service degradation. Restoration is judged complete when the system returns to its pre-disaster state, or satisfies the users’ needs after identification and repair of the failed component. Restorative capacity can be further divided into degree of recovery and recovery time. The degree of recovery expresses the final service performance of the WDN after adopting recovery strategies. This measure is limited by the repair budget (i.e., funds, repair materials, and other consumables) [90]. The recovery time refers to the period between service degradation and return to normal state. The recovery time depends on the amount of recovery resources, the adopted recovery strategies, and the recovery schedule [79]. Depending on the recovery degree and recovery time, the restorative capacity is further divisible into emergency recovery and post-disturbance rebuilding. Emergency recovery restores the basic service functions within a short time after a disturbance. Post-disturbance rebuilding slowly returns the system to its pre-disturbance state. Proposed improvement strategies for this capability include: (1) Designing an emergency response in management and organization [91,92]; (2) rapid identification of failure locations and service reduction; (3) effective isolation of failure sections [26,93,94]; (4) formulation of emergency strategies [73,83,95]; and (5) efficient allocation of recovery resources and repair of failed components [96].
- Adaptive capability is the long-term adaptability of the system to changing environments and disturbances. For example, historical rainfall data cannot accurately predict the probability of future high-intensity rainfall and floods under climate change. WDNs must adapt to uncertainties at different evaluation levels and in various scenarios. Proposed improvement strategies for this capability include: (1) Optimizing the components to adapt to natural disasters caused by climate change, such as earthquakes and floods [97,98,99,100]; (2) increasing the absorptive capacity of crucial components to resist targeted attacks and cascading failures in WDNs [24]; (3) strengthening the connection points of the interdependent infrastructure to reduce the number of large-scale cascading failures [99,101,102]; and (4) periodically identifying and updating the service status of aged WDNs components.
4.2. Surrogate Measures
4.2.1. Metrics
4.2.2. Research Progresses
4.2.3. Limitations
4.3. Simulation Methods
4.3.1. Metrics
4.3.2. Research Progresses
4.3.3. Limitations
4.4. Network Theory Approaches
4.4.1. Metrics
4.4.2. Research Progresses
4.4.3. Limitations
4.5. Fault Detection and Isolation (FDI) Approaches
4.5.1. Metrics
4.5.2. Research Progresses
4.5.3. Limitations
5. Discussion
5.1. Absorptive Capability
5.1.1. Targeted Failures
5.1.2. Expert Knowledge
5.1.3. Multi-Scenario Coupled Analysis
5.2. Restorative Capability
5.2.1. Emergency Recovery
5.2.2. Post-Disturbance Rebuilding
- ✧
- Optimization of spatialdistribution. The objective function of the multi-objective optimization model maximizes the WDN resilience while minimizing the engineering cost. Constraints on the structural and service function loss of the WDN are imposed under the disaster conditions. The optimal solution is solved by an intelligent optimization algorithm.
- ✧
- Redundancy of design. The WDN flexibility can be enhanced by increasing the redundancy or reducing the connection density of the critical components, and by rewiring branching sections as loop structures or a meshed grid structure.
- ✧
- Backup support system. A backup support system will prevent failure of the identified critical components. Support strategies include backup pumps and extra-power support systems that provide pumps with sufficient pressure. Specially designed valves can isolate substance intrusion.
- ✧
- Post-disturbance reconstruction. Severely damaged and unrepaired parts in WDNs can be reconstructed to maintain the water supply. Disaster data can reveal the optimal reconstruction locations that will reduce the impact of the next possible disaster.
5.3. Adaptive Capability
5.3.1. Effects of Climate Change
5.3.2. Coupled Society and Technology Analysis
5.3.3. Data Availability
5.3.4. Interdependency Infrastructures
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clinton, W.J. Executive Order 13010 on critical infrastructure protection. Fed. Regist. 1996, 61, 37347–37350. [Google Scholar]
- Ariman, T.; Muleski, G.E. A Review of the Response of Buried Pipelines under Seismic Excitations. Earthq. Eng. Struct. Dyn. 1981, 9, 133–152. [Google Scholar] [CrossRef]
- Xu, D.W. Earthquake Damage to Water Distribution Networks in Tangshan; Earthquake Press: Beijing, China, 1986. [Google Scholar]
- EERI. Northridge Earthquake of Januray 17, 1994: Reconnaissance Report; Earthquake Engineering Research Institute: Oakland, CA, USA, 1995; p. 11. [Google Scholar]
- Shirozu, T.; Yune, K.; Isoyama, R.; Iwamoto, T. Report on Damage to Water Distribution Pipes Caused by the 1995 Hyogoken-nanbu (Kobe) Earthquake. In Proceedings of the fourth Japan-U.S. workshop on earthquake resistant design of lifeline facilities and countermeasures for soil liquefaction, Buffalo, NY, USA, 11–13 June 1996; pp. 93–110. [Google Scholar]
- Li, H.; Xiao, S.; Huo, L. Damage investigation and analysis of engineering structures in the Wenchuan earthquake. J. Build. Struct. 2008, 4, 10–19. [Google Scholar]
- Woodruff, S.C.; Stults, M. Numerous strategies but limited implementation guidance in US local adaptation plans. Nat. Clim. Chang. 2016, 6, 796. [Google Scholar] [CrossRef]
- Murray, V.; Ebi, K.L. IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). J. Epidemiol. Commun. Health 2012, 66, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Schellnhuber, H.J.; Hare, W.; Serdeczny, O.; Adams, S.; Coumou, D.; Frieler, K.; Martin, M.; Otto, I.M.; Perrette, M.; Robinson, A. Turn Down the Heat: Why a 4 C Warmer World Must Be Avoided; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Little, R.G. Controlling cascading failure: Understanding the vulnerabilities of interconnected infrastructures. J. Urban Technol. 2002, 9, 109–123. [Google Scholar] [CrossRef]
- Shin, S.; Lee, S.; Judi, D.R.; Parvania, M.; Goharian, E.; McPherson, T.; Burian, S.J. A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems. Water 2018, 10, 164. [Google Scholar] [CrossRef]
- Jensen, H.A.; Jerez, D.J. A Stochastic Framework for Reliability and Sensitivity Analysis of Large Scale Water Distribution Networks. Reliab. Eng. Syst. Saf. 2018, 176, 80–92. [Google Scholar] [CrossRef]
- Rahmani, F.; Muhammed, K.; Behzadian, K.; Farmani, R. Optimal Operation of Water Distribution Systems Using a Graph Theory—Based Configuration of District Metered Areas. J. Water Res. Plan. Manag. 2018, 144, 4018042. [Google Scholar] [CrossRef]
- Dueñas-Osorio, L.; Vemuru, S.M. Cascading failures in complex infrastructure systems. Struct. Saf. 2009, 31, 157–167. [Google Scholar] [CrossRef]
- Tolson, B.A.; Maier, H.R.; Simpson, A.R.; Lence, B.J. Genetic Algorithms for Reliability-Based Optimization of Water Distribution Systems. J. Water Res. Plan. Manag. 2004, 130, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Shafiqul, I.M.; Sadiq, R.; Rodriguez, M.J.; Najjaran, H.; Hoorfar, M. Reliability Assessment for Water Supply Systems under Uncertainties. J. Water Res. Plan. Manag. 2014, 140, 468–479. [Google Scholar] [CrossRef]
- Shinstine, D.S.; Ahmed, I.; Lansey, K.E. Reliability/Availability Analysis of Municipal Water Distribution Networks: Case Studies. J. Water Res. Plan. Manag. 2002, 128, 140–151. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Holling, C.S. Myths of ecological stability: Resilience and the problem of failure. Stud. Crisis Manag. 1979, 97–109. [Google Scholar]
- Albert, R.; Jeong, H.; Barabási, A. Error and attack tolerance of complex networks. Nature 2000, 406, 378. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Motter, A.E. Cascade-based attacks on complex networks. Phys. Rev. E 2002, 66, 065102. [Google Scholar] [Green Version]
- Pagani, G.A.; Aiello, M. The Power Grid as a complex network: A survey. Phys. A Stat. Mech. Its Appl. 2013, 392, 2688–2700. [Google Scholar] [CrossRef] [Green Version]
- Soh, H.; Lim, S.; Zhang, T.; Fu, X.; Lee, G.K.K.; Hung, T.G.G.; Di, P.; Prakasam, S.; Wong, L. Weighted complex network analysis of travel routes on the Singapore public transportation system. Phys. A Stat. Mech. Its Appl. 2010, 389, 5852–5863. [Google Scholar] [CrossRef]
- Shuang, Q.; Zhang, M.; Yuan, Y. Node vulnerability of water distribution networks under cascading failures. Reliab. Eng. Syst. Saf. 2014, 124, 132–141. [Google Scholar] [CrossRef]
- Shuang, Q.; Zhang, M.; Yuan, Y. Performance and Reliability Analysis of Water Distribution Systems under Cascading Failures and the Identification of Crucial Pipes. PLoS ONE. 2014, 9, e88445. [Google Scholar] [CrossRef] [PubMed]
- Shuang, Q.; Liu, Y.; Tang, Y.; Liu, J.; Shuang, K. System Reliability Evaluation in Water Distribution Networks with the Impact of Valves Experiencing Cascading Failures. Water 2017, 9, 413. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Gunderson, L.H. Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2001. [Google Scholar]
- Holling, C.S. Engineering resilience versus ecological resilience. Eng. Ecol. Constr. 1996, 31, 32. [Google Scholar]
- Ouyang, M. Review on modeling and simulation of interdependent critical infrastructure systems. Reliab. Eng. Syst. Saf. 2014, 121, 43–60. [Google Scholar] [CrossRef]
- National Research Council. Disaster Resilience: A National Imperative; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Carpenter, S.; Walker, B.; Anderies, J.M.; Abel, N. From Metaphor to Measurement: Resilience of What to What? Ecosystems 2001, 4, 765–781. [Google Scholar] [CrossRef]
- Biggs, R.; Schlüter, M.; Schoon, M.L. Principles for Building Resilience: Sustaining Ecosystem Services in Social-Ecological Systems; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Xu, L.; Kajikawa, Y. An integrated framework for resilience research: A systematic review based on citation network analysis. Sustain. Sci. 2018, 13, 235–254. [Google Scholar] [CrossRef]
- Baggio, J.A.; Brown, K.; Hellebrandt, D. Boundary object or bridging concept? A citation network analysis of resilience. Ecol. Soc. 2015, 20, 2. [Google Scholar] [CrossRef]
- Xu, L.; Marinova, D. Resilience thinking: A bibliometric analysis of socio-ecological research. Scientometrics 2013, 96, 911–927. [Google Scholar] [CrossRef]
- Li, R.; McDonald, A.J.; Sathasivan, A.; Khan, S. Disinfectant Residual Stability Leading to Disinfectant Decay and By-product Formation in Drinking Water Distribution Systems: A Systematic Review. Water Res. 2019, 153, 335–348. [Google Scholar] [CrossRef]
- Bello, O.; Abu-Mahfouz, A.; Hamam, Y.; Page, P.; Adedeji, K.; Piller, O. Solving Management Problems in Water Distribution Networks: A Survey of Approaches and Mathematical Models. Water 2019, 11, 562. [Google Scholar] [CrossRef]
- Gupta, A. A Selective Literature Review on Leak Management Techniques for Water Distribution System. Water Resour. Manag. 2018, 32, 3247–3269. [Google Scholar] [CrossRef]
- Mala-Jetmarova, H.; Sultanova, N.; Savic, D. Lost in Optimisation of Water Distribution Systems? A Literature Review of System Operation. Environ. Model. Softw. 2017, 93, 209–254. [Google Scholar] [CrossRef]
- Gheisi, A.; Forsyth, M.; Naser, B. Water Distribution Systems Reliability: A Review of Research Literature. J. Water Res. Plan. Manag. 2016, 142, 4016047. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, R.; Chen, Q.; Li, R. Review on water leakage control in distribution networks and the associated environmental benefits. J. Environ. Sci. 2014, 26, 955–961. [Google Scholar] [CrossRef]
- Pullin, A.S.; Stewart, G.B. Guidelines for Systematic Review in Conservation and Environmental Management. Conserv. Biol. 2006, 20, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pullin, A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 2010, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Plummer, R.; Crona, B.; Armitage, D.; Olsson, P.; Teng, M.; Yudina, O. Adaptive Comanagement: A Systematic Review and Analysis. Ecol. Soc. 2012, 17, 11. [Google Scholar] [CrossRef]
- Plummer, R.; de Loë, R.; Armitage, D. A Systematic Review of Water Vulnerability Assessment Tools. Water Resour. Manag. 2012, 26, 4327–4346. [Google Scholar] [CrossRef] [Green Version]
- Padrón, R.S.; Gudmundsson, L.; Greve, P.; Seneviratne, S.I. Large-Scale Controls of the Surface Water Balance Over Land: Insights from a Systematic Review and Meta-Analysis. Water Resour. Res. 2017, 53, 9659–9678. [Google Scholar] [CrossRef]
- Quinteiro, P.; Ridoutt, B.G.; Arroja, L.; Dias, A.C. Identification of methodological challenges remaining in the assessment of a water scarcity footprint: A review. Int. J. Life Cycle Assess. 2018, 23, 164–180. [Google Scholar] [CrossRef]
- Hosseini, S.; Barker, K.; Ramirez-Marquez, J.E. A review of definitions and measures of system resilience. Reliab. Eng. Syst. Saf. 2016, 145, 47–61. [Google Scholar] [CrossRef]
- Chen, C. The CiteSpace Manual. 2014. Available online: http://cluster.ischool.drexel.edu/*cchen/citespace (accessed on 1 June 2019).
- Chen, C.; Paul, R.J. Visualizing a Knowledge Domain’s Intellectual Structure. Computer 2001, 34, 65–71. [Google Scholar] [CrossRef]
- Chen, C. Visualising Semantic Spaces and Author Co-Citation Networks in Digital Libraries. Inf. Process. Manag. 1999, 35, 401–420. [Google Scholar] [CrossRef]
- Schvaneveldt, R. Pathfinder Associative Networks: Studies in Knowledge Organization; Ablex Publishing Corporations: Norwood, NJ, USA, 1990. [Google Scholar]
- Chen, C.; Morris, S. Visualizing evolving networks: Minimum spanning trees versus Pathfinder networks. In Proceedings of the IEEE Symposium on Information Visualization, Seattle, WA, USA, 19–21 October 2003. [Google Scholar]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101 (Suppl. 1), 5303–5310. [Google Scholar] [CrossRef] [Green Version]
- Deerwester, S.; Dumais, S.T.; Landauer, T.K.; Furnas, G.W.; Harshman, R.A. Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 1990, 41, 391–407. [Google Scholar] [CrossRef]
- Chen, C.; Ibekwe-Sanjuan, F.; Hou, J. The Structure and Dynamics of Co-Citation Clusters: A Multiple-Perspective Co-Citation Analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef]
- Luxburg, U.V. A Tutorial on Spectral Clustering. Stat. Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Ng, A.Y.; Jordan, M.; Weiss, Y. On Spectral Clustering: Analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2002, 14, 849–856. [Google Scholar]
- Shi, J.; Malik, J. Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. 2002, 22, 888–905. [Google Scholar]
- Salton, G.; Wong, A.; Yang, C.S. A vector-space model for information retrieval. Commun. ACM 1975, 18, 613–620. [Google Scholar] [CrossRef]
- Dunning, T. Accurate Methods for the Statistics of Surprise and Coincidence. Comput. Linguist. 1993, 19, 61–74. [Google Scholar]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations; Morgan Kaufmann: San Francisco, CA, USA, 1999. [Google Scholar]
- Liang, H.; Zhang, S.; Su, Y. The structure and emerging trends of construction safety management research: A bibliometric review. Int. J. Occup. Saf. Ergon. 2018. [Google Scholar] [CrossRef] [PubMed]
- Raad, D.N.; Sinske, A.N.; van Vuuren, J.H. Comparison of four reliability surrogate measures for water distribution systems design. Water Resour. Res. 2010, 46, W05524. [Google Scholar] [CrossRef]
- Tanyimboh, T.T. Informational Entropy: A Failure Tolerance and Reliability Surrogate for Water Distribution Networks. Water Resour. Manag. 2017, 31, 3189–3204. [Google Scholar] [CrossRef]
- Gheisi, A.; Naser, G. Multistate Reliability of Water-Distribution Systems: Comparison of Surrogate Measures. J. Water Res. Plan. Manag. 2015, 141, 4015018. [Google Scholar] [CrossRef]
- Santonastaso, G.; Di Nardo, A.; di Natale, M.; Giudicianni, C.; Greco, R. Scaling-Laws of Flow Entropy with Topological Metrics of Water Distribution Networks. Entropy 2018, 20, 95. [Google Scholar] [CrossRef]
- Cimorelli, L.; Morlando, F.; Cozzolino, L.; D’Aniello, A.; Pianese, D. Comparison among Resilience and Entropy Index in the Optimal Rehabilitation of Water Distribution Networks under Limited-Budgets. Water Resour. Manag. 2018, 32, 3997–4011. [Google Scholar] [CrossRef]
- Baños, R.; Reca, J.; Martinez, J.; Gil, C.; Marquez, A.L. Resilience Indexes for Water Distribution Network Design: A Performance Analysis Under Demand Uncertainty. Water Resour. Manag. 2011, 25, 2351–2366. [Google Scholar] [CrossRef]
- Todini, E. Looped water distribution networks design using a resilience index based heuristic approach. Urban Water. 2000, 2, 115–122. [Google Scholar] [CrossRef]
- Diao, K.; Sweetapple, C.; Farmani, R.; Fu, G.; Ward, S.; Butler, D. Global resilience analysis of water distribution systems. Water Res. 2016, 106, 383–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klise, K.A.; Bynum, M.; Moriarty, D.; Murray, R. A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study. Environ. Model. Softw. 2017, 95, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.; Abraham, E.; Stoianov, I. A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution Networks. Water Resour. Manag. 2016, 30, 1685–1699. [Google Scholar] [CrossRef] [Green Version]
- Kajikawa, Y.; Ohno, J.; Takeda, Y.; Matsushima, K.; Komiyama, H. Creating an academic landscape of sustainability science: An analysis of the citation network. Sustain. Sci. 2007, 2, 221. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, Adaptability and Transformability in Social-ecological Systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Framework for analytical quantification of disaster resilience. Eng. Struct. 2010, 32, 3639–3649. [Google Scholar] [CrossRef]
- Cimellaro, G.P.; Tinebra, A.; Renschler, C.; Fragiadakis, M. New Resilience Index for Urban Water Distribution Networks. J. Struct. Eng. 2016, 142, C40150148SI. [Google Scholar] [CrossRef]
- Zoppou, C. Review of urban storm water models. Environ. Model. Softw. 2001, 16, 195–231. [Google Scholar] [CrossRef]
- Quinlan, A.E.; Berbés-Blázquez, M.; Haider, L.J.; Peterson, G.D. Measuring and assessing resilience: Broadening understanding through multiple disciplinary perspectives. J. Appl. Ecol. 2016, 53, 677–687. [Google Scholar] [CrossRef]
- Nazif, S.; Karamouz, M. Algorithm for Assessment of Water Distribution System’s Readiness: Planning for Disasters. J. Water Resour. Plan. Manag. 2009, 135, 244–252. [Google Scholar] [CrossRef]
- Zhuang, B.; Lansey, K.; Kang, D. Resilience/Availability Analysis of Municipal Water Distribution System Incorporating Adaptive Pump Operation. J. Hydraul. Eng. 2013, 139, 527–537. [Google Scholar] [CrossRef]
- Eliades, D.G.; Polycarpou, M.M. Leakage fault detection in district metered areas of water distribution systems. J. Hydroinform. 2012, 14, 992–1005. [Google Scholar] [CrossRef] [Green Version]
- Eliades, D.G.; Polycarpou, M.M. A Fault Diagnosis and Security Framework for Water Systems. IEEE Trans. Control Syst. Technol. 2010, 18, 1254–1265. [Google Scholar] [CrossRef]
- Cugueró-Escofet, M.À.; Quevedo, J.; Alippi, C.; Roveri, M.; Puig, V.; García, D.; Trovò, F. Model- vs. data-based approaches applied to fault diagnosis in potable water supply networks. J. Hydroinform. 2016, 18, 831–850. [Google Scholar] [CrossRef] [Green Version]
- Tanyimboh, T.T.; Czajkowska, A.M. Joint Entropy Based Multi-Objective Evolutionary Optimization of Water Distribution Networks. Water Resour. Manag. 2018, 32, 2569–2584. [Google Scholar] [CrossRef] [Green Version]
- Tanyimboh, T.T.; Czajkowska, A. Self-Adaptive Solution-Space Reduction Algorithm for Multi-Objective Evolutionary Design Optimization of Water Distribution Networks. Water Resour. Manag. 2018, 32, 10. [Google Scholar] [CrossRef]
- Meirelles, G.; Brentan, B.; Izquierdo, J.; Ramos, H.; Luvizotto, E., Jr. Trunk Network Rehabilitation for Resilience Improvement and Energy Recovery in Water Distribution Networks. Water 2018, 10, 6936. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, H.; Chen, Z.; Gong, H.; Feng, Q. Assessing urban lifeline systems immediately after seismic disaster based on emergency resilience. Struct. Infrastruct. Eng. 2016, 12, 1634–1649. [Google Scholar] [CrossRef]
- Chang, S.E.; McDaniels, T.; Fox, J.; Dhariwal, R.; Longstaff, H. Toward Disaster-Resilient Cities: Characterizing Resilience of Infrastructure Systems with Expert Judgments. Risk Anal. 2014, 34, 416–434. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; von Winterfeldt, D. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Giustolisi, O.; Savic, D. Identification of segments and optimal isolation valve system design in water distribution networks. Urban Water J. 2010, 7, 1–15. [Google Scholar] [CrossRef]
- Jun, H.; Loganathan, G.V. Valve-Controlled Segments in Water Distribution Systems. J. Water Res. Plan. Manag. 2007, 133, 145–155. [Google Scholar] [CrossRef]
- Mugume, S.N.; Diao, K.; Astaraie-Imani, M.; Fu, G.; Farmani, R.; Butler, D. Enhancing resilience in urban water systems for future cities. Water Sci. Technol. Water Supply 2015, 15, 1343–1352. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Chen, Z.; Gong, H. Effects Comparison of Different Resilience Enhancing Strategies for Municipal Water Distribution Network: A Multidimensional Approach. Math. Probl. Eng. 2015, 2015, 438063. [Google Scholar] [CrossRef]
- Laucelli, D.; Giustolisi, O. Vulnerability Assessment of Water Distribution Networks under Seismic Actions. J. Water Res. Plan. Manag. 2015, 141, 040140826. [Google Scholar] [CrossRef]
- Bi, W.; Dandy, G.C.; Maier, H.R. Use of Domain Knowledge to Increase the Convergence Rate of Evolutionary Algorithms for Optimizing the Cost and Resilience of Water Distribution Systems. J. Water Res. Plan. Manag. 2016, 142. UNSP 040160279. [Google Scholar] [CrossRef]
- Duenas-Osorio, L.; Craig, J.I.; Goodno, B.J. Seismic response of critical interdependent networks. Earthq. Eng. Struct. Dyn. 2007, 36, 285–306. [Google Scholar] [CrossRef]
- Farahmandfar, Z.; Piratla, K.R.; Andrus, R.D. Resilience Evaluation of Water Supply Networks against Seismic Hazards. J. Pipeline Syst. Eng. 2017, 8, 1. [Google Scholar] [CrossRef]
- Mao, Q.; Li, N. Assessment of the impact of interdependencies on the resilience of networked critical infrastructure systems. Nat. Hazards 2018, 93, 315–337. [Google Scholar] [CrossRef]
- Zimmerman, R.; Zhu, Q.; de Leon, F.; Guo, Z. Conceptual Modeling Framework to Integrate Resilient and Interdependent Infrastructure in Extreme Weather. J. Infrastruct. Syst. 2017, 23, 040170344. [Google Scholar] [CrossRef]
- Ouyang, M.; Dueñas-Osorio, L. Time-dependent resilience assessment and improvement of urban infrastructure systems. Chaos 2012, 22, 33122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, F.; Fu, G.; Farmani, R.; Sweetapple, C.; Butler, D. Topological attributes of network resilience: A study in water distribution systems. Water Res. 2018, 143, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Buzna, L.; Peters, K.; Ammoser, H.; Kühnert, C.; Helbing, D. Efficient Response to Cascading Disaster Spreading. Phys. Rev. E 2007, 75, 56107. [Google Scholar] [CrossRef] [PubMed]
- Prasad, T.D.; Park, N.S. Multiobjective genetic algorithms for design of water distribution networks. J. Water Resour. Plan. Manag. 2004, 130, 73–82. [Google Scholar] [CrossRef]
- Jayaram, N.; Srinivasan, K. Performance-based optimal design and rehabilitation of water distribution networks using life cycle costing. Water Resour. Res. 2008, 44, W014171. [Google Scholar] [CrossRef]
- Tanyimboh, T.T.; Templeman, A.B. Optimum Design of Flexible Water Distribution Networks. Civ. Eng. Syst. 1993, 10, 243–258. [Google Scholar] [CrossRef]
- Wu, W.; Maier, H.R.; Simpson, A.R. Surplus Power Factor as a Resilience Measure for Assessing Hydraulic Reliability in Water Transmission System Optimization. J. Water Resour. Plan. Manag. 2011, 137, 542–546. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Savic, D.; Kapelan, Z.; Zhao, M.; Yuan, Y.; Zhao, H. A diameter-sensitive flow entropy method for reliability consideration in water distribution system design. Water Resour. Res. 2014, 50, 5597–5610. [Google Scholar] [CrossRef] [Green Version]
- Saleh, S.; Tanyimboh, T.T. Multi-Directional Maximum-Entropy Approach to the Evolutionary Design Optimization of Water Distribution Systems. Water Resour. Manag. 2016, 30, 1885–1901. [Google Scholar] [CrossRef] [Green Version]
- Tanyimboh, T.T.; Templeman, A.B. Calculating Maximum Entropy Flows in Networks. J. Oper. Res. Soc. 1993, 44, 383–396. [Google Scholar] [CrossRef]
- Awumah, K.; Goulter, I.; Bhatt, S.K. Entropy-Based Redundancy Measures in Water-Distribution Networks. J. Hydraul. Eng. 1991, 117, 595–614. [Google Scholar] [CrossRef]
- Creaco, E.; Franchini, M.; Todini, E. Generalized Resilience and Failure Indices for Use with Pressure-Driven Modeling and Leakage. J. Water Res. Plan. Manag. 2016, 142, 040160198. [Google Scholar] [CrossRef]
- Jeong, G.; Wicaksono, A.; Kang, D. Revisiting the Resilience Index for Water Distribution Networks. J. Water Res. Plan. Manag. 2017, 143. UNSP 040170358. [Google Scholar] [CrossRef]
- Zheng, F.; Simpson, A.R.; Zecchin, A.C. An efficient hybrid approach for multiobjective optimization of water distribution systems. Water Resour. Res. 2014, 50, 3650–3671. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Creaco, E.; Franchini, M.; Savic, D.; Kapelan, Z. Comparing Low and High-Level Hybrid Algorithms on the Two-Objective Optimal Design of Water Distribution Systems. Water Resour. Manag. 2015, 29, 1–16. [Google Scholar] [CrossRef]
- Suribabu, C.R. Resilience-based optimal design of water distribution network. Appl. Water Sci. 2017, 7, 4055–4066. [Google Scholar] [CrossRef]
- Alvisi, S.; Franchini, M. A heuristic procedure for the automatic creation of district metered areas in water distribution systems. Urban Water J. 2014, 11, 137–159. [Google Scholar] [CrossRef]
- Di Nardo, A.; Di Natale, M. A heuristic design support methodology based on graph theory for district metering of water supply networks. Eng. Optim. 2011, 43, 193–211. [Google Scholar] [CrossRef]
- Campbell, E.; Izquierdo, J.; Montalvo, I.; Perez-Garcia, R. A Novel Water Supply Network Sectorization Methodology Based on a Complete Economic Analysis, Including Uncertainties. Water 2016, 8, 1795. [Google Scholar] [CrossRef]
- Greco, R.; Di Nardo, A.; Santonastaso, G. Resilience and entropy as indices of robustness of water distribution networks. J. Hydroinform. 2012, 14, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Tanyimboh, T.T.; Siew, C.; Saleh, S.; Czajkowska, A. Comparison of Surrogate Measures for the Reliability and Redundancy of Water Distribution Systems. Water Resour. Manag. 2016, 30, 3535–3552. [Google Scholar] [CrossRef] [Green Version]
- Tsai, F.T.C.; Katiyar, V.; Toy, D.; Goff, R.A. Conjunctive Management of Large-Scale Pressurized Water Distribution and Groundwater Systems in Semi-Arid Area with Parallel Genetic Algorithm. Water Resour. Manag. 2009, 23, 1497–1517. [Google Scholar] [CrossRef]
- Aydin, N.Y.; Mays, L.; Schmitt, T. Sustainability Assessment of Urban Water Distribution Systems. Water Resour. Manag. 2014, 28, 4373–4384. [Google Scholar] [CrossRef]
- Aydin, N.Y.; Mays, L.; Schmitt, T. Technical and Environmental Sustainability Assessment of Water Distribution Systems. Water Resour. Manag. 2014, 28, 4699–4713. [Google Scholar] [CrossRef]
- Jung, D.; Kang, D.; Kim, J.H.; Lansey, K. Robustness-Based Design of Water Distribution Systems. J. Water Res. Plan. Manag. 2014, 140, 0401403311. [Google Scholar] [CrossRef]
- Soltanjalili, M.; Bozorg-Haddad, O.; Marino, M.A. Operating Water Distribution Networks during Water Shortage Conditions Using Hedging and Intermittent Water Supply Concepts. J. Water Res. Plan. Manag. 2013, 139, 644–659. [Google Scholar] [CrossRef]
- Cimellaro, G.P.; Renschler, C.; Reinhorn, A.M.; Arendt, L. PEOPLES: A Framework for Evaluating Resilience. J. Struct. Eng. 2016, 142, 0401606310. [Google Scholar] [CrossRef]
- Bristow, E.C.; Brumbelow, K. Simulation to Aid Disaster Planning and Mitigation: Tools and Techniques for Water Distribution Managers and Emergency Planners. J. Water Res. Plan. Manag. 2013, 139, 376–386. [Google Scholar] [CrossRef]
- Jeong, H.S.; Qiao, J.H.; Abraham, D.M.; Lawley, M.; Richard, J.P.; Yih, Y. Minimizing the consequences of intentional attack on water infrastructure. Comput.-Aided Civ. Infrastruct. 2006, 21, 79–92. [Google Scholar] [CrossRef]
- Hayuti, M.H.; Burrows, R.; Naga, D. Modelling water distribution systems with deficient pressure. Proc. Inst. Civ. Eng.-Water Manag. 2007, 160, 215–224. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Hoseini-Ghafari, S.; Solgi, M.; Loaiciga, H.A. Intermittent Urban Water Supply with Protection of Consumers’ Welfare. J. Pipeline Syst. Eng. 2016, 7, 040160023. [Google Scholar] [CrossRef]
- Laucelli, D.; Berardi, L.; Giustolisi, O. Assessing climate change and asset deterioration impacts on water distribution networks: Demand-driven or pressure-driven network modeling? Environ. Model. Softw. 2012, 37, 206–216. [Google Scholar] [CrossRef]
- Giustolisi, O.; Walski, T.M. Demand Components in Water Distribution Network Analysis. J. Water Res. Plan. Manag. 2012, 138, 356–367. [Google Scholar] [CrossRef]
- Jun, L.; Guoping, Y. Iterative Methodology of Pressure-Dependent Demand Based on EPANET for Pressure-Deficient Water Distribution Analysis. J. Water Res. Plan. Manag. 2013, 139, 34–44. [Google Scholar] [CrossRef]
- Di Nardo, A.; Di Natale, M.; Santonastaso, G.F.; Tzatchkov, V.G.; Alcocer-Yamanaka, V.H. Water Network Sectorization Based on Graph Theory and Energy Performance Indices. J. Water Res. Plan. Manag. 2014, 140, 620–629. [Google Scholar] [CrossRef]
- Wright, R.; Stoianov, I.; Parpas, P.; Henderson, K.; King, J. Adaptive water distribution networks with dynamically reconfigurable topology. J. Hydroinform. 2014, 16, 1280–1301. [Google Scholar] [CrossRef]
- Yazdani, A.; Jeffrey, P. Water distribution system vulnerability analysis using weighted and directed network models. Water Resour. Res. 2012, 48, W06517. [Google Scholar] [CrossRef]
- Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Greco, R.; Santonastaso, G.F. Complex network and fractal theory for the assessment of water distribution network resilience to pipe failures. Water Sci. Technol.-Water Supply 2018, 18, 767–777. [Google Scholar] [CrossRef]
- Di Nardo, A.; Giudicianni, C.; Greco, R.; Herrera, M.; Santonastaso, G.F. Applications of Graph Spectral Techniques to Water Distribution Network Management. Water 2018, 10, 451. [Google Scholar] [CrossRef]
- Yazdani, A.; Otoo, R.A.; Jeffrey, P. Resilience enhancing expansion strategies for water distribution systems: A network theory approach. Environ. Model. Softw. 2011, 26, 1574–1582. [Google Scholar] [CrossRef]
- Agathokleous, A.; Christodoulou, C.; Christodoulou, S.E. Topological Robustness and Vulnerability Assessment of Water Distribution Networks. Water Resour. Manag. 2017, 31, 4007–4021. [Google Scholar] [CrossRef]
- Sheng, N.; Jia, Y.; Xu, Z.; Ho, S.L.; Kan, C.W. A complex network based model for detecting isolated communities in water distribution networks. Chaos 2013, 23, 3323–3335. [Google Scholar] [CrossRef]
- Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Greco, R.; Santonastaso, G.F. Weighted spectral clustering for water distribution network partitioning. Appl. Netw. Sci. 2017, 2, 19. [Google Scholar] [CrossRef]
- Di Nardo, A.; Di Natale, M.; Santonastaso, G.F.; Venticinque, S. An Automated Tool for Smart Water Network Partitioning. Water Resour. Manag. 2013, 27, 4493–4508. [Google Scholar] [CrossRef]
- Yazdi, J. Decomposition based Multi Objective Evolutionary Algorithms for Design of Large-Scale Water Distribution Networks. Water Resour. Manag. 2016, 30, 2749–2766. [Google Scholar] [CrossRef]
- Zarghami, S.A.; Gunawan, I.; Schultmann, F. Measuring robustness of water distribution networks using informational entropy. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Bandung, Indonesia, 6–8 March 2018. [Google Scholar]
- Zarghami, S.A.; Gunawan, I.; Schultmann, F. Integrating entropy theory and cospanning tree technique for redundancy analysis of water distribution networks. Reliab. Eng. Syst. Saf. 2018, 176, 102–112. [Google Scholar] [CrossRef]
- Farahmandfar, Z.; Piratla, K.R. Comparative Evaluation of Topological and Flow-Based Seismic Resilience Metrics for Rehabilitation of Water Pipeline Systems. J. Pipeline Syst. Eng. 2018, 9, 1. [Google Scholar] [CrossRef]
- Pérez, R.; Sanz, G.; Puig, V.; Quevedo, J.; Cugueró-Escofet, M.À.; Nejjari, F.; Meseguer, J.; Cembrano, G.; Mirats-Tur, J.M.; Sarrate, R. Leak Localization in Water Networks: A Model-Based Methodology Using Pressure Sensors Applied to a Real Network in Barcelona [Applications of Control]. IEEE Control Syst. Mag. 2014, 34, 24–36. [Google Scholar] [Green Version]
- Pérez, R.; Puig, V.; Pascual, J.; Peralta, A.; Landeros, E.; Jordanas, L. Pressure sensor distribution for leak detection in Barcelona water distribution network. Water Sci. Technol. Water Supply 2009, 9, 715–721. [Google Scholar] [CrossRef]
- Eliades, D.G.; Polycarpou, M.M. Water Contamination Impact Evaluation and Source-Area Isolation Using Decision Trees. J. Water Res. Plan. Manag. 2012, 138, 562–570. [Google Scholar] [CrossRef]
- Lambrou, T.P.; Anastasiou, C.C.; Panayiotou, C.G.; Polycarpou, M.M. A Low-Cost Sensor Network for Real-Time Monitoring and Contamination Detection in Drinking Water Distribution Systems. IEEE Sens. J. 2014, 14, 2765–2772. [Google Scholar] [CrossRef]
- Farley, M. Leakage Management and Control: A Best Practice Training Manual; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Lin, H.Y.; Lin, B.W.; Li, P.H.; Kao, J.J. The application of the cluster identification method for the detection of leakages in water distribution networks. Int. J. Environ. Sci. Technol. 2015, 12, 2687–2696. [Google Scholar] [CrossRef]
- Cugueró-Escofet, M.À.; García, D.; Quevedo, J.; Puig, V.; Espin, S.; Roquet, J. A methodology and a software tool for sensor data validation/reconstruction: Application to the Catalonia regional water network. Control Eng. Pract. 2016, 49, 159–172. [Google Scholar] [CrossRef]
- Hagos, M.; Jung, D.; Lansey, K.E. Optimal meter placement for pipe burst detection in water distribution systems. J. Hydroinform. 2016, 18, 741–756. [Google Scholar] [CrossRef] [Green Version]
- Sela, L.; Amin, S. Robust sensor placement for pipeline monitoring: Mixed integer and greedy optimization. Adv. Eng. Inf. 2018, 36, 55–63. [Google Scholar] [CrossRef]
- Haimes, Y.Y.; Matalas, N.C.; Lambert, J.H.; Jackson, B.A.; Fellows, J.F.R. Reducing Vulnerability of Water Supply Systems to Attack. J. Infrastruct. Syst. 1998, 4, 164–177. [Google Scholar] [CrossRef]
- Burns, N.B.; Cooper, C.A.; Dobbins, D.A.; Edwards, J.C.; Lampe, L.K. Security analysis and response for water utilities. In Urban Water Supply Handbook; Mays, L., Ed.; McGraw-Hill: New York, NY, USA, 2002; pp. 20.1–20.23. [Google Scholar]
- American Water Works Association. Effects of Water Age on Distribution System Water Quality; American Water Works Association: Denver, CO, USA, 2002. [Google Scholar]
- Sarbu, I.; Ostafe, G. Optimal design of urban water supply pipe networks. Urban Water J. 2016, 13, 521–535. [Google Scholar] [CrossRef]
- Everard, M.; Sharma, O.P.; Vishwakarma, V.K.; Khandal, D.; Sahu, Y.K.; Bhatnagar, R.; Singh, J.K.; Kumar, R.; Nawab, A.; Kumar, A.; et al. Assessing the feasibility of integrating ecosystem-based with engineered water resource governance and management for water security in semi-arid landscapes: A case study in the Banas catchment, Rajasthan, India. Sci. Total Environ. 2018, 612, 1249–1265. [Google Scholar] [CrossRef]
- Hines, P.; Cotilla-Sanchez, E.; Blumsack, S. Do topological models provide good information about electricity infrastructure vulnerability? Chaos 2010, 20, 0331223. [Google Scholar] [CrossRef]
- Ouyang, M. Comparisons of purely topological model, betweenness based model and direct current power flow model to analyze power grid vulnerability. Chaos 2013, 23, 0231142. [Google Scholar] [CrossRef]
- Chang, S.E.; Shinozuka, M. Measuring improvements in the disaster resilience of communities. Earthq. Spectra 2004, 20, 739–755. [Google Scholar] [CrossRef]
- Mehran, A.; Mazdiyasni, O.; AghaKouchak, A. A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand. J. Geophys. Res. Atmos. 2015, 120, 7520–7533. [Google Scholar] [CrossRef]
- Chappin, É.J.L. Simulating Energy Transitions; Next Generation Infrastructures Foundation: Delft, The Netherlands, 2011; ISBN 9789079787302. [Google Scholar]
Software | Generate Water Network Models | Modify Network Structure | Modify Network Operation | Simulate Network Hydraulics and Water Quality | Analyze Results and Generate Graphics | Time-Varying Demands | Add Disruptive Incidents | Add Response/Repair/Mitigation Strategies | Run Probabilistic Simulations | Compute Resilience | Hydraulic Simulation Method |
---|---|---|---|---|---|---|---|---|---|---|---|
EPANET | √ | √ | √ | √ | √ | √ | demand-driven | ||||
WNTR | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | pressure-driven |
New Challenges | Focus Areas | Effects |
---|---|---|
Targeted failures | Absorptive capability |
|
Expert knowledge | Absorptive capability |
|
Multi-scenario coupled analysis | Absorptive capability |
|
Emergency recovery | Restorative capability |
|
Post-disturbance rebuilding | Restorative capability |
|
Effects of climate change | Adaptive capability |
|
Coupled analysis with society and technology | Adaptive capability |
|
Data availability | Adaptive capability |
|
Interdependency infrastructures | Adaptive capability |
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuang, Q.; Liu, H.J.; Porse, E. Review of the Quantitative Resilience Methods in Water Distribution Networks. Water 2019, 11, 1189. https://doi.org/10.3390/w11061189
Shuang Q, Liu HJ, Porse E. Review of the Quantitative Resilience Methods in Water Distribution Networks. Water. 2019; 11(6):1189. https://doi.org/10.3390/w11061189
Chicago/Turabian StyleShuang, Qing, Hui Jie Liu, and Erik Porse. 2019. "Review of the Quantitative Resilience Methods in Water Distribution Networks" Water 11, no. 6: 1189. https://doi.org/10.3390/w11061189