Analysis of the Mixing Processes in a Shallow Subtropical Reservoir and Their Effects on Dissolved Organic Matter
Abstract
:1. Introduction
2. Study Site and Materials
2.1. Research Domain
2.2. Data Collection and Analysis
3. Model Development
4. Results and Discussion
4.1. Analysis of Collected Data
4.2. Diurnal Variations of Thermal Stratification and Vertical Water Velocity in Summer and Winter Seasons
4.3. Seasonal Variation of DOM Concentration and Compositions
4.4. Effects of Extreme Events in Mixing Processes
4.4.1. Storm Event 2—Cyclone Marcia
4.4.2. Storm Event 4—Cyclone Debbie
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elçi, Ş. Effects of thermal stratification and mixing on reservoir water quality. Limnology 2008, 9, 135–142. [Google Scholar] [CrossRef]
- MacIntyre, R. Oxygen depletion in Lake Macquarie, NSW. Mar. Freshw. Res. 1968, 19, 53–56. [Google Scholar] [CrossRef]
- MacKinnon, M.; Herbert, B. Temperature, dissolved oxygen and stratification in a tropical reservoir, Lake Tinaroo, northern Queensland, Australia. Mar. Freshw. Res. 1996, 47, 937–949. [Google Scholar] [CrossRef]
- Boehrer, B.; Schultze, M. Stratification of lakes. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef]
- Weider, L.J.; Lampert, W. Differential response of Daphnia genotypes to oxygen stress: Respiration rates, hemoglobin content and low-oxygen tolerance. Oecologia 1985, 65, 487–491. [Google Scholar] [CrossRef]
- Seager, J.; Milne, I.; Mallett, M.; Sims, I. Effects of short-term oxygen depletion on fish. Environ. Toxicol. Chem. 2000, 19, 2937–2942. [Google Scholar] [CrossRef]
- Marsden, M.W. Lake restoration by reducing external phosphorus loading: The influence of sediment phosphorus release. Freshw. Biol. 1989, 21, 139–162. [Google Scholar] [CrossRef]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506, 135–145. [Google Scholar] [CrossRef]
- Bertone, E.; Stewart, R.A.; Zhang, H.; O’Halloran, K. Analysis of the mixing processes in the subtropical Advancetown Lake, Australia. J. Hydrol. 2015, 522, 67–79. [Google Scholar] [CrossRef]
- Zhang, H.; Chan, E.-S. Modeling of the turbulence in the water column under breaking wind waves. J. Oceanogr. 2003, 59, 331–341. [Google Scholar] [CrossRef]
- Townsend, S.A. The influence of retention time and wind exposure on stratification and mixing in two tropical Australian reservoirs. Archiv für Hydrobiologie 1998, 141, 353–371. [Google Scholar] [CrossRef]
- Dorjsuren, B.; Yan, D.; Wang, H.; Chonokhuu, S.; Enkhbold, A.; Yiran, X.; Girma, A.; Gedefaw, M.; Abiyu, A. Observed Trends of Climate and River Discharge in Mongolia’s Selenga Sub-Basin of the Lake Baikal Basin. Water 2018, 10, 1436. [Google Scholar] [CrossRef]
- Wilhelm, S.; Adrian, R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol. 2008, 53, 226–237. [Google Scholar] [CrossRef]
- Holland, A.; Stauber, J.; Wood, C.M.; Trenfield, M.; Jolley, D.F. Dissolved organic matter signatures vary between naturally acidic, circumneutral and groundwater-fed freshwaters in Australia. Water Res. 2018, 137, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Stedmon, C.A.; Markager, S.; Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003, 82, 239–254. [Google Scholar] [CrossRef]
- Tundisi, J.G.; Tundisi, T.M. Limnology; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Weithoff, G.; Lorke, A.; Walz, N. Effects of water-column mixing on bacteria, phytoplankton, and rotifers under different levels of herbivory in a shallow eutrophic lake. Oecologia 2000, 125, 91–100. [Google Scholar] [CrossRef]
- Wiedner, C.; Nixdorf, B.; Heinze, R.; Wirsing, B.; Neumann, U.; Weckesser, J. Regulation of cyanobacteria and microcystin dynamics in polymictic shallow lakes. Archiv für Hydrobiologie-Hauptbände 2002, 155, 383–400. [Google Scholar] [CrossRef]
- Judd, K.; Adams, H.; Bosch, N.; Kostrzewski, J.; Scott, C.; Schultz, B.; Wang, D.; Kling, G. A case history: Effects of mixing regime on nutrient dynamics and community structure in Third Sister Lake, Michigan during late winter and early spring 2003. Lake Reserv. Manag. 2005, 21, 316–329. [Google Scholar] [CrossRef]
- Helfer, F.; Zhang, H.; Lemckert, C. Modelling of lake mixing induced by air-bubble plumes and the effects on evaporation. J. Hydrol. 2011, 406, 182–198. [Google Scholar] [CrossRef]
- Blix, K.; Pálffy, K.; Tóth, V.R.; Eltoft, T. Remote Sensing of Water Quality Parameters over Lake Balaton by Using Sentinel-3 OLCI. Water 2018, 10, 1428. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Tuvikene, L.; Viik, M.; Nõges, T. Dissolved organic carbon and its potential predictors in eutrophic lakes. Water Res. 2016, 102, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Hood, E.; Gooseff, M.N.; Johnson, S.L. Changes in the character of stream water dissolved organic carbon during flushing in three small watersheds, Oregon. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef]
- Spencer, R.G.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, R.G.; Hernes, P.J. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Ruhala, S.S.; Zarnetske, J.P. Using in-situ optical sensors to study dissolved organic carbon dynamics of streams and watersheds: A review. Sci. Total Environ. 2017, 575, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Burford, M.A.; Johnson, S.A.; Cook, A.J.; Packer, T.V.; Taylor, B.M.; Townsley, E.R. Correlations between watershed and reservoir characteristics, and algal blooms in subtropical reservoirs. Water Res. 2007, 41, 4105–4114. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Faggotter, S.J.; Bunn, S.E.; Burford, M.A. Macrophyte beds in a subtropical reservoir shifted from a nutrient sink to a source after drying then rewetting. Freshw. Biol. 2017, 62, 854–867. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Saraceno, J.F.; Shanley, J.B.; Downing, B.D.; Pellerin, B.A. Clearing the waters: Evaluating the need for site-specific field fluorescence corrections based on turbidity measurements. Limnol. Oceanogr. Methods 2017, 15, 408–416. [Google Scholar] [CrossRef]
- De Oliveira, G.; Bertone, E.; Stewart, R.; Awad, J.; Holland, A.; O’Halloran, K.; Bird, S. Multi-Parameter Compensation Method for Accurate In Situ Fluorescent Dissolved Organic Matter Monitoring and Properties Characterization. Water 2018, 10, 1146. [Google Scholar] [CrossRef]
- Oliveira, G.; Bertone, E.; Stewart, R.; O’Halloran, K. Understanding and modelling fluorescent dissolved organic matter probe readings for improved coagulation performance in water treatment plants. In Proceedings of the 22nd International Congress on Modelling and Simulation, Hobart, Australia, 3–8 December 2017. [Google Scholar]
- Millero, F.J.; Poisson, A. International one-atmosphere equation of state of seawater. Deep Sea Res. Part A Oceanogr. Res. Pap. 1981, 28, 625–629. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1989. [Google Scholar]
- Evans, C.D.; Monteith, D.T.; Cooper, D.M. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ. Pollut. 2005, 137, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Saraceno, J.F.; Pellerin, B.A.; Downing, B.D.; Boss, E.; Bachand, P.A.; Bergamaschi, B.A. High-frequency in situ optical measurements during a storm event: Assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes. J. Geophys. Res. Biogeosci. 2009, 114. [Google Scholar] [CrossRef]
- Van Nieuwenhuijzen, A.; Van der Graaf, J. Handbook on Particle Separation Processes; IWA Publishing: London, UK, 2011. [Google Scholar]
- Awad, J.; van Leeuwen, J.; Chow, C.; Drikas, M.; Smernik, R.J.; Chittleborough, D.J.; Bestland, E. Characterization of dissolved organic matter for prediction of trihalomethane formation potential in surface and sub-surface waters. J. Hazard. Mater. 2016, 308, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.-G. Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bertone, E.; O’Halloran, K. Analysis and Modelling of Taste and Odour Events in a Shallow Subtropical Reservoir. Environments 2016, 3, 22. [Google Scholar] [CrossRef]
Parameter | Event 1 | Event 2 | Event 3 | Event 4 |
---|---|---|---|---|
Time period | 19/01/2015–29/01/2015 | 20/02/2015–26/02/2015 | 22/03/2015–27/03/2015 | 30/03/2017–03/04/2017 |
Total Rainfall (mm) | 66.6 | 288.8 | 74.4 | 214 |
Storm duration (Hour) | 96 | 70 | 47 | 48 |
Duration of turbidity (Hour) | 103 | 117 | 57 | 103 |
Max turbidity (FNU) | 67.87 | 104.75 | 92.90 | 111.90 |
Lag time of turbidity (Hour) | 17 | 16 | 18 | 20 |
Average increasing rate of turbidity (FNU/hour) | 9.8 | 7.22 | 5.59 | 3.87 |
Max compensated fDOM | 242.13 | 297.86 | 241.95 | 244.38 |
Lag time compensated fDOM (Hour) | 17 | 16 | 18 | 20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, H.; Bertone, E.; Stewart, R.A.; O’Halloran, K. Analysis of the Mixing Processes in a Shallow Subtropical Reservoir and Their Effects on Dissolved Organic Matter. Water 2019, 11, 737. https://doi.org/10.3390/w11040737
Wang X, Zhang H, Bertone E, Stewart RA, O’Halloran K. Analysis of the Mixing Processes in a Shallow Subtropical Reservoir and Their Effects on Dissolved Organic Matter. Water. 2019; 11(4):737. https://doi.org/10.3390/w11040737
Chicago/Turabian StyleWang, Xinchen, Hong Zhang, Edoardo Bertone, Rodney A. Stewart, and Kelvin O’Halloran. 2019. "Analysis of the Mixing Processes in a Shallow Subtropical Reservoir and Their Effects on Dissolved Organic Matter" Water 11, no. 4: 737. https://doi.org/10.3390/w11040737
APA StyleWang, X., Zhang, H., Bertone, E., Stewart, R. A., & O’Halloran, K. (2019). Analysis of the Mixing Processes in a Shallow Subtropical Reservoir and Their Effects on Dissolved Organic Matter. Water, 11(4), 737. https://doi.org/10.3390/w11040737