Three-Dimensional Geophysical Characterization of Deeply Buried Paleokarst System in the Tahe Oilfield, Tarim Basin, China
Abstract
1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
4.1. Characteristics of Paleokarst System in Tahe Oilfield
4.2. Quantitative Seismic Identification of Paleokarst Systems
4.3. Three-Dimensional Structure of Paleokarst System
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ford, D. Jovan Cvijic and the founding of karst geomorphology. Environ. Geol. 2007, 51, 675–684. [Google Scholar] [CrossRef]
- Ford, D.C. Karst geomorphology, caves and cave deposits: A review of North American contributions during the past half century. Geol. Soc. Am. Spec. Pap. 2006, 404, 1–13. [Google Scholar] [CrossRef]
- Qi, J.H.; Xu, M.; Cen, X.Y.; Wang, L.; Zhang, Q. Characterization of Karst Conduit Network Using Long-Distance Tracer Test in Lijiang, Southwestern China. Water 2018, 10, 949. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Wang, K.; Zhang, F.; Chen, J.F.; Li, A.M.; Chen, Y.P. Analysis of the Erosion Law of Karst Groundwater Using Hydrogeochemical Theory in Liulin Spring Area, North China. Water 2018, 10, 674. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Wang, W.P.; Qu, S.S.; Huang, Q.; Liu, S.; Xu, Q.Y.; Ni, L.D. A New Perspective to Explore the Hydraulic Connectivity of Karst Aquifer System in Jinan Spring Catchment, China. Water 2018, 10, 1368. [Google Scholar] [CrossRef]
- Delle Rose, M.; Martano, P. Infiltration and Short-Time Recharge in Deep Karst Aquifer of the Salento Peninsula (Southern Italy): An Observational Study. Water 2018, 10, 260. [Google Scholar] [CrossRef]
- Dvory, N.Z.; Ronen, A.; Livshitz, Y.; Adar, E.; Kuznetsov, M.; Yakirevich, A. Quantification of Groundwater Recharge from an Ephemeral Stream into a Mountainous Karst Aquifer. Water 2018, 10, 79. [Google Scholar] [CrossRef]
- Liu, L.Y.; Guan, D.J.; Yang, Q.W. Evaluation of Water Resource Security Based on an MIV-BP Model in a Karst Area. Water 2018, 10, 786. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Z.B.; Wang, W.K. Evaluating the Impaction of Coal Mining on Ordovician Karst Water through Statistical Methods. Water 2018, 10, 1409. [Google Scholar] [CrossRef]
- Tian, F.; Di, Q.; Jin, Q.; Cheng, F.; Zhang, W.; Lin, L.; Wang, Y.; Yang, D.; Niu, C.; Li, Y. Multiscale geological-geophysical characterization of the epigenic origin and deeply buried paleokarst system in Tahe Oilfield, Tarim Basin. Mar. Petrol. Geol. 2019, 102, 16–32. [Google Scholar] [CrossRef]
- Simms, M.J. Karst and Paleokarst. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Burberry, C.M.; Jackson, C.A.L.; Chandler, S.R. Seismic reflection imaging of karst in the Persian Gulf: Implications for the characterization of carbonate reservoirs. AAPG Bull. 2016, 100, 1561–1584. [Google Scholar] [CrossRef]
- Russel-Houston, J.; Gray, K. Paleokarst in the Grosmont Formation and reservoir implications, Saleski, Alberta, Canada. Interpretation 2014, 2, Sf29–Sf50. [Google Scholar] [CrossRef]
- Chen, Z.H.; Wang, T.G.; Li, M.J.; Yang, F.L.; Chen, B. Biomarker geochemistry of crude oils and Lower Paleozoic source rocks in the Tarim Basin, western China: An oil-source rock correlation study. Mar. Petrol. Geol. 2018, 96, 94–112. [Google Scholar] [CrossRef]
- Gao, D.; Lin, C.S.; Hu, M.Y.; Yang, H.J.; Huang, L.L. Paleokarst of the Lianglitage Formation related to tectonic unconformity at the top of the Ordovician in the eastern Tazhong Uplift, Tarim Basin, NW China. Geol. J. 2018, 53, 458–474. [Google Scholar] [CrossRef]
- Jiang, L.; Cai, C.F.; Worden, R.H.; Crowley, S.F.; Jia, L.Q.; Zhang, K.; Duncan, I.J. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China. Sedimentology 2016, 63, 2130–2157. [Google Scholar] [CrossRef]
- Jiang, L.; Worden, R.H.; Cai, C.F.; Shen, A.J.; He, X.Y.; Pan, L.Y. Contrasting diagenetic evolution patterns of platform margin limestones and dolostones in the Lower Triassic Feixianguan Formation, Sichuan Basin, China. Mar. Petrol. Geol. 2018, 92, 332–351. [Google Scholar] [CrossRef]
- Tian, F.; Jin, Q.; Lu, X.B.; Lei, Y.H.; Zhang, L.K.; Zheng, S.Q.; Zhang, H.F.; Rong, Y.S.; Liu, N.G. Multi-layered ordovician paleokarst reservoir detection and spatial delineation: A case study in the Tahe Oilfield, Tarim Basin, Western China. Mar. Petrol. Geol. 2016, 69, 53–73. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhang, Z.Y.; Zhou, X.X.; Yan, L.; Sun, C.H.; Zhao, B. Preservation of Ultradeep Liquid Oil and Its Exploration Limit. Energy Fuel 2018, 32, 11165–11176. [Google Scholar] [CrossRef]
- Li, Y.Q.; Hou, J.G.; Sun, J.F.; Kang, Z.J.; Liu, Y.M.; Song, S.H.; Han, D. Paleokarst reservoir features and their influence on production in the Tahe Oilfield, Tarim basin, China. Carbonate Evaporite 2018, 33, 705–716. [Google Scholar] [CrossRef]
- McMechan, G.A.; Loucks, R.G.; Zeng, X.X.; Mescher, P. Ground penetrating radar imaging of a collapsed paleocave system in the Ellenburger dolomite, central Texas. J. Appl. Geophys. 1998, 39, 1–10. [Google Scholar] [CrossRef]
- Loucks, R.G. Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications. AAPG Bull. 1999, 83, 1795–1834. [Google Scholar]
- Loucks, R.G.; Mescher, P.K.; McMechan, G.A. Three-dimensional architecture of a coalesced, collapsed-paleocave system in the Lower Ordovician Ellenburger Group, central Texas. AAPG Bull. 2004, 88, 545–564. [Google Scholar] [CrossRef]
- Loucks, R.G. A review of coalesced, collapsed-paleocave systems and associated suprastratal deformation. Acta Carsol. 2007, 36, 121–132. [Google Scholar] [CrossRef]
- McDonnell, A.; Loucks, R.G.; Dooley, T. Quantifying the origin and geometry of circular sag structures in northern Fort Worth Basin, Texas: Paleocave collapse, pull-apart fault systems, or hydrothermal alteration? AAPG Bull. 2007, 91, 1295–1318. [Google Scholar] [CrossRef]
- Tian, F.; Lu, X.B.; Zheng, S.Q.; Zhang, H.F.; Rong, Y.S.; Yang, D.B.; Liu, N.G. Structure and Filling Characteristics of Paleokarst Reservoirs in the Northern Tarim Basin, Revealed by Outcrop, Core and Borehole Images. Open Geosci. 2017, 9, 266–280. [Google Scholar] [CrossRef]
- Zeng, H.L.; Loucks, R.; Janson, X.; Wang, G.Z.; Xia, Y.P.; Yuan, B.H.; Xu, L.G. Three-dimensional seismic geomorphology and analysis of the Ordovician paleokarst drainage system in the central Tabei Uplift, northern Tarim Basin, western China. AAPG Bull. 2011, 95, 2061–2083. [Google Scholar] [CrossRef]
- Zeng, H.L.; Wang, G.Z.; Janson, X.; Loucks, R.; Xia, Y.P.; Xu, L.G.; Yuan, B.H. Characterizing seismic bright spots in deeply buried, Ordovician Paleokarst strata, Central Tabei uplift, Tarim Basin, Western China. Geophysics 2011, 76, B127–B137. [Google Scholar] [CrossRef]
- Basso, M.; Kuroda, M.C.; Afonso, L.C.S.; Vidal, A.C. Three-Dimensional Seismic Geomorphology of Paleokarst in the Cretaceous Macae Group Carbonates, Campos Basin, Brazil. J. Petrol. Geol. 2018, 41, 513–526. [Google Scholar] [CrossRef]
- Sayago, J.; Di Lucia, M.; Mutti, M.; Cotti, A.; Sitta, A.; Broberg, K.; Przybylo, A.; Buonaguro, R.; Zimina, O. Characterization of a deeply buried paleokarst terrain in the Loppa High using core data and multiattribute seismic facies classification. AAPG Bull. 2012, 96, 1843–1866. [Google Scholar] [CrossRef]
- Tian, F.; Luo, X.R.; Zhang, W. Integrated geological-geophysical characterizations of deeply buried fractured-vuggy carbonate reservoirs in Ordovician strata, Tarim Basin. Mar. Petrol. Geol. 2019, 99, 292–309. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhang, Y.; Zhou, X.X.; Zhang, Z.Y.; Du, D.D.; Shi, S.B.; Li, T.T.; Chen, W.Y.; Han, J.F. TSR, deep oil cracking and exploration potential in the Hetianhe gas field, Tarim Basin, China. Fuel 2019, 236, 1078–1092. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, Z.X.; Hao, F.; Qi, L.X.; Yun, L.; Jiang, L. Hydrogeomorphologic architecture of epikarst reservoirs in the Middle-Lower Ordovician, Tazhong Uplift, Tarim Basin, China. Mar. Petrol. Geol. 2018, 98, 146–161. [Google Scholar] [CrossRef]
- Lu, X.X.; Wang, Y.F.; Yu, H.F.; Bai, Z.K. Major factors affecting the closure of marine carbonate caprock and their quantitative evaluation: A case study of Ordovician rocks on the northern slope of the Tazhong uplift in the Tarim Basin, western China. Mar. Petrol. Geol. 2017, 83, 231–245. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Chen, J.F.; Pang, X.Q.; Zhang, B.S.; Chen, Z.Y.; Zhang, G.Q.; Luo, G.P.; He, L.W. Origin of deep sour natural gas in the Ordovician carbonate reservoir of the Tazhong Uplift, Tarim Basin, northwest China: Insights from gas geochemistry and formation water. Mar. Petrol. Geol. 2018, 91, 532–549. [Google Scholar] [CrossRef]
- Zhan, Z.W.; Zou, Y.R.; Pan, C.C.; Sun, J.N.; Lin, X.H.; Peng, P.A. Origin, charging, and mixing of crude oils in the Tahe oilfield, Tarim Basin, China. Org. Geochem. 2017, 108, 18–29. [Google Scholar] [CrossRef]
- Li, Y.Q.; Hou, J.G.; Ma, X.Q. Data integration in characterizing a fracture-cavity reservoir, Tahe oilfield, Tarim basin, China. Arab. J. Geosci. 2016, 9, 532. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Milkov, A.V.; Chen, F.R.; Weng, N.; Zhang, Z.Y.; Yang, H.J.; Liu, K.Y.; Zhu, Y.F. Non-cracked oil in ultra-deep high-temperature reservoirs in the Tarim basin, China. Mar. Petrol. Geol. 2018, 89, 252–262. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Wang, M.; Zhang, T.W. Identification of polycyclic sulfides hexahydrodibenzothiophenes and their implications for heavy oil accumulation in ultra-deep strata in Tarim Basin. Mar. Petrol. Geol. 2016, 78, 439–447. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Qin, F.R.; Liang, B.; Cao, J.W.; Dan, Y.; Li, J.R.; Chen, L.X. Characteristics of Ordovician paleokarst inclusions and their implications for paleoenvironmental and geological history in Halahatang area of northern Tarim Basin. Carbonate Evaporite 2018, 33, 43–54. [Google Scholar] [CrossRef]
- Lu, X.B.; Wang, Y.; Tian, F.; Li, X.H.; Yang, D.B.; Li, T.; Lv, Y.P.; He, X.M. New insights into the carbonate karstic fault system and reservoir formation in the Southern Tahe area of the Tarim Basin. Mar. Petrol. Geol. 2017, 86, 587–605. [Google Scholar] [CrossRef]
- Ma, D.; Cai, X.; Li, Q.; Duan, H.Y. In-Situ and Numerical Investigation of Groundwater Inrush Hazard from Grouted Karst Collapse Pillar in Longwall Mining. Water 2018, 10, 1187. [Google Scholar] [CrossRef]
- Lyu, X.X.; Tao, Z.; Gao, Q.Z.; Peng, H.X.; Zhou, M. Chemical Weathering and Riverine Carbonate System Driven by Human Activities in a Subtropical Karst Basin, South China. Water 2018, 10, 1524. [Google Scholar] [CrossRef]
- Pang, X.Q.; Jia, C.Z.; Pang, H.; Yang, H.J. Destruction of hydrocarbon reservoirs due to tectonic modifications: Conceptual models and quantitative evaluation on the Tarim Basin, China. Mar. Petrol. Geol. 2018, 91, 401–421. [Google Scholar] [CrossRef]
- Yuan, J.F.; Xu, F.; Deng, G.S.; Tang, Y.Q.; Li, P.Y. Hydrogeochemistry of Shallow Groundwater in a Karst Aquifer System of Bijie City, Guizhou Province. Water 2017, 9, 625. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhang, Y.; Wang, M.; Zhang, Z.Y. Discovery of High-Abundance Diamondoids and Thiadiamondoids and Severe TSR Alteration of Well ZS1C Condensate, Tarim Basin, China. Energy Fuel 2018, 32, 7383–7392. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tan, F.; Qu, H.Z.; Zhong, Z.Q.; Liu, Y.; Luo, X.S.; Wang, Z.Y.; Qu, F. Karst monadnock fine characterization and reservoir control analysis: A case from Ordovician weathering paleokarst reservoirs in Lungu area, Tarim Basin, NW China. Petrol. Explor. Dev. 2017, 44, 758–769. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Sun, Z.D.; Han, J.F.; Wang, H.Y.; Fan, C.Y. Fluid mapping in deeply buried Ordovician paleokarst reservoirs in the Tarim Basin, western China. Geofluids 2016, 16, 421–433. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhang, Y.; Zhang, Z.Y.; Li, T.T.; He, N.N.; Grice, K.; Neng, Y.; Greenwood, P. High abundance of alkylated diamondoids, thiadiamondoids and thioaromatics in recently discovered sulfur-rich LS2 condensate in the Tarim Basin. Org. Geochem. 2018, 123, 136–143. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.K.; Liu, P.Y.; Qin, X.Q.; Shan, X.J.; Yao, X. FDOM Conversion in Karst Watersheds Expressed by Three-Dimensional Fluorescence Spectroscopy. Water 2018, 10, 1427. [Google Scholar] [CrossRef]
- Shan, X.; Tian, F.; Cheng, F.; Yang, C.; Xin, W. Spectral Decomposition and a Waveform Cluster to Characterize Strongly Heterogeneous Paleokarst Reservoirs in the Tarim Basin, China. Water 2019, 11, 256. [Google Scholar] [CrossRef]
- Di, Q.Y.; Zhang, M.G.; Wang, M.Y. Time-domain inversion of GPR data containing attenuation resulting from conductive losses. Geophysics 2006, 71, K103–K109. [Google Scholar] [CrossRef]
- Tian, F.; Wang, W.; Liu, N.; Jiang, J.; Niu, C.; Zhang, Y.; Li, Y. Rock-Type Definition and Pore Characterization of Tight Carbonate Rocks Based on Thin Sections and MICP and NMR Experiments. Appl. Magn. Reson. 2018, 49, 631–652. [Google Scholar] [CrossRef]
- Jebreen, H.; Banning, A.; Wohnlich, S.; Niedermayr, A.; Ghanem, M.; Wisotzky, F. The Influence of Karst Aquifer Mineralogy and Geochemistry on Groundwater Characteristics: West Bank, Palestine. Water 2018, 10, 1829. [Google Scholar] [CrossRef]
- Mylroie, J.; Vacher, H. A conceptual view of carbonate island karst. Karst Model. Karst Waters Inst. Spec. Publ. 1999, 5, 48–57. [Google Scholar]
- Mylroie, J.E.; Mylroie, J.R. Caves and karst of the Bahama Islands. In Coastal Karst Landforms; Springer: London, UK, 2013; pp. 147–176. [Google Scholar]
- Surić, M.; Juračić, M.; Horvatinčić, N.; Bronić, I.K. Late Pleistocene–Holocene sea-level rise and the pattern of coastal karst inundation: Records from submerged speleothems along the Eastern Adriatic Coast (Croatia). Mar. Geol. 2005, 214, 163–175. [Google Scholar] [CrossRef]
- Furlani, S.; Cucchi, F.; Forti, F.; Rossi, A. Comparison between coastal and inland Karst limestone lowering rates in the northeastern Adriatic Region (Italy and Croatia). Geomorphology 2009, 104, 73–81. [Google Scholar] [CrossRef]
- Dan, R.; Qin, J.; Jin, X.; Shi, W.; Zhang, Z.; Xi, B.; Tao, G.; Hong, J.J. Accumulation periods of Ordovician reservoirs in Tahe Oil Field. Petrol. Geol. Exp. 2014, 36, 83–88. [Google Scholar]
- Di, Q.Y.; Zhang, M.G.; Wang, M.Y. Time-domain finite-element wave form inversion of acoustic wave equation. J. Comput. Acoust. 2004, 12, 387–396. [Google Scholar] [CrossRef]
- Shah, R.A.; Jeelani, G.; Goldscheider, N. Karst Geomorphology, Cave Development and Hydrogeology in the Kashmir Valley, Western Himalaya, India. Acta Carsol. 2018, 47, 5–21. [Google Scholar]
- Vardanjani, H.K.; Chitsazan, M.; Ford, D.; Karimi, H.; Charchi, A. Initial assessment of recharge areas for large karst springs: A case study from the central Zagros Mountains, Iran. Hydrogeol. J. 2018, 26, 57–70. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhu, G.Y.; Zhang, Y.J.; Han, J.F.; Li, T.T.; Wang, E.Z.; Greenwood, P. The origin and accumulation of multi-phase reservoirs in the east Tabei uplift, Tarim Basin, China. Mar. Petrol. Geol. 2018, 98, 533–553. [Google Scholar] [CrossRef]
- Malenica, L.; Gotovac, H.; Kamber, G.; Simunovic, S.; Allu, S.; Divic, V. Groundwater Flow Modeling in Karst Aquifers: Coupling 3D Matrix and 1D Conduit Flow via Control Volume Isogeometric AnalysisExperimental Verification with a 3D Physical Model. Water 2018, 10, 1787. [Google Scholar] [CrossRef]
- Mansour, M.; Peach, D.; Robins, N.; Hughes, A. Using a Distributed Recharge Model to Quantify Recharge Processes in a Semi-Arid Karst Catchment: An Example from Wadi Natuf, West Bank. Water 2019, 11, 276. [Google Scholar] [CrossRef]
- Xue, Y.; Teng, T.; Zhu, L.; He, M.M.; Ren, J.; Dong, X.; Liu, F. Evaluation of the Non-Darcy Effect of Water Inrush from Karst Collapse Columns by Means of a Nonlinear Flow Model. Water 2018, 10, 1234. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Zang, H.F.; Zhang, Y.B.; Chen, J.F.; Zhang, F.; Shen, Y. A Study of Hydrogeochemical Processes on Karst Groundwater Using a Mass Balance Model in the Liulin Spring Area, North China. Water 2018, 10, 903. [Google Scholar] [CrossRef]
- Xing, L.T.; Huang, L.X.; Chi, G.Y.; Yang, L.Z.; Li, C.S.; Hou, X.Y. A Dynamic Study of a Karst Spring Based on Wavelet Analysis and the Mann-Kendall Trend Test. Water 2018, 10, 698. [Google Scholar] [CrossRef]
- Zheng, Q.W.; Su, W.C.; Zhang, F.T.; Zhou, Z.Q. Evaluation of Water Resources Security in the Karst Region from the “Man-Land-Water” Perspective: A Case Study of Guizhou Province. Water 2019, 11, 224. [Google Scholar] [CrossRef]
- May, M.T.; Brackman, T.B. Geophysical characterization of karst landscapes in Kentucky as modern analogs for paleokarst reservoirs. Interpretation 2014, 2, Sf51–Sf63. [Google Scholar] [CrossRef]
- Yang, W.M.; Fang, Z.D.; Yang, X.; Shi, S.S.; Wang, J.; Wang, H.; Bu, L.; Li, L.P.; Zhou, Z.Q.; Li, X.Q. Experimental Study of Influence of Karst Aquifer on the Law of Water Inrush in Tunnels. Water 2018, 10, 1211. [Google Scholar] [CrossRef]
- Yu, J.B.; Li, Z.; Yang, L. Fault system impact on paleokarst distribution in the Ordovician Yingshan Formation in the central Tarim basin, northwest China. Mar. Petrol. Geol. 2016, 71, 105–118. [Google Scholar] [CrossRef]
- Yu, J.B.; Li, Z.; Yang, L.; Han, Y.X. Model identification and control of development of deeply buried paleokarst reservoir in the central Tarim Basin, northwest China. J. Geophys. Eng. 2018, 15, 576–592. [Google Scholar] [CrossRef]
- Jia, Z.X.; Zang, H.F.; Zheng, X.Q.; Xu, Y.X. Climate Change and Its Influence on the Karst Groundwater Recharge in the Jinci Spring Region, Northern China. Water 2017, 9, 267. [Google Scholar] [CrossRef]
- Fu, Q.L. Characterization and discrimination of paleokarst breccias and pseudobreccias in carbonate rocks: Insight from Ordovician strata in the northern Tarim Basin, China. Sediment. Geol. 2019, 382, 61–74. [Google Scholar] [CrossRef]
- Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development. J. Hydrol. 2017, 549, 179–193. [Google Scholar] [CrossRef]
- Di, Q.Y.; Fu, C.M.; An, Z.G.; Xu, C.; Wang, Y.L.; Wang, Z.X. Field testing of the surface electromagnetic prospecting system. Appl. Geophys. 2017, 14, 449–458. [Google Scholar] [CrossRef]
- Di, Q.Y.; Wang, M.Y.; Wang, R.; Wang, G.J. Study of the long bipole and large power electromagnetic field. Chin. J. Geophys. 2008, 51, 1917–1928. [Google Scholar]
- Di, Q.Y.; Xue, G.Q.; Lei, D.; Wang, Z.X.; Zhang, Y.M.; Wang, S.; Zhang, Q.M. Geophysical survey over molybdenum mines using the newly developed M-TEM system. J. Appl. Geophys. 2018, 158, 65–70. [Google Scholar] [CrossRef]
- Di, Q.Y.; Wang, M.Y. Determining areas of leakage in the Da Ye Dam using multi-electrode resistivity. Bull. Eng. Geol. Environ. 2010, 69, 105–109. [Google Scholar] [CrossRef]
- Di, Q.Y.; Wang, M.Y. Migration of ground-penetrating radar data method with a finite-element and dispersion. Geophysics 2004, 69, 472–477. [Google Scholar] [CrossRef]
- Di, Q.Y.; Fang, G.Y.; Zhang, Y.M. Research of the Surface Electromagnetic Prospecting (SEP) system. Chin. J. Geophys. 2013, 56, 3629–3639. [Google Scholar] [CrossRef]
CAL (in) | GR (API) | RLLD (Ω·m) | RLLS (Ω·m) | AC (μs/ft) | CNL (%) | DEN (g/cm3) | |
---|---|---|---|---|---|---|---|
Paleocaves | 7–7.4 | 30–80 | <700 | <500 | 48–140 | 1.5–20 | 2.51–2.73 |
Host Rock | <7.1 | <30 | 2000–20,000 | 1500–20,000 | 42–52 | −1–2 | 2.7–2.76 |
Well | no. | Cave Top (m) | Cave Bottom (m) | Cave height (m) | Cave Top to Unconformity (m) | Seismic Amplitude Dataset | Acoustic Impedance Inversion Dataset |
---|---|---|---|---|---|---|---|
T403 | A4 | 5488.0 | 5554.4 | 66.4 | 83.0 | √ | √ |
T403 | A5 | 5587.3 | 5596.6 | 9.3 | 166.5 | × | √ |
T403 | A3 | 5439.3 | 5446.3 | 7.0 | 34.3 | × | √ |
T403 | A1 | 5415.9 | 5416.2 | 0.3 | 10.9 | × | ≈ |
T403 | A2 | 5422.2 | 5422.5 | 0.3 | 17.3 | × | ≈ |
TK405 | B9 | 5459.6 | 5495.5 | 35.9 | 32.6 | √ | √ |
TK405 | B3 | 5436.3 | 5439.6 | 3.3 | 9.3 | × | √ |
TK405 | B10 | 5688.3 | 5689.8 | 1.5 | 261.3 | × | ≈ |
TK405 | B7 | 5443.6 | 5444.4 | 0.8 | 16.6 | × | × |
TK405 | B2 | 5434.9 | 5435.5 | 0.6 | 7.9 | × | × |
TK405 | B8 | 5445.3 | 5445.8 | 0.5 | 18.3 | × | × |
TK405 | B5 | 5441.0 | 5441.4 | 0.4 | 14.0 | × | × |
TK405 | B6 | 5441.9 | 5442.3 | 0.4 | 14.9 | × | × |
TK405 | B1 | 5433.4 | 5433.8 | 0.4 | 6.4 | × | × |
TK405 | B4 | 5440.1 | 5440.5 | 0.4 | 13.1 | × | × |
TK446 | C3 | 5520.4 | 5541.7 | 21.3 | 25.4 | √ | √ |
TK446 | C4 | 5587.8 | 5594.9 | 7.1 | 92.8 | × | √ |
TK446 | C1 | 5499.8 | 5500.8 | 1.0 | 4.8 | × | × |
TK446 | C2 | 5501.8 | 5502.2 | 0.4 | 6.8 | × | × |
Cave Amount | Length (m) | Width (m) | Area (m2) | Area Ratio | Volume (m3) | Volume/Paleokarst Volume | |
---|---|---|---|---|---|---|---|
Sinkhole | 21 | 80–320 | 60–290 | 897,750 | 11.70% | 41,972,000 | 12.42% |
Main Channel | 1 | 3850 | 80–1930 | 2,989,575 | 38.98% | 167,791,000 | 49.65% |
Branch Channel | 8 | 290–1520 | 40–190 | 3,782,475 | 49.32% | 128,212,000 | 37.94% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, F.; Wang, Z.; Cheng, F.; Xin, W.; Fayemi, O.; Zhang, W.; Shan, X. Three-Dimensional Geophysical Characterization of Deeply Buried Paleokarst System in the Tahe Oilfield, Tarim Basin, China. Water 2019, 11, 1045. https://doi.org/10.3390/w11051045
Tian F, Wang Z, Cheng F, Xin W, Fayemi O, Zhang W, Shan X. Three-Dimensional Geophysical Characterization of Deeply Buried Paleokarst System in the Tahe Oilfield, Tarim Basin, China. Water. 2019; 11(5):1045. https://doi.org/10.3390/w11051045
Chicago/Turabian StyleTian, Fei, Zhongxing Wang, Fuqi Cheng, Wei Xin, Olalekan Fayemi, Wang Zhang, and Xiaocai Shan. 2019. "Three-Dimensional Geophysical Characterization of Deeply Buried Paleokarst System in the Tahe Oilfield, Tarim Basin, China" Water 11, no. 5: 1045. https://doi.org/10.3390/w11051045
APA StyleTian, F., Wang, Z., Cheng, F., Xin, W., Fayemi, O., Zhang, W., & Shan, X. (2019). Three-Dimensional Geophysical Characterization of Deeply Buried Paleokarst System in the Tahe Oilfield, Tarim Basin, China. Water, 11(5), 1045. https://doi.org/10.3390/w11051045