An Autopsy Study of a Fouled Reverse Osmosis Membrane Used for Ultrapure Water Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the UPW Production System
2.2. Preparation of Water and Foulant Samples
2.2.1. Water Samples
2.2.2. Foulant Samples
2.3. Virgin, Fouled, and Cleaned RO Membranes
2.4. Lab-Scale Cross-Flow RO Filtration Unit
2.5. Analytical Methods
3. Results and Discussions
3.1. Water Quality Analyses
3.2. Characterization of DOM
3.3. Characterization of the RO Membrane Foulants
3.3.1. Organic and Inorganic Contents
3.3.2. Fluorescence Spectroscopy
3.3.3. HPSEC Analysis
3.3.4. ATR-FTIR Spectroscopy
3.4. Surface Features of Virgin, Fouled and Cleaned RO Membranes
3.5. Effects of Cleaning Agent Types on the Recovery of Salt Rejection and Permeate Flux
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lee, H.; Jin, Y.; Hong, S. Recent transitions in ultrapure water (UPW) technology: Rising role of reverse osmosis. Desalination 2016, 399, 185–197. [Google Scholar] [CrossRef]
- Ganzi, G.C.; Jha, A.D.; DiMascio, E.; Wood, J.H. Electrodeionization—Theory and practice of continuous electrodeionization. Ultrapure Water J. 1997, 14, 64–69. [Google Scholar]
- Wood, J.; Gifford, J.; Arba, J.; Shaw, M. Production of ultrapure water by continuous electrodeionization. Desalination 2010, 250, 973–976. [Google Scholar] [CrossRef]
- GWI. Global Water Market, 2014: Meeting the Word’s Water and Wastewater Need Until 2018; Global Water Intelligence: Oxford, UK, 2013. [Google Scholar]
- Puckorius, P.R. Does cooling water treatment vary between industries? Ind. Water Treat. 2015, 32, 37–42. [Google Scholar]
- Cohen, N.; Sackstein, S. How to bring your high-purity water pretreatment systems into the 21st century. Ultrapure Water J. 2015, 32, 21–25. [Google Scholar]
- Tai, M.S.L.; Chua, I.; Line, K.; Ngh, W.J.; Tea, W.K. Removal of dissolved oxygen in ultrapure water production using microporous membrane modules. J. Membrane Sci. 1994, 87, 99–105. [Google Scholar] [CrossRef]
- Li, K.; Chua, I.; Ng, W.J.; Teo, W.K. Removal of dissolved oxygen in ultrapure water production using a membrane reactor. Chem. Eng. Sci. 1995, 50, 3547–3556. [Google Scholar] [CrossRef]
- Jean-luc, B.; Bruno, D. Contamination monitoring and analysis in semiconductor manufacturing. Semicond. Technol. 1999, 57–78. [Google Scholar] [CrossRef]
- Ohya, H. State of the art ultrapurewater production in Japan. Desalination 1991, 80, 159–165. [Google Scholar] [CrossRef]
- Ohmi, T. Ultraclean Technology Handbook: Ultrapure Water; CRC Press: Boca Raton, FL, USA, 1993; p. 1. [Google Scholar]
- Hutcheson, J. Ultrapurewater: systems formicroelectronics. Filtr. Separat. 2006, 43, 22–25. [Google Scholar] [CrossRef]
- Wang, A. UPW’s membrane technology application trend on semiconductor. Semicon. Man. Tech. Workshop 2002, 294–298. [Google Scholar] [CrossRef]
- Singh, R. Production of high-purity water by membrane processes. Desalin. Water Treat. 2009, 3, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, S.R.; Hartman, J. Case history of a water treatment system using EDI in Puerto Rico. Ultrapure Water J. 2010, 27, 12–24. [Google Scholar]
- Pororov, S.A.; Kornilova, N.; Platonov, K. Ultra pure water: intensive water demineralisation through ion exchange. Filtr. Separat. 2011, 48, 36–39. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, J.H. The production of ultrapure water by membrane capacitive deionization (MCDI) technology. J. Membrane Sci. 2012, 409–410, 251–256. [Google Scholar] [CrossRef]
- Chon, K.; Cho, J.; Shon, H.K.; Chon, K. Advanced characterization of organic foulants of ultrafiltration and reverse osmosis from water reclamation. Desalination 2012, 301, 59–66. [Google Scholar] [CrossRef]
- Chon, K.; Cho, J.; Shon, H.K. Advanced characterization of algogenic organic matter, bacterial organic matter, humic acids and fulvic acids. Water Sci. Technol. 2013, 67, 2228–2235. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.; Amy, G.; Pellagrino, J.; Yoon, Y. Characterization of clean and natural organic matter (NOM) fouled NF and UF membranes, and foulants characterization. Desalination 1998, 118, 101–108. [Google Scholar] [CrossRef]
- Chon, K.; Cho, J.; Shon, H.K. Fouling characteristics of a membrane bioreactor and nanofiltration hybrid system for municipal wastewater reclamation. Bioresource Technol. 2013, 130, 239–247. [Google Scholar] [CrossRef]
- Chon, K.; Lee, K.; Kim, I.S.; Jang, A. Performance assessment of a submerged membrane bioreactor using a novel microbial consortium. Bioresour. Technol. 2016, 210, 2–10. [Google Scholar] [CrossRef]
- Huber, S.A.; Balz, A.; Abert, M.; Pronk, W. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). Water Res. 2011, 45, 879–885. [Google Scholar] [CrossRef]
- Leenheer, J.A.; Croué, J.P. Characterizing dissolved aquatic organic matter. Environ. Sci. Technol. 2003, 37, 18A–26A. [Google Scholar] [CrossRef]
- Chon, K.; Cho, J. Fouling behavior of dissolved organic matter in nanofiltration membranes from a pilot-scale drinking water treatment plant: An autopsy study. Chem. Eng. J. 2016, 295, 268–277. [Google Scholar] [CrossRef]
- Lee, S.; Elimelech, M. Salt cleaning of organic-fouled reverse osmosis membranes. Water. Res. 2007, 41, 1134–1142. [Google Scholar] [CrossRef]
- Lee, H.; Amy, G.; Cho, J.; Yoon, Y.; Moon, S.-H.; Kim, I.S. Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter. Wat. Res. 2001, 35, 3301–3308. [Google Scholar] [CrossRef]
- Stumm, W. Chemistry of the Solid–Water Interface; Wiley Inc.: New York, NY, USA, 1992. [Google Scholar]
- Rho, H.; Chon, K.; Cho, J. Surface charge characterization of nanofiltration membranes by potentimetric titrations and electrophoresis: Functionality vs. zeta potential. Desalination 2018, 427, 19–26. [Google Scholar] [CrossRef]
- Chon, K.; Chon, K.; Cho, J. Characterization of size fractionated dissolved organic matter from river water and wastewater effluent using preparative high performance size exclusion chromatography. Org. Geochem. 2017, 103, 105–112. [Google Scholar] [CrossRef]
- Chon, K.; Kim, S.J.; Moon, J.; Cho, J. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: an autopsy study of a pilot plant. Water Res. 2012, 46, 1803–1806. [Google Scholar] [CrossRef]
- Kanokkantapong, V.; Marhaba, T.F.; Panyapinyophol, B.; Pavasant, P. FTIR evaluation of functional groups involved in the formation of haloacetic acids during the chlorination of raw water. J. Hazard. Mater. 2006, B136, 188–196. [Google Scholar] [CrossRef]
- Hoek, E.M.V.; Elimelech, M. Cake-enhanced concentration polarization: A new fouling mechanism for salt-rejecting membranes. Environ. Sci. Technol. 2003, 37, 5581–5588. [Google Scholar] [CrossRef]
- Lee, S.; Cho, J.; Elimelech, M. Influence of colloidal fouling and feed water recovery on salt rejection of RO and NF membranes. Desalination 2004, 160, 1–12. [Google Scholar] [CrossRef]
Type | MFC Filter | RO Membrane |
---|---|---|
Manufacturer | SpectraPure | Toray Chemical Korea |
Membrane code | SP32410 | RE-1812-50 |
Materials | Polypropylene | Thin-film composite polyamide |
Nominal pore size (μm) | 0.5 | < 0.005 |
Roughness (μm) | N.A. | 0.04 |
Inner diameter (cm) | 2.8 | N.A. |
Outer diameter (cm) | 6.5 | N.A. |
Length (cm) | 23.0 | N.A. |
Effective surface area (m2) | N.A. | 0.4 |
Specifications | H+ | OH− |
---|---|---|
Materials | Styrene-divinylbenzene | |
Functional groups | Sulfonic acid and quaternary ammonium | |
Total exchange capacity (eq L−1) a | 1.9 | 1.0 |
Water content (%) | 46–53 | 45–53 |
Averaged particle size (μm) | 360 | 590 |
Uniformity coefficient (μm) b | 1.1 | 1.1 |
Particle density (g mL−1) | 1.22 | 1.08 |
Cationic resin conversion rate to H+ (%) a | 99.7 | - |
Anionic resin conversion rate to OH− (%) a | - | 95.0 |
Header | Conditions | Feed | MFC Permeate | RO Permeate | IER Permeate |
---|---|---|---|---|---|
Bulk parameters | pH | 7.3 | 7.3 | 7.5 | 6.3 |
Conductivity (μS cm−1) | 68.5 | 67.1 | 12.1 | 0.55 | |
TN (mgN L−1) | 2.15 (±0.10) | 2.08 (±0.06) | 0.98 (±0.47) | 0.05 (±0.01) a | |
DOC (mgC L−1) | 1.65 (±0.10) | 0.81 (±0.13) | 0.09 (±0.07) | 0.07 (±0.02) a | |
UVA254 (cm−1) | 0.024 (±0.002) | 0.018 (±0.001) | 0.002 (±0.001) | 0.001 (±0.000) | |
SUVA (L mg−1 m−1) | 1.45 (±0.03) | 2.22 (±0.20) | 2.22 (±0.78) | 1.37 (±0.28) | |
Ion species | Na+ (mg L−1) | 6.47 (±0.21) | 6.13 (±0.16) | 0.21 (±0.01) | B.D.L. |
K+ (mg L−1) | 2.19 (±0.22) | 2.12 (±0.12) | 0.41 (±0.01) | B.D.L. | |
Mg2+ (mg L−1) | 3.26 (±0.12) | 3.12 (±0.27) | 0.29 (±0.09) | B.D.L. | |
Ca2+ (mg L−1) | 14.48 (±0.21) | 13.9 (±0.14) | 1.54 (±0.13) | B.D.L. | |
Cl− (mg L−1) | 17.23 (±0.41) | 15.82 (±0.35) | 0.42 (±0.01) | B.D.L. | |
NO3− (mg L−1) | 1.71 (±0.18) | 1.64 (±0.25) | 0.38 (±0.01) | B.D.L. | |
SO42− (mg L−1) | 11.23 (±0.32) | 9.97 (±0.14) | 0.12 (±0.01) | B.D.L. | |
Metals and metalloids | Al (μg L−1) | 19.17 (±0.13) | 12.25 (±0.16) | 1.98 (±0.09) | 2.7 (±0.12) |
As (μg L−1) | 0.54 (±0.02) | 0.18 (±0.03) | 0.00 (±0.00) | 0.00 (±0.00) | |
Cd (μg L−1) | 0.01 (±0.01) | 0.00 (±0.00) | 0.00 (±0.00) | B.D.L. | |
Co (μg L−1) | 0.02 (±0.01) | 0.00 (±0.00) | 0.00 (±0.00) | 0.00 (±0.00) | |
Cr (μg L−1) | 0.14 (±0.06) | 0.00 (±0.00) | 0.00 (±0.00) | 0.00 (±0.00) | |
Cu (μg L−1) | 1.15 (±0.03) | 0.82 (±0.03) | 0.28 (±0.02) | B.D.L. | |
Fe (μg L−1) | 3.67 (±0.31) | 1.23 (±0.18) | 0.32 (±0.17) | 1.3 (±0.02) | |
Mn (μg L−1) | 2.16 (±0.02) | 1.98 (±0.02) | 0.35 (±0.02) | 0.1 (±0.00) | |
Pb (μg L−1) | 0.04 (±0.01) | 0.03 (±0.01) | 0.01 (±0.02) | B.D.L. |
Header | Conditions | RO-DI | RO-A | RO-B | RO-S |
---|---|---|---|---|---|
Bulk Parameter | DOC (mgC m−2) | 25.39 (±0.35) | 15.95 (±0.38) | 46.14 (±0.94) | 65.12 (±1.51) |
UVA254 (cm−1) | 0.087 (±0.003) | 0.017 (±0.003) | 0.289 (±0.004) | 0.011 (±0.001) | |
SUVA (L mg−1 m−1) | 2.71 (±0.09) | 0.81 (±0.14) | 4.96 (±0.05) | 0.13 (±0.04) | |
TN (mgN m−2) | 1.08 (±0.41) | 2.72 (±0.34) | 2.85 (±0.18) | 3.57 (±1.95) | |
Metals and metalloids | Al (mg m−2) | 0.24 (±0.02) | 4.89 (±0.09) | 8.19 (±0.06) | 0.01 (±0.01) |
As (μg m−2) | 0.03 (±0.01) | 0.02 (±0.01) | 8.79 (±0.01) | 0.01 (±0.01) | |
Ca (mg m−2) | 25.72 (±4.83) | 25.09 (±0.55) | 36.96 (±2.45) | 24.06 (±2.37) | |
Cd (μg m−2) | B.D.L. | B.D.L. | B.D.L. | B.D.L. | |
Co (μg m−2) | B.D.L. | B.D.L. | B.D.L. | B.D.L. | |
Cr (μg m−2) | 0.01 (±0.01) | 0.01 (±0.01) | 0.06 (±0.01) | 0.00 (±0.01) | |
Cu (μg m−2) | 0.04 (±0.01) | 0.65 (±0.01) | 0.25 (±0.01) | 0.04 (±0.01) | |
Fe (μg m−2) | 0.62 (±0.02) | 0.38 (±0.04) | 1.92 (±0.01) | 0.01 (±0.01) | |
Mg (mg m−2) | 12.82 (±2.45) | 10.29 (±0.16) | 9.73 (±0.16) | 9.89 (±0.01) | |
Mn (μg m−2) | 0.16 (±0.01) | 0.47 (±0.01) | 0.1 (±0.01) | 0.09 (±0.01) | |
Pb (μg m−2) | 0.02 (±0.01) | 0.47 (±0.06) | 0.23 (±0.01) | N.D. |
Membranes | Surface Zeta Potential at pH 7 (mV) | Contact Angel (°) |
---|---|---|
Virgin RO | −27.4 (±1.6) | 58.3 (±3.8) |
Fouled RO | 1.7 (±3.1) | 65.1 (±2.5) |
Cleaned RO-DI | −17.5 (±1.9) | 56.7 (±0.7) |
Cleaned RO-A | −11.4 (±2.6) | 64.3 (±5.9) |
Cleaned RO-B | −21.8 (±3.6) | 51.7 (±4.8) |
Cleaned RO-S | −24.6 (±2.4) | 51.3 (±1.2) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rho, H.; Chon, K.; Cho, J. An Autopsy Study of a Fouled Reverse Osmosis Membrane Used for Ultrapure Water Production. Water 2019, 11, 1116. https://doi.org/10.3390/w11061116
Rho H, Chon K, Cho J. An Autopsy Study of a Fouled Reverse Osmosis Membrane Used for Ultrapure Water Production. Water. 2019; 11(6):1116. https://doi.org/10.3390/w11061116
Chicago/Turabian StyleRho, Hojung, Kangmin Chon, and Jaeweon Cho. 2019. "An Autopsy Study of a Fouled Reverse Osmosis Membrane Used for Ultrapure Water Production" Water 11, no. 6: 1116. https://doi.org/10.3390/w11061116