Effect of Water Table Depth on Soybean Water Use, Growth, and Yield Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Soybean Planting and Harvesting
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results and Discussions
3.1. Water Table Contribution
3.2. Growth and Yield Parameters
3.3. Water Use Efficiency (WUE)
3.4. Dry Root Mass
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamdy, A.; Ragab, R.; Scarascia-Mugnozza, E. Coping with water scarcity: Water saving and increasing water productivity. Irrig. Drain. 2003, 52, 3–20. [Google Scholar] [CrossRef]
- Steduto, P.; Hoogeveen, J.; Winpenny, J.; Burke, J. Coping with Water Scarcity: An Action Framework for Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Ayars, J.; Schoneman, R.; Dale, F.; Meso, B.; Shouse, P. Managing subsurface drip irrigation in the presence of shallow ground water. Agric. Water Manag. 2001, 47, 243–264. [Google Scholar] [CrossRef]
- Ghamarnia, H.; Golamian, M.; Sepehri, S.; Arji, I.; Rezvani, V. Groundwater contribution by safflower (Carthamus tinctorius L.) under high salinity, different water table levels, with and without irrigation. J. Irrig. Drain. Eng. 2011, 138, 156–165. [Google Scholar] [CrossRef]
- Kahlown, M.; Ashraf, M. Effect of shallow groundwater table on crop water requirements and crop yields. Agric. Water Manag. 2005, 76, 24–35. [Google Scholar] [CrossRef]
- Hutmacher, R.; Ayars, J.; Vail, S.; Bravo, A.; Dettinger, D.; Schoneman, R. Uptake of shallow groundwater by cotton: Growth stage, groundwater salinity effects in column lysimeters. Agric. Water Manag. 1996, 31, 205–223. [Google Scholar] [CrossRef]
- Ayars, J.; Christen, E.; Soppe, R.; Meyer, W. The resource potential of in-situ shallow ground water use in irrigated agriculture: A review. Irrig. Sci. 2006, 24, 147–160. [Google Scholar] [CrossRef]
- Li, S.; Luo, W.; Jia, Z.; Tang, S.; Chen, C. The Pros and Cons of Encouraging Shallow Groundwater Use through Controlled Drainage in a Salt-Impacted Irrigation Area. Water Res. Manag. 2018, 32, 2475–2487. [Google Scholar] [CrossRef]
- Soppe, R.; Ayars, J. Characterizing ground water use by safflower using weighing lysimeters. Agric. Water Manag. 2003, 60, 59–71. [Google Scholar] [CrossRef]
- Franzen, D. Managing Saline Soils in North Dakota; NDSU Extension Service: Fargo, ND, USA, 2013. [Google Scholar]
- Gao, X.; Huo, Z.; Qu, Z.; Xu, X.; Huang, G.; Steenhuis, T.S. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area. Sci. Rep. 2017, 7, 43122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghamarnia, H.; Daichin, S. Effect of different water stress regimes on different coriander (Coriander sativum L.) parameters in a semi-arid climate. Int. J. Agron. Plant Prod. 2013, 4, 822–832. [Google Scholar]
- Gowing, J.; Rose, D.; Ghamarnia, H. The effect of salinity on water productivity of wheat under deficit irrigation above shallow groundwater. Agric. Water Manag. 2009, 96, 517–524. [Google Scholar] [CrossRef]
- Benz, L.; Doering, E.; Reichman, G. Water-table contribution to alfalfa evapotranspiration and yields in sandy soils. Trans. ASAE 1984, 27, 1307–1312. [Google Scholar] [CrossRef]
- Niaghi, A.R.; Jia, X.; Scherer, T.F.; Steele, D.D. Measurement of Non-Irrigated Turfgrass Evapotranspiration Rate in the Red River Valley. Vadose Zone J. 2019, 1–37. [Google Scholar] [CrossRef]
- Meyer, W.; Dugas, W.; Barrs, H.; Smith, R.; Fleetwood, R. Effects of soil type on soybean crop water use in weighing lysimeters. Irrig. Sci. 1990, 11, 69–75. [Google Scholar]
- Luo, W.; Sands, G.R.; Youssef, M.; Strock, J.S.; Song, I.; Canelon, D. Modeling the impact of alternative drainage practices in the northern Corn-belt with DRAINMOD-NII. Agric. Water Manag. 2010, 97, 389–398. [Google Scholar] [CrossRef]
- Kandel, H. Soybean Production Field Guide for North Dakota and Northwestern Minnesota; North Dakota Soybean Council: Fargo, ND, USA, 2010. [Google Scholar]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics; Academic Press: San Diego, CA, USA; Cambridge, MA, USA, 1998. [Google Scholar]
- Majumdar, D.K. Irrigation Water Management: Principles and Practice; PHI Learning Pvt. Ltd.: New Delhi, India, 2001. [Google Scholar]
- Karam, F.; Masaad, R.; Sfeir, T.; Mounzer, O.; Rouphael, Y. Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions. Agric. Water Manag. 2005, 75, 226–244. [Google Scholar] [CrossRef]
- Foroud, N.; Mündel, H.-H.; Saindon, G.; Entz, T. Effect of level and timing of moisture stress on soybean plant development and yield components. Irrig. Sci. 1993, 13, 149–155. [Google Scholar] [CrossRef]
- Namken, L.; Wiegand, C.; Brown, R. Water Use by Cotton from Low and Moderately Saline Static Water Tables 1. Agron. J. 1969, 61, 305–310. [Google Scholar] [CrossRef]
- Luo, Y.; Sophocleous, M. Seasonal groundwater contribution to crop-water use assessed with lysimeter observations and model simulations. J. Hydrol. 2010, 389, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Mueller, L.; Behrendt, A.; Schalitz, G.; Schindler, U. Water Use Efficiency of Crops at Shallow Water Tables in a Temperate Climate. Proceedings of The Drainage VIII, Sacramento, CA, USA, 21–24 March 2004; p. 1. [Google Scholar]
- Imada, S.; Yamanaka, N.; Tamai, S. Water table depth affects Populus alba fine root growth and whole plant biomass. Funct. Ecol. 2008, 22, 1018–1026. [Google Scholar] [CrossRef]
Soil Fractions | Physical Properties of Soil | ||||||
---|---|---|---|---|---|---|---|
Sand | Silt | Clay | Soil Texture | Field Capacity | Readily Available Water | Permanent Wilting Point | Bulk Density |
% | % | % | # | cm3 cm−3 | cm3 cm−3 | cm3 cm−3 | Mg m−3 |
43 | 35 | 22 | Loam | 0.32 | 0.27 | 0.21 | 1.41 |
Replicate/WTD | Initial SWC (mm) | Irrigation (mm) | Water Table Contribution (mm) | Final SWC (mm) | ETc (mm) | Average ETc (mm) |
---|---|---|---|---|---|---|
R1-Tcontrol | 175 | 891 | - | 190 | 876 | 873 |
R2-Tcontrol | 175 | 891 | - | 180 | 886 | |
R3-Tcontrol | 175 | 891 | - | 211 | 856 | |
R1-T30 | 360 | - | 573 | 280 | 653 | 673 |
R2-T30 | 360 | - | 678 | 287 | 751 | |
R3-T30 | 360 | - | 543 | 289 | 614 | |
R1-T50 | 360 | - | 605 | 280 | 685 | 622 |
R2-T50 | 360 | - | 518 | 222 | 656 | |
R3-T50 | 360 | - | 433 | 268 | 525 | |
R1-T70 | 360 | - | 431 | 241 | 550 | 567 |
R2-T70 | 360 | - | 407 | 231 | 536 | |
R3-T70 | 360 | - | 498 | 244 | 614 | |
R1-T90 | 360 | - | 437 | 214 | 583 | 548 |
R2-T90 | 360 | - | 365 | 192 | 533 | |
R3-T90 | 360 | - | 376 | 207 | 529 |
Treatment | Height (cm) | Pod Weight g/plant | Seed Weight g/plant | Total Biomass g/plant |
---|---|---|---|---|
Tcontrol | 50.1 | 5.9 | 3.91b | 9.2b |
T30 | 49.2 | 7.9 | 5.53 | 13.4 |
T50 | 48.9 | 8.5 | 5.88 | 14.8 |
T70 | 49.4 | 8.7 | 6.25 | 14.6 |
T90 | 48.8 | 9.7 | 7.00a | 14.5a |
Treatments | Grain Yield | Total Biomass | ETc | Grain Yield WUE | Total Biomass WUE |
---|---|---|---|---|---|
g/lys. | g/lys. | mm | g/lys./cm | g/lys./cm | |
Tcontrol | 6.9b | 13.8b | 873a | 0.08c | 0.16b |
T30 | 15.1a | 33.9a | 673b | 0.22ab | 0.53a |
T50 | 10.5ab | 30a | 622bc | 0.18bc | 0.41a |
T70 | 14.1ab | 33.8a | 566c | 0.25ab | 0.53a |
T90 | 17.2a | 33.9a | 548c | 0.31a | 0.61a |
Layers | Depth | Average Root Mass and Percentage | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tcontrol | T30 | T50 | T70 | T90 | |||||||
cm | g | % | g | % | g | % | g | % | g | % | |
First | 0–20 | 4.37A | 71 | 3.53 | 41 | 2.40B | 27 | 2.30B | 20 | 3.10B | 24 |
Second | 20–40 | 1.17B | 19 | 2.23 | 26 | 1.73B | 19 | 1.10B | 10 | 1.30B | 10 |
Third | 40–75 | 0.63B | 10 | 2.90 | 33 | 4.80A | 54 | 8.00A | 70 | 8.43A | 66 |
TOTAL | 6.17b | 100 | 8.67 | 100 | 8.93 | 100 | 11.40a | 100 | 12.83a | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fidantemiz, Y.F.; Jia, X.; Daigh, A.L.M.; Hatterman-Valenti, H.; Steele, D.D.; Niaghi, A.R.; Simsek, H. Effect of Water Table Depth on Soybean Water Use, Growth, and Yield Parameters. Water 2019, 11, 931. https://doi.org/10.3390/w11050931
Fidantemiz YF, Jia X, Daigh ALM, Hatterman-Valenti H, Steele DD, Niaghi AR, Simsek H. Effect of Water Table Depth on Soybean Water Use, Growth, and Yield Parameters. Water. 2019; 11(5):931. https://doi.org/10.3390/w11050931
Chicago/Turabian StyleFidantemiz, Yavuz F., Xinhua Jia, Aaron L.M. Daigh, Harlene Hatterman-Valenti, Dean D. Steele, Ali R. Niaghi, and Halis Simsek. 2019. "Effect of Water Table Depth on Soybean Water Use, Growth, and Yield Parameters" Water 11, no. 5: 931. https://doi.org/10.3390/w11050931