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Abstract: A good understanding of the physical processes of lakes or reservoirs, especially of those
providing drinking water to residents, plays a vital role in water management. In this study, the water
circulation and mixing processes occurring in the shallow, subtropical Tingalpa Reservoir in Australia
have been investigated. Bathymetrical, meteorological, chemical and physical data collected from
field measurements, laboratory analysis of water sampling and an in-situ Vertical Profile System
(VPS) were analysed. Based on the high-frequency VPS dataset, a 1D model was developed to
provide information for vertical transport and mixing processes. The results show that persistent
high air temperature and stable reservoir water depth lead to a prolonged thermal stratification.
Analysis indicates that heavy rainfalls have a significant impact on water quality when the dam
level is low. The peak value of Dissolved Organic Carbon (DOC) concentration occurred in the wet
season, while the specific UV absorbance (SUVA) value decreased when solar radiation increased
from spring to summer. The study aims to provide a comprehensive approach for understanding and
modelling the water mixing processes in similar lakes with high-frequency data from VPS’s or other
monitoring systems.

Keywords: mixing processes; Vertical Profiling System; turbidity; dissolved organic matter;
water temperature

1. Introduction

A comprehensive understanding of the mixing processes of lakes or reservoirs, especially those
providing drinking water to consumers, is of great importance for an effective water supply management.
Lack of an accurate understanding of biogeochemical and physical cycles in lakes or reservoirs may
lead to non-optimal decisions on water treatment, resulting in potential breaches of drinking water
quality guidelines.

The thermal cycle is vital for the pattern of vertical mixing in lakes and reservoirs [1]. Because of
the resulting redistribution of dissolved oxygen and nutrients, thermal stratification also has significant
consequences for the general ecology [2,3] and water quality [4]. Prolonged thermal stratification has
already been shown to enhance the depletion of hypolimnetic oxygen, putting pressure on aquatic
organisms [5,6]. Moreover, the oxygen depletion and high hypolimnetic temperatures can stimulate
the accumulation of dissolved nutrients and mineralization of organic matter at the sediment–water
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interface [7,8]. For subtropical lakes, water temperature is always high in top layers and the temperature
gradient is relatively large during most of summer, spring and even autumn [9]. The heating caused
by solar radiation in surface waters is the main driving force of thermal processes. However, storm
events with precipitation and strong winds can break down the thermal stratification and accelerate
the mixing processes in the water column [10–12]. Other factors also influence the thermal cycle in
reservoirs, including climate warming, catchment topography, inflow, reservoir morphometry and
hydraulic residence time [11,13]. With regards to Dissolved Organic Matter (DOM), the strength and
frequency of the turbulence caused by the mixing regime of a lake directly affects its concentration
and composition [14–16]. Thus, understanding the mixing processes is crucial for water suppliers to,
in turn, predict the nature and levels of DOM, and ensure effective DOM management procedures so
that the treated water can meet related drinking water guidelines before being distributed.

Many studies have been conducted to examine the mixing regime of lakes or reservoirs. Elçi [1]
explored the structure of thermal stratification and its influence on the water quality of a Turkish
Reservoir, deploying a series of non-dimensional indexes and multivariate analyses. Wilhelm and
Adrian [13] investigated the impact of prolonged thermal stratification events on oxygen and nutrients
in Müggelsee Lake, Germany, by compiling a frequency distribution of stratification events and
performing partial correlation analysis. The results indicated that hypolimnetic oxygen concentrations
strongly decreased during stratification events, and the effects of extreme events counteracted the
influence of reduced external nutrient loading. Bertone et al. [9] developed a one-dimensional
time-dependent dynamic model, which was deployed with hourly vertical temperature profiles’ data
to calculate vertical velocities and diffusivity coefficients and understand the mixing processes of the
Australian subtropical Advancetown Lake. The vertical temperature profiles’ data were measured by
a water quality probe installed in a vertical profiling system (VPS). Findings indicated that the vertical
mixing processes were driven by diffusion in the study domain, while advection played minor roles.
A number of previous studies have analyzed the impacts of the mixing processes of shallow lakes or
reservoirs on certain water constituents [17–21]; however, they were often confined to short periods of
time or based on relatively low-frequency measurements. With regards specifically to DOM, previous
studies relied on laboratory measurements of its chemical and optical properties [22–24]. Typically,
these rely on manual field water sampling, which for the location of this study, are undertaken
on a monthly basis. Such frequency is not sufficient to understand and model DOM transport.
However, in recent years, new optical sensing technology is available which enables the measurement
of fluorescent dissolved organic matter (fDOM) at high-frequency through a fluorescence sensor
installed in a VPS; this allows for monitoring of changes in DOM quality and character, especially
during storm events when it is difficult to manually collect samples [25]. However, to date, to the
Authors’ knowledge, there has been no attempt to analyse the effects of water mixing processes on
DOM, based on high-frequency data in the lake environment.

In the present study, the research location is Tingalpa Reservoir, which supplies water to the
Redland City area, Queensland, Australia. Importantly, a VPS was installed in this reservoir in 2013,
collecting water quality data (including water temperature and fDOM) for the full water column every
hour. Based on such high-frequency data, it was possible to create a one-dimensional vertical model to
examine the nature of the mixing regime and effects of the thermal cycle on oxygen, nutrients and
DOM. The objective of this study was to investigate the diurnal and seasonal nature of the thermal
stratification in Tingalpa Reservoir. The study also focused on the seasonal changes of water quality
parameters, such as turbidity and DOM. Importantly, VPS data enables the analysis of water mixing
processes specifically during storm events; therefore, the physical processes of transport and mixing
within the water body were analyzed during historical storm events. This study aims to provide
a better understanding of the causes and effects of mixing processes affecting similar shallow and
polymictic lakes or reservoirs.
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2. Study Site and Materials

2.1. Research Domain

Tingalpa Reservoir is located in South-East Queensland, Australia (153.18◦ E, 27.53◦ S), and is
bounded by Leslie Harrison Dam. The earth-fill dam structure, which was completed in 1968, is 25 m
high and 535 m long. It was upgraded in 1984 to provide approximately 20% of the water supply to
Redland City, which has a population of around 150,000 inhabitants. The shallow reservoir, with a
mean depth of 5.3 m, has a mean water residence time of 4.5 years [26]. The main inflows are the
Tingalpa Creek from a southwestern direction and the Stockyard Creek from a southeastern direction,
see Figure 1. An intake tower, located on the northeastern side of the reservoir, withdraws the raw
water and redirects it to the Capalaba water treatment plant (WTP). The catchment area is 87.5 square
kilometers, and contains a large portion of the Venman Bushland National Park; the reservoir’s surface
area at full capacity is 470 hectares. The dam was initially managed by the Redland City Council, but its
management was transferred to Seqwater (i.e., Southeast Queensland Water) in July 2008. In order to
ensure the region’s dams continue to meet national standards, Seqwater commenced dam improvement
programs in 2014 and the dam’s capacity decreased from the full capacity (24,868 ML) to 13,206 ML on
1 August 2014. Previous studies [27] found that longer seasonally dry spells in Tingalpa Reservoir
increased organic matter content, and affected water quality after the subsequent rainfall events.
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Figure 1. Monitoring sites in Tingalpa Reservoir. In the background, the bathymetry [m AHD] of
Tingalpa Reservoir is presented.

2.2. Data Collection and Analysis

Since 2013, a VPS was installed in Tingalpa Reservoir 500 m from the dam wall, as shown in
Figure 1. Such systems consist of a YSI (Yellow Springs, OH, USA) EXO2 multi-probe system connected
to a set of water quality probes underneath, which are automatically winched up and down the water
column and measure water quality variables, including water temperature, pH, dissolved oxygen,
conductivity, turbidity and fDOM. In Tingalpa reservoir, the VPS can collect such water quality data
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for the full vertical profile every hour at 1-m depth intervals, and transmit the collected data via
telemetry to the Seqwater dataset. The location where the VPS is placed has a maximum depth of 13 m.
The fDOM was measured using an EXO2 fDOM Smart Sensor (YSI, USA) and reported as relative
fluorescence units (RFU) and quinine sulfate units (QSU). This fDOM probe has an excitation/emission
pair of 365 ± 5 nm/480 ± 40 nm to estimate the quantity of fluorescent, humic-like DOM (peak
C) [28]. When monitoring the fDOM concentration, the optical signal of the fDOM probe is affected
and distorted by temperature, turbidity, pH, salinity and inner filter effects. The type of turbidity
is also important, with the magnitude of fDOM signal bias being related to the shape and size of
suspended particles [29,30]. Sequential compensation models were recently developed to investigate
such environmental interferences on a fDOM probe for its calibration in Tingalpa Reservoir [30].
Such models were applied to the raw fDOM historical data collected for this study, in order to achieve
more reliable fDOM readings. In this study, the fDOM readings were compensated based on a recently
developed sequential compensation model [31]. The uncompensated fDOM represents the original
raw fDOM reading, which is affected by the aforementioned interferences.

For the determination of DOM concentrations, DOC and UV absorbance historical data from
2013 to 2017 were collected from Seqwater. These were originally measured from water samplings,
following filtration. The sampling points are shown in Figure 1. DOC concentration was measured
using a high-temperature catalytic oxidation TOC-L CPH Total Organic Carbon Analyser (Shimadzu
Corporation, Japan). UV absorbance was measured using a UV-1800 UV-Visible Spectrophotometer
(Shimadzu Corporation, Japan), with results given in cm−1. Specific absorbance or SUVA (the ratio
of absorbance at 254 mm/m to DOC concentration) was determined at the raw water inlet. The time
interval between water sampling was approximately one month. Historical weather conditions, such as
air temperature, wind speed and direction, solar radiation and precipitation, were collected from the
Australian Bureau of Meteorology (BoM) from 2013 to 2017 with a daily interval. Outflow discharge
was obtained from Seqwater with a daily interval, including the outflow volume to the Capalaba Water
Treatment Plant (WTP) and the spilt amount of water from Leslie Harrison Dam during a period from
2013 to 2017. Seqwater also monitored the daily inflow water level at the monitoring station shown in
Figure 1 in Tingalpa Creek from 2014 to 2017.

The collected data for the 2013 to 2017 period was quality assured before being included in
any data analysis to make sure the current results are reliable and reflect the dynamics observed
in Tingalpa Reservoir. Thus, all data was checked for completeness, inconsistencies and anomalies.
The collected dataset was checked for outliers and missing data. For the missing hourly VPS data,
nearest-neighbours linear interpolation was performed, but for periods with longer gaps in data
collection, (e.g., missing from 6 April 2015 to 5 May 2015), the interpolation was not implemented
since it would be too unreliable. In this situation, when the vertical profiles are plotted in a time series
format, unavailable data are shown in a white colour. Scatter plots of variables with each other helped
to visually identify any linear or nonlinear correlation. All of these analyses enabled the understanding
of the relationships between the physical and chemical variables and mixing processes in the reservoir.

3. Model Development

A one-dimensional model was developed to calculate the mixing coefficients using the VPS data,
based on a continuity equation and an advection-diffusion equation. Regarding this vertical mixing
model, water temperature and conductivity are the inputs for the boundary conditions. According to
Bertone et al. [9], this model outputs the vertical velocity and diffusion coefficients, which can be used
for analysing the mixing processes in lakes when VPS data is available.

When the inflow and outflow conditions are neglected, the differential equation for the conservation
of mass can be derived from Equation (1) as:

∂ρ

∂t
+∇·(ρ

→
v ) = 0 (1)
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where ρ = density of water,
→
v = velocity vector and ∇ = gradient operator.

Equation (1) is also called the continuity equation. The continuity equation was discretized
as follows:

ρn+1
i − ρn

i
∆t

+
1
Ai

ρn
i+1wn

i+1Ai+1 − ρ
n
i wn

i Ai

∆z
= 0 (2)

where the superscript n is an index for time and subscript i is an index for depth (i = 1 indicates the
bottom depth); ρ and w are the density of the water and the vertical velocity; Ai is the lake cross area
in the layer i, which is assumed to change with depth, but not over time; ∆t is the time step; ∆z is
the distance between two adjacent depths. The water column was discretized with ∆t = 3600 s and
∆z = 1 m. The initial condition wn

1 = 0, wn
i+1 can be calculated using Equation (2). In the present

study, the VPS collected water temperature and conductivity in the water column. The density can be
calculated as in Millero and Poisson [32]:

ρ = ρ0 + A ∗ S + B ∗ S3/2 + C ∗ S2 (3)

where ρ is the water density [kg/m3]; ρ0 is the density of pure water [kg/m3], function of the water
temperature; S is the salinity of water [psu], which can be calculated by function of conductivity [33];
A and C are coefficients which are calculated by function of water temperature.

The advection-diffusion equation for heat transport is:

∂T(t, z)
∂t

=
1

A(z)
∂
∂z

(
A(z)D(t, z)

∂T(t, z)
∂z

)
−

w(t, z)
A(z)

∂(A(z)T(t, z))
∂z

+
1

A(z)Cw

∂(A(z)H(t, z))
∂z

= 0 (4)

where T(t, z) is the water temperature at time t and at depth z; A(z) is the reservoir cross area at depth
z; D(t, z) is the vertical diffusion at time t and at depth z; Cw is the volumetric heat capacity of water;
H(t, z) is the heat source term due to heat exchange with external environment, which is ignored in the
present study.

The advection term in Equation (4) can be discretized as:
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 (5)

The diffusion term in Equation (4) can be discretized as:

1
A(z)

∂
∂z

(
A(z)D(t, z)

∂T(t, z)
∂z

)
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n
i+2 − Tn

i+1)
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−

AiDn
i (T

n
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i )

∆z

 (6)

Using Equations (5) and (6), the vertical velocity w(t, z) and the diffusion D(t, z) for each layer at
each time can be calculated by applying all VPS data, in particular, water temperature and conductivity.

4. Results and Discussion

4.1. Analysis of Collected Data

Daily averaged air temperature, the sum of daily rainfall, weekly wind condition (wind speed
and wind direction), daily reservoir water level and hourly water temperature at depths of 1 m and
10 m and the column temperature differential are presented in Figure 2.

The air temperature varied seasonally within the range of 11.1–30.1 ◦C, with the highest air
temperature from December to February (January is the warmest month with a monthly mean air
temperature above 24.0 ◦C from 2014 to 2016) and the lowest in June to August (July is the coldest month
with a monthly mean air temperature of 15.3 ◦C from 2014 to 2016). The monthly mean minimum and
maximum temperatures for summer and winter months during the monitoring period were within
the range of 24.1–26.9 ◦C and 14.6–17.2 ◦C, respectively. Thus, Tingalpa Reservoir is characterised by
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having a warm summer and mild winter which is consistent with its location (subtropical climate
zone). In Figure 2a,b, the relationships are given between air temperatures and the column temperature
differential, besides other variables. It illustrates that air temperature has larger fluctuation ranges
than water temperature. For most of the summer seasons, the water temperature at the surface was
higher than that of water at the bottom layers. However, when the air temperature decreased to
the lowest value, the temperature in both layers of water reached the same level, thus achieving full
thermal destratification.

Water 2019, 11, 737 6 of 17 

 

 
Figure 2. Time series of: (a) Daily air temperature; (b) hourly column water temperature differential 
between depths of 1 m and 10 m; (c) daily rainfall; (d) weekly wind condition and (e) daily water level 
in Tingalpa Reservoir from 2013 to 2017. 

The air temperature varied seasonally within the range of 11.1–30.1 °C, with the highest air 
temperature from December to February (January is the warmest month with a monthly mean air 
temperature above 24.0 °C from 2014 to 2016) and the lowest in June to August (July is the coldest 
month with a monthly mean air temperature of 15.3 °C from 2014 to 2016). The monthly mean 
minimum and maximum temperatures for summer and winter months during the monitoring period 
were within the range of 24.1–26.9 °C and 14.6–17.2 °C, respectively. Thus, Tingalpa Reservoir is 
characterised by having a warm summer and mild winter which is consistent with its location 
(subtropical climate zone). In Figure 2a,b, the relationships are given between air temperatures and 
the column temperature differential, besides other variables. It illustrates that air temperature has 
larger fluctuation ranges than water temperature. For most of the summer seasons, the water 
temperature at the surface was higher than that of water at the bottom layers. However, when the air 

Figure 2. Time series of: (a) Daily air temperature; (b) hourly column water temperature differential
between depths of 1 m and 10 m; (c) daily rainfall; (d) weekly wind condition and (e) daily water level
in Tingalpa Reservoir from 2013 to 2017.

During the period from July 2013 to July 2017, the precipitation distribution amongst seasons
was 46.7% in summer, 21.7% in autumn, 20.0% in spring and 11.6% and winter. Heavy rainfall events
caused by storms are most likely to occur during the summer months, see Figure 2c. The mean of the
daily average of the wind speed and wind direction were 5.9 m s−1 and 145.9◦ (i.e., S/SE), respectively.
The daily averaged wind speed varied between 0.8–18.3 m s−1 and the daily averaged wind direction
varied between 36◦–282.5◦. To clearly show the wind variation, the wind condition with a weekly
interval is plotted in Figure 2d. It is clear from the charts that heavy rainfall events were often associated
with high wind speeds, and the dominant wind direction during storm events was NNW.
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Figure 2e shows the water level variation during the monitoring period from 2013 to 2017 and
presents a declining trend from highest level (18.1 m AHD) to lowest value (14.2 m AHD). It is obvious
from the charts that heavy rainfall events lead to increases in the water level in Tingalpa Reservoir and
decreases in the water temperature in both the surface and bottom layers.

4.2. Diurnal Variations of Thermal Stratification and Vertical Water Velocity in Summer and Winter Seasons

Vertical water velocity in winter from 3 July 2015 to 9 July 2015 was calculated using the 1D
hydrodynamic model as shown in Figure 3c. It shows the diurnal mode in Tingalpa Reservoir and that
the average vertical velocity values are in the order of 10−9 to 10−8 m/s. Figure 3 shows that the diurnal
mode of vertical velocity, especially the top layers of water, is dominated by the force of the wind
in winter (e.g., 3–9 July 2015). During this period, diurnal variations of thermal stratification were
typical in winter. Figure 3a,b show the air and water temperature and wind conditions. The results of
the vector plot of vertical velocity indicate that high wind speeds contribute to an increase of vertical
velocity in the surface of the water, leading to destratification and water mixing in the water column.
During the selected period (3–9 July 2015), the wind speed was generally relatively low (less than 2 m
s−1) during night and early morning, except the night of 6 July 2015. The wind condition shows that
from 7 July to 9 July 2015, prolonged strong winds persisted and removed heat, contributing to fewer
changes of the water temperature gradients during this period. The wind speed peaked when air
temperature increased to the maximum value around 11 AM to 3 PM. The water temperature profile
(Figure 3b) showed the thermal stratification in the day time gradually declined and there was very
little stratification over these last two days. The thermal gradients occurred when air temperature
increased and relatively large gradients were limited to the top 4m. The wind blowing at night led to
destratification in the top layers of water.
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The vertical water velocity, as well as the water temperature, in summer from 11 Jan 2014 to 17
Jan 2014 are presented in Figure 4. The air temperature and wind conditions are also presented in
Figure 4. The range of water temperatures (26.5 ◦C to 27.5 ◦C) was less than that of air temperatures
(20 ◦C to 30 ◦C). Regarding the wind condition, the figure indicated that during this period, the wind
speed was generally low at midnight and increased in the daytime. Low-speed wind was from a
northern or southern direction and the relatively high-speed wind was from an easterly direction.
The diurnal regimes over these six days were similar. The surface water started to heat between 9 AM
to 11 AM and the thermal stratification extended into the night. Although a prolonged easterly wind
blew, the thermal gradients were preserved within the top 4 m through to the night.
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Overall, higher thermal gradients occur at the top layers of water (limited to 6 m). The prolonged
wind cannot influence the progress of the water temperature being heated in summer. However,
in winter, the strong wind contributes to water mixing and destratification in the water column.
In Tingalpa Reservoir, due to the shallow reservoir depth, thermal stratification cannot continue for a
long time and water is always mixed in the vertical direction at night. It seems feasible to develop a
model that, given the existing thermal stratification and air temperature, predicts the minimum wind
speed and direction necessary to fully destratify the reservoir.

4.3. Seasonal Variation of DOM Concentration and Compositions

The concentrations of DOC in Tingalpa Creek and the reservoir are shown in Figure 5b. It shows
there is a clear correlation between DOC and rainfall intensity. Heavy rainfall led to the highest DOC
concentrations (monthly mean value: 14.3 mg/L) occurring in the wet period (March–May) in 2015.
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This parameter showed a similar trend in 2013 and 2015, with a peak in the wet period in 2013 (mean
value of 13.93 mg/L). The peak value always occurred in the wet period, which agrees with the findings
from Evans et al. [34] and Saraceno et al. [35]. They reported that the DOM concentration increased in
stream waters during storm events.
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DOC concentrations in reservoir waters in 2013, 2014 and 2015 showed a similar seasonal variation
trend to that in river waters, decreasing in dry periods and increasing in the wet period in Figure 5b.
In contrast, this parameter had a different trend to river waters in 2016, especially the period from
July to August 2016. DOC concentrations increased from 10.2 mg/L to 15.6 mg/L in Tingalpa Creek.
However, DOC concentrations decreased from 9.18 mg/L to 7.4 mg/L in reservoir waters. The different
variations can be attributed to a longer residence time in Tingalpa Reservoir in this period (mean 23.2
days). Compared to a smaller residence time (mean 0.2 days) in spring 2015, a longer residence time
can help to dilute the DOC concentrations.

Figure 5c shows that SUVA values were less than 5 L mg-C−1 m−1 in most of the seasons.
Mean SUVA levels in the reservoir waters were lower in summer than other seasons, especially in
2016. In 2016, the mean SUVA value was 2.93 L mg-C−1 m−1 in summer and mean SUVA values
were higher than 4 L mg-C−1 m−1 in other seasons in this year, which means that reservoir water
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contains hydrophobic, high molecular-weight aromatic humic substances [36]. The difference in
SUVA levels between summer season and other seasons was statistically significant (p-value = 0.0053).
This variation is due to increasing UV irradiation levels from spring to summer, leading to coloured
aromatic DOM being degraded by sunlight [37]. Figure 5d indicates that the fDOM had a similar
variation trend to that of the DOC concentration in reservoir water, i.e., an increase from July 2014 to
April 2015 and a decline after April 2015.

4.4. Effects of Extreme Events in Mixing Processes

The rainfall, the storage volume and the outflow which comprises water withdrawal and overflow
via the spillway are presented in Figure 6 together with the water quality (turbidity and compensated
fDOM) variations in Tingalpa Reservoir.Water 2019, 11, 737 11 of 17 
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Figure 6. (a) Daily rainfall (mm d−1) and daily storage volume (ML), (b) outflow (withdrawal and
overflow via spillway) (ML d−1), (c) residence time (Days), (d) hourly turbidity (FNU) and compensated
fDOM (RFU) at the depth of 10 m for the period 1 January 2015 to 1 April 2015 for Tingalpa Reservoir.

During the period 1 January 2015 to 1 April 2015, three heavy storm events occurred and caused
increases in the storage volume. The average water withdrawal is approximately 6.45 ML d−1 and
varied between 0.7–8.98 ML d−1. The overflow over the spillway varied in accordance with the
storage volume, specifically between 0–10,370 ML d−1. Based on the ratio between the storage volume
of the reservoir and the total outflow, the variation in the hydraulic residence time was estimated,
see Figure 6c. The hydraulic residence time represents the average length of time that water resides in
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a reservoir, which significantly influences water quality [38]. The results show that the residence time
in Tingalpa Reservoir decreased from approximately 17,000 days to five days during these extreme
events. It is obvious that the short residence time led to increases in turbidity and compensated fDOM.
Four storm events generated between 2015 and 2017 were selected, see Table 1. The duration of
turbidity is defined as the time period from the start of rainfall to the time when turbidity varied less
than 5%/hour; it can be seen in Table 1 that the duration of extreme events exceeded 100 h; for Event
3, the duration of the turbidity event was only 57 h. The reason for a shorter time for storm event 3
is that it is closer to the time of storm event 2. After event 2, the reservoir was still recovering and
had a short response time to storm event 3. The lag time of each parameter is relative to the time of
the peak rainfall. Lastly, it should be noted that these four events follow the reduction in the dam’s
capacity. Therefore, decreasing dam level and heavy rainfall are the two significant factors causing
not only very high turbidity levels, but long event durations. There was no obvious post-rainfall
variation in the turbidity levels before decreasing the dam level. In fact, previous studies [39] showed
a two-fold increase in the average raw water turbidity following the approximately 50% reduction
in storage volume for Tingalpa reservoir. These results suggest that before decreasing dam levels,
Tingalpa reservoir had enough volume to dilute the turbidity inflows so that no significant impact on
the water quality was observed. Event 2 and Event 4 experienced intense rainfall, so the following
paragraphs focus on these two events.

Table 1. Relevant parameters in Tingalpa Reservoir in extreme events.

Parameter Event 1 Event 2 Event 3 Event 4

Time period 19/01/2015–29/01/2015 20/02/2015–26/02/2015 22/03/2015–27/03/2015 30/03/2017–03/04/2017
Total Rainfall (mm) 66.6 288.8 74.4 214

Storm duration (Hour) 96 70 47 48
Duration of turbidity (Hour) 103 117 57 103

Max turbidity (FNU) 67.87 104.75 92.90 111.90
Lag time of turbidity (Hour) 17 16 18 20

Average increasing rate of
turbidity (FNU/hour) 9.8 7.22 5.59 3.87

Max compensated fDOM 242.13 297.86 241.95 244.38
Lag time compensated

fDOM (Hour) 17 16 18 20

4.4.1. Storm Event 2—Cyclone Marcia

Severe tropical Cyclone Marcia crossed Southeast Queensland and was accompanied by heavy
rainfall from 20 February to 22 February 2015. Figure 7 shows the effects of such rainfall events on the
reservoir’s water quality.

In situ turbidity at the bottom layer increased from 6.78 NTU to the peak value of 104.75 NTU in
15 hours between 20 and 21 February, 2015. Turbidity at the depth of 10 m returned to a stable value
(40 NTU) after 3 days. Comparing the turbidity levels at other depths, the variation in the level of the
water at the bottom was more dramatic. However, the turbidity level in different layers returned to the
same value after this event. The water temperature in each layer decreased rapidly during the heavy
rainfall, and the decreasing rate in the deeper layers (2.66 ◦C /day) was higher than that in surface water
(1.07 ◦C /day). After the heavy rainfall, the surface water temperature exhibited diurnal variability,
but the temperature in the bottom layers didn’t have such diurnal variation. The fDOM response to
Cyclone Marcia resulted in a large increase in fDOM values in the vertical direction and differences
in the magnitude of changes in both compensated and original fDOM concentrations. Compensated
fDOM at the depth of 10 m reached the peak value (280 RFU) on 22 February. Uncompensated fDOM
at the depths of 1 m and 10 m and compensated fDOM at a depth of 1 m increased between 21 and
24 February and remained stable after 24 February. The range of compensated fDOM (90 RFU–280
RFU) was significantly larger than that of uncompensated fDOM (90 RFU–140 RFU), thus highlighting
the importance of appropriately adjusting the sensors’ readings for interferences to allow for robust,
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reliable measurement. Before the storm event 2, the average vertical velocity in the water column
was in the order of 10−9 to 10−8 m/s and the diffusivity values were in the range of 10−5–10−3 m2/s.
During storm event 2, the vertical velocity and diffusivity increased up to 10−7 m/s and 0.08 m2/s,
respectively, and the value of both vertical velocity and diffusivity were larger at the surface layer of
water. This implies the storm event enabled short-term vertical water mixing and promoted surface
waters sinking down towards deeper layers.
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4.4.2. Storm Event 4—Cyclone Debbie

Ex-tropical cyclone Debbie impacted over Tingalpa Reservoir during the afternoon and evening
of Thursday, 30th March 2017. Damaging wind gusts of up to 131 km/h were observed along with
widespread rainfall in excess of 150 mm. Figure 8 shows the impact of such an event on the reservoir’s
water quality.
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Figure 8. Precipitation and ancillary in situ VPS from 15 February to 26 February 2015 including (a) half
hourly rainfall (mm·d−1), (b) hourly temperature (◦C), (c) hourly turbidity (FNU), (d) hourly original
fDOM and compensated fDOM (RFU) at the depths of 1 m and 10 m in storm event 4.

In situ turbidity increased during the heavy rainfall and the turbidity level at the bottom layer
was higher than that of the top layers. The turbidity level in different layers returned to the same value
(22 NTU) four days after this event. The water temperature in each layer decreased rapidly during the
heavy rainfall from 26 ◦C to 22.5 ◦C. The temperature had diurnal variabilities before and after the
heavy rainfall, but this diurnal fluctuation decreased during the storm event. It is a similar behaviour
to that for storm event 2, where the peak values of vertical velocity and diffusivity were in the range of
10−2 m/s and 10−7 m2/s, respectively.

During ex-tropical cyclone Debbie, there were many differences between compensated fDOM and
uncompensated fDOM between the top and bottom layers of the water. Compared to compensated
fDOM at the depth of 1 m, uncompensated fDOM in this layer increased more uniformly from 32 RFU
to 110 RFU. The compensated fDOM concentration at the depth of 10 m reached the peak of 230 RFU
on 1 April, which is less than the peak value during Cyclone Marcia. It is noted that both compensated
and uncompensated fDOM decreased sharply on 3 April and the decrease continued for 7 h. After 4
April, the fDOM concentration remained in a stable state. In addition, compared to deeper layers,
near-surface waters seem to be affected to a much lower extent in terms of poor water quality (turbidity
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and compensated fDOM), hence the highest offtake would provide a reasonable option. However,
depending on the circumstances, such as a more extreme event mixing the whole column and lower
water level, it shows that, typically, the water quality would recover in only a few days, hence if other
resources are accessible, water managers may choose withdraw a small amount of water from Tingalpa
Reservoir for a few days.

5. Conclusions

The mixing processes in Tingalpa reservoir, Queensland, Australia have been investigated in this
study using, among others, high-frequency VPS data. A one-dimensional model was developed and
implemented for analysing the vertical mixing of waters in Tingalpa Reservoir.

Heavy rainfall events accompanied by higher wind speeds, which were significant in summer
seasons, led to increases in the water level in Tingalpa Reservoir and decreases of water temperature in
both the surface and bottom layers. When the water level remained stable and there was little rainfall,
a prolonged thermal stratification occurred. The DOC concentration both in reservoir water and inflow
river water always peaked in wet periods and decreased in dry seasons. The longer residence time
in Tingalpa Reservoir can provide enough time to dilute the DOC concentration in reservoir water.
For the diurnal thermal stratification in Tingalpa Reservoir, most of the stratification is restricted to
the upper layers of water in both summer and winter in the absence of precipitation. The duration of
thermal gradients within the top meters is longer in summer than in winter, and often persists until the
early morning in summer, while in winter, night winds are able to break it down. The implemented
vertical mixing model, which is based on vertical profiles of water temperature and conductivity
collected from the VPS, can be applied in real time to calculate the vertical velocity and diffusivities.
The model enables a better understanding of mixing processes affecting the reservoir and adds value
to the VPS instrumentation.

For the water quality data analysis, the lag time between peaks in turbidity and compensated
fDOM relative to the rainfall event was between 17 to 20 h during a number of analysed storm events.
The VPS data in each storm event showed that before decreasing the dam level, Tingalpa Reservoir
had enough dilution capacity to keep turbidity and DOM levels to much lower levels. However,
after lowering the dam level, storm events led to much higher increases in turbidity and fDOM.

This study provides useful insights into the effects of extreme weather events on mixing processes
and water quality of shallow sub-tropical reservoirs. Specifically, for Tingalpa Reservior, it provides
insights to water managers on how storm events impact water quality, including at which depths
and for how long. Future work will focus on the development of a fDOM-based hybrid (data-driven
and process-based) decision support tool for the Capalaba water treatment plant, able to simulate
the effects of extreme weather events (e.g., heavy storms, drought) on reservoir DOM concentration,
thus assisting with its removal.

Author Contributions: Conceptualization, H.Z., E.B. and R.A.S.; methodology, X.W. and H.Z.; software, X.W.;
validation, X.W. and E.B.; formal analysis, X.W.; data curation, K.O.; writing—original draft preparation, X.W.;
writing—review and editing, H.Z., E.B., R.A.S. and K.O.

Funding: This research was partially funded by the Australian Government through the Australian Research
Council (ARC LP160100217).

Acknowledgments: This research work was conducted with the technical and financial support of Seqwater and
Griffith University.

Conflicts of Interest: The authors declare no conflict of interest.

References
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